Recommender Systems 2

Internet Analytics (COM-308)
Prof. Matthias Grossglauser

School of Computer and Communication
Sciences

=P-L

Overview

= Content-based recommenders:

= Here, content=text (prose in a news article, user-
provided tags for music, reviews of a product...)

Vector space model
= Each dimension ~ one term (word)

TF-IDF metric:

= Frequency in doc makes that word important in that doc
= Frequency in many docs makes a word less important
Probabilistic model for text classification

= Nalve Bayes: every word is i.i.d. given class
Smoothing:

= Dealing with rare words not seen in training

= Regularizer

Overview: recommender systems

= Content-based recommenders

item 1: item 2:

“Plane hijacked...” “soccer game...”
item 4: item 3:

“50.3% vote yes...” “swiss skiers win...”

X @ V

Model / user profile
new content - predicted rating

Basic idea

= Recommend to user u items similar to the ones
he/she liked before

= Collaborative filtering: similar item = liked by people
who share u’s tastes

= Content-based: similar = with similar content features as

previously liked items
« What features:

= Context-dependent

= Images&music: signal properties (rhythm,
instruments,...); meta-information; tags;...
= Pandora: music genome project, ~ 400 features

= Text: easiest & most widespread
= Prose, tags,...

Vector space model

= Compact description of a document
= Ignores order - “bag of words”

= One dimension per term/word
= Typically very sparse
= Count vector:
= f; = # of occurrences of word i in document

= Note: not reversible, ignores order of words

= The meaning of a sentence would be lost on a human
reader!

= (a a be human lost meaning of on reader sentence the
would!)

Profile from words

= How to create a useful profile of a document?

= Frequent words are characteristic of “topic”

= Document A: (“Probability”:50, “Markov”:20,
“Poisson”:15,...)

= Document B: (“Wimbledon”:30, “Federer”:8,
“Nadal”:5,...)

= TF: Term Frequency
= Function of one document j (not the whole corpus)
= Def: f;; = # of occurrences (frequency) of word i in doc j

fij
max 1
S fk]
= Importance of word i in document j

= Def: TFU —

TF-IDF: A measure of word importance

= Problem:

Most frequent terms would be (in English):

the, be, to, of, and, a, in, that, have, |, it, for, not, on,
with, he, as, you, do, at,...

No information, because common to all docs

We want words that are frequent only in target docs

= IDF: Inverse Document Frequency

Function of whole corpus
Def: n; = # documents j where word i occurs (at least
once)

Def: IDF; = —log, -+

If | know word i, humber of bits of information | learn
about which document is the target within corpus

TF-IDF vector space model

= Document profile D within a corpus:
- TFIDF;; = TF;; X IDF,

document

o term

= High score: word frequent in this document, but
not in most other documents

TF-IDF vector space model

= Vectors are high-dimensional but sparse

= Refinements: text preprocessing
= Remove stop words: the, be, to, of, and, a,...
= Stemming & lemming: transforming

= “the boy's cars are different colors” ->
“the boy car be differ color” [Manning et al.]

= Vector cutoff to most important terms
= Allow multi-word (“multi-gram”) terms (“United States”)

Queries and recommendations

= User profile (query) Q:
= Explicit: e.g., declaring an interest (“north korea”)
= Implicit: ratings (e.g., thumbs up/down)
= Explicit:
= These models are from information retrieval:
= Searching by query: return most similar docs to query
= Query terms - TF-IDF vector Q

= Assumption:

= Likelihood that user profile Q likes document D:
sim(Q,TFIDF, p), where

= Usually:
= sim(x,y) = cos(Xx,y)

10

From queries to ratings

= Implicit: user rates documents rather than

queries:

= Treat highly rated/liked docs as “positive queries”, low
rated/not liked as “negative queries”

= Past ratings are “green/red” points in a high-dimensional
vector space

= How to rate a new document D?
= Classification problem: many methods
= Generic non-parametric method: KNN (k nearest
neighbors)

= Select k rated docs in Q closest to D according to
sim(Q, D); majority in this set is predictor

11

kKNN classifier

1-NN: green
) ¢ 3-NN: orange

kNN classifier: selecting k

Binary kNN Classification Training Set

X2

X1

[Burton DeWilde: Data Science Rules (datasciencerules.blogspot.com), Oct 2012]

X2

kKNN: impact of k

overfits best model overgeneralizes

Binary kNN Classification (k=1) Binary kNN Classification (k=5) Binary kNN Classification (k=25)

X2

[Burton DeWilde: Data Science Rules (datasciencerules.blogspot.com), Oct 2012]
14

Critique of vector-space approach

= Assumptions implicit in approach

= “small angle between TF-IDF vectors means document
close to query”: intuitively ok

= Quantities do not have “physical meaning”, purely
heuristic

= We would like a clean model: assumptions,
performance measure we can optimize & compare
= Probabilistic model: rigorous treatment of uncertainty

15

Probabilistic models

= Significant uncertainty in predictions
= Quantization effects: like/dislike -> how much?

= Context: e.g.: dislike right now (mood), or dislike
categorically?

= Errors, confusions, etc.
= Uncertainty - model explicitly as probability
= Make assumptions explicit

= Easier to interpret significance

= Result comes with measure of uncertainty (confidence
interval, etc.)

16

Bayesian inference

= Statistical inference: frequentist (non-Bayesian)
= Observation X

= Model: py(x): distribution of X, depending on hidden
parameter 6

= Goal: infer 8 from observation(s) of X
- Maximum Likelihood estimator: 8 =m0ang(X)

= Estimated parameter best explains observed data

17

Bayesian inference

= Statistical inference: Bayesian

= We know something about 8: prior knowledge about the
problem

= 0 is a random variable with a known distribution: prior

= Model: p(X|60): distribution of X, conditional on hidden
random variable 6

= Bayes’ rule:

Pe61X) — P(6,X) P(X|6)P(6)

P(X) o P(XI6DP(8)
= Maximum A Posteriori (MAP) estimator:
6 = max P(O|X)
= But the full posterior distribution P(8|X) carries
additional information!
= How certain/uncertain are we about 6 given data X

18

Example: Max-Likelihood vs Bayesian

= Medical test

= You take a medical test whose accuracy is 90% - that is,
prob. test gives right result = 0.9

= Frequentist:
= P(pos|sick) = 0.9; P(pos|healthy) = 0.1
= ML: X = pos =80 = sick
= Test comes back positive - you conclude you are sick

19

Example: ML vs Bayesian

= Medical test:
= Bayesian:
= Medical test; prior = one in a million: P(sick) = 107
= |If test comes back positive:

P(pos|sick)p(sick)
p(pos|sick)p(sick)+P(pos|healthy)p(healthy)
« P(sick|pos) = 0.9 x 107>
= You conclude you are very likely healthy!

= Watch out: doctors apparently do not always get this
intuitively right

= P(sick|pos) =

20

Naive Bayes classifier

= Need a probabilistic model for a document

Simplest model:
= Nalve = independent terms (features)
= Each word is generated according to i.i.d. distribution

P(Xy, ... X, |0) = HP(Xiw)

Hidden variable 6:
= Relevant (good, G) or not relevant (bad, B)

Observable variable:

= Message = set of words (x4, x5, ..., X;;)
Classify message into (G, B)
Model p(X|{G, B}),p({G, B}):

= Learn from data

21

Example: naive Bayes classifier learning

= Training set:

Get nice watch Cheap replica watch
New York rocks! New cheap loan
Watch for rocks Get lottery million
Million dollar watch
. 3 4
= Prior: P(6 =G) = ;;P(Q =B) = >

= Conditional word distributions P(X|8):
9 1 1 2 1 1 2 1 0 0 o o0 0 o0 o

X P(X|G)
12 1 0 2 1 0 0 0 2 1 1 1 2 1 0
X P(X|B)

22

Example: naive Bayes classifier

= Classifying sentences M = (X1, X5, X3, ...):
= «get new watch»:
P(G|M) =
_ P(X1|G)P(X2|G)P(X3|G)P(G) _
~ P(X11G)P(X,|G)P(X3|G)P(G) + P(X;|1B)P(X,|B)P(X3|B)P(B)
973.1.1-2-3/7

- 3 = 0.64
973.1-1-2-5+1273-1-1-2-4/7

9 1 1 2 1 1 2 1 0 0 o0 0 0 o o

X P(X|G)

12 1t o 2 1t o0 O 0 2 1 1 1 2 1 0

x P(X|B)

23

Example: naive Bayes classifier

= Classifying sentences M = (X1, X5, X3, ...):
= «cheap replica rocks»:

P(G|M) =
. =0 P(X5|G)P(G)
-0 P(X3|G)P(G) + P(X1|B)P(X;|B, =g P(B)
= Undefined!
9 1 1 2 1 1 2 1 0 0 0 0 o0 o0 o0
X P(X|G)
12 1 0 2 1 O O O 2 1 1 1 2 1 o0

x P(X|B)

24

Problem with unseen training terms

= Sparsity problem:

= |f alphabet of words is large w.r.t. training set, there are
some words x we never see (e.g., x =“mesonoxian”)

= Estimate: P(mesonoxian|{G,B}) =0
= |f target message contains “mesonoxian”:
P(x|6)P(0)
P({G,B}) =

. P(x|0NP(6")

0
0

= Problem:

= We estimate a distribution from a very small set of
samples - a form of overfitting

= How to correctly estimate very rare words?

= Approach 1:

= |lgnore unseen words - simple, but crude; throws away
information 2

Laplace smoothing

|dea: assume every word occurs at least once
= Aka “additive smoothing”, “add-one smoothing”

Bias towards uniform distribution
= A form of regularization

Estimate of a distribution over domain D =
{1, ...,C} from data set {x{, x5, ..., x,,}
[{xi:x;=x}]

= Unsmoothed: p(X = x) = - (n=# samples)

= Smoothed: assume k “fake” observations for each class
[{xi:x; = x} + k
piX =x) = n+ kC
= Empty dataset (n = 0) 2 P(X]|0) uniform
= Large dataset (n > 1) - smoothed P(X|6) = unsmoothed
P(Xl@) 26

Laplace smoothing

counts (histogram) ‘probabilities

= 1
o vmmp) f Ly

Example: Laplace-smoothed classifier

= Sentence M =«cheap replica rocks»:
P(GIM) =
P(X11G)P(X,|G)P(X3|G)P(G)

~ PGP (XL GO)P(XIG)P(G) + P(X;1B)P(X,IB)P(X3|B)P(B)
2373.1:1-3-4/9

= = (0.37 :
23-3.1-1-3-4/94+2673-3.2-1-5/9 Note: we
smoothed
- Advantages: thie stnfey &
. well:
= We can compute an estimate for any message (3/7,4/7)>
- For small training sets > avoids overfitting ~ (4/%>/%)
23 2 2 3 2 2 3 2 1 1 1 1 1 1 1
x P(X|G)
26 2 1 3 2 1 1 1 3 2 2 2 3 2 1

x P(X|B)

Precision and recall

= Problem: how to set the threshold for ham/spam?
= Too restrictive: ham gets deleted
= Too permissive: spam gets through

= Information-retrieval performance metrics:
= Precision: % of search results that are ham vs spam
= Recall: % of all ham that are in search results

Spam

In

29

Precision and recall

Ham Spam

~ S
. NI

= Precision =

B -

= Recall = - s -

30

Critique of methods so far

= Both models treat any two words as completely
independent signals

= But language has a lot of ambiguity and overlap:
= Two words can mean something very similar:
= “happy” vs “joyful”, “rich”vs “wealthy”
= One word can mean different things:
= “match”: soccer game or a device to light a fire
= “right”: opposite of left or correct

Approaches we saw today do not learn and exploit
these relationships

Next week: word embeddings = map words in
low-dimensional feature space

31

RecSys: content vs collaborative

Independent of other users = no cold start problem for new items (item
comes with features)

Independent of other users - can recommend for unique tastes, no
“trend to average”

Can provide explanation for recommendation (e.g., matching keywords)

Cons of content-based

Multimedia etc.: hard to identify features
Independent of other users - no discovery or “surprises”
Cold start problem for new user

= |n practice: combination
= Lack of ratings, few users = rely more on content
= Lots of users, few tags - collaborative

32

Summary

= Content: text, tags, user comments, subtitles,...

Collaborative filtering vs content-based:
= Blind to content vs blind to other users

Classical approaches from information retrieval:
= Vector space models, similarity metrics

More modern probabilistic approaches from ML:

= Naive Bayes, language models (n-grams), word
embeddings

Other application for naive Bayes: spam filtering

- P(B)=0.8..09

33

References

= [C Aggarwal: Content-Based Recommender
Systems, 2016]

= [P Lops, M de Gemmis, G Semeraro: Content-based
Recommender Systems: State of the Art and
Trends, 2011]

= [A. Rajaraman, J. D. Ullman: Mining of Massive

Datasets, Cambridge, 2012 (chapter 9)]

= [S. Russell, P. Norvig: Artificial Intelligence - A
Modern Approach (39 ed), Pearson, 2010
(chapter22)]

= [W. B. Croft, D. Metzler, T. Strohman: Search
Engines - Information Retrieval in Practice,
Addison Wesley, 2010 (chapters 7&10)] 4

	Slide 1: Recommender Systems 2
	Slide 2: Overview
	Slide 3: Overview: recommender systems
	Slide 4: Basic idea
	Slide 5: Vector space model
	Slide 6: Profile from words
	Slide 7: TF-IDF: A measure of word importance
	Slide 8: TF-IDF vector space model
	Slide 9: TF-IDF vector space model
	Slide 10: Queries and recommendations
	Slide 11: From queries to ratings
	Slide 12: kNN classifier
	Slide 13: kNN classifier: selecting bold italic k
	Slide 14: kNN: impact of bold italic k
	Slide 15: Critique of vector-space approach
	Slide 16: Probabilistic models
	Slide 17: Bayesian inference
	Slide 18: Bayesian inference
	Slide 19: Example: Max-Likelihood vs Bayesian
	Slide 20: Example: ML vs Bayesian
	Slide 21: Naïve Bayes classifier
	Slide 22: Example: naïve Bayes classifier learning
	Slide 23: Example: naïve Bayes classifier
	Slide 24: Example: naïve Bayes classifier
	Slide 25: Problem with unseen training terms
	Slide 26: Laplace smoothing
	Slide 27: Laplace smoothing
	Slide 28: Example: Laplace-smoothed classifier
	Slide 29: Precision and recall
	Slide 30: Precision and recall
	Slide 31: Critique of methods so far
	Slide 32: RecSys: content vs collaborative
	Slide 33: Summary
	Slide 34: References

