

Recommender Systems 2

Internet Analytics (COM-308)

Prof. Matthias Grossglauser
School of Computer and Communication
Sciences

EPFL

Overview

- Content-based recommenders:
 - Here, content=text (prose in a news article, user-provided tags for music, reviews of a product...)
- Vector space model
 - Each dimension ~ one term (word)
- TF-IDF metric:
 - Frequency in doc makes that word important in that doc
 - Frequency in many docs makes a word less important
- Probabilistic model for text classification
 - Naïve Bayes: every word is i.i.d. given class
- Smoothing:
 - Dealing with rare words not seen in training
 - Regularizer

Overview: recommender systems

- Content-based recommenders

item 1:

“Plane hijacked...”

item 4:

“50.3% vote yes...”

item 2:

“soccer game...”

item 3:

“swiss skiers win...”

Model / user profile
new content → predicted rating

Basic idea

- Recommend to user u items similar to the ones he/she liked before
 - Collaborative filtering: similar item = liked by people who share u 's tastes
 - Content-based: similar = with similar content features as previously liked items
- What features:
 - Context-dependent
 - Images&music: signal properties (rhythm, instruments,...); meta-information; tags;...
 - Pandora: music genome project, ~ 400 features
 - Text: easiest & most widespread
 - Prose, tags,...

Vector space model

- Compact description of a document
 - Ignores order - “bag of words”
- One dimension per term/word
 - Typically very sparse
- Count vector:
 - f_i = # of occurrences of word i in document
- Note: not reversible, ignores order of words
 - The meaning of a sentence would be lost on a human reader!
 - (a a be human lost meaning of on reader sentence the would!)

Profile from words

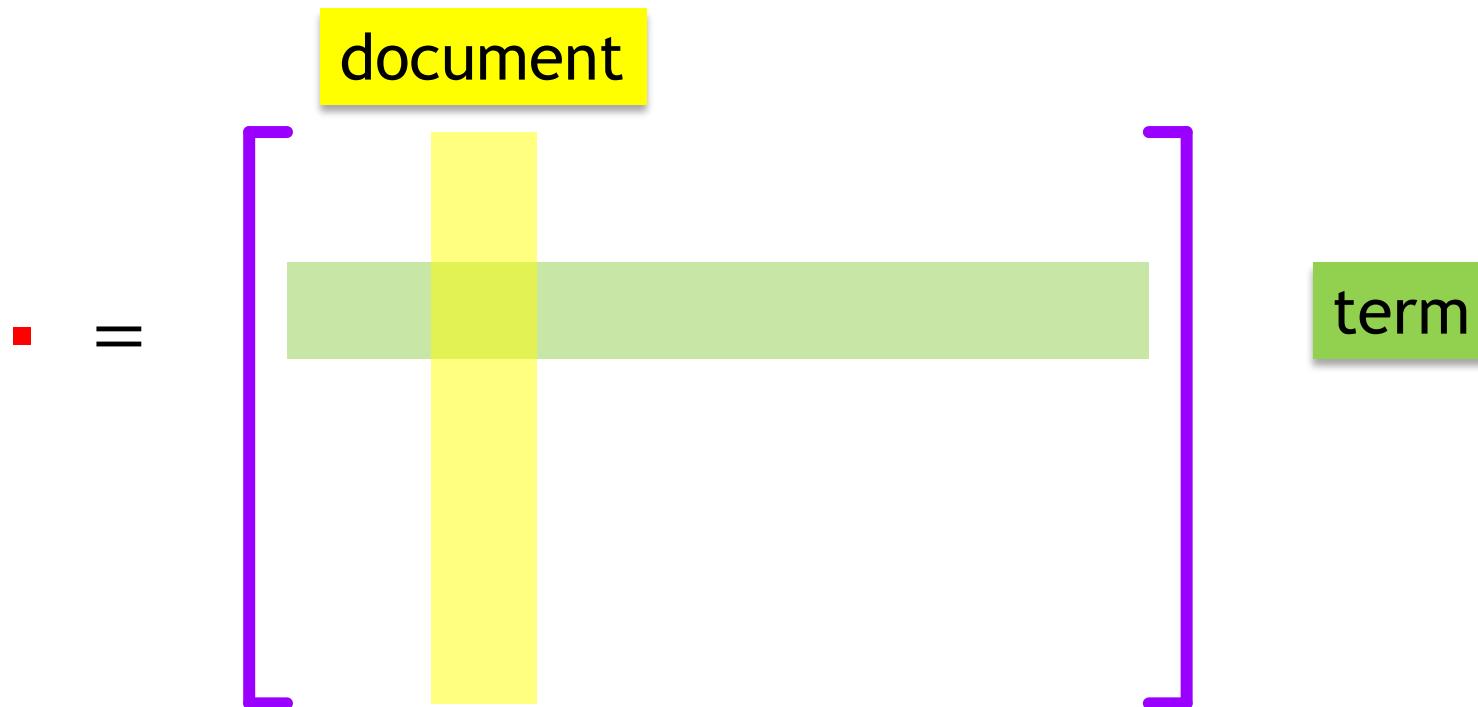
- How to create a useful profile of a document?
 - Frequent words are characteristic of “topic”
 - Document A: (“Probability”:50, “Markov”:20, “Poisson”:15,...)
 - Document B: (“Wimbledon”:30, “Federer”:8, “Nadal”:5,...)
- TF: Term Frequency
 - Function of one document j (not the whole corpus)
 - Def: $f_{ij} = \# \text{ of occurrences (frequency) of word } i \text{ in doc } j$
 - Def: $TF_{ij} = \frac{f_{ij}}{\max_k f_{kj}}$
 - Importance of word i in document j

TF-IDF: A measure of word importance

- Problem:
 - Most frequent terms would be (in English): the, be, to, of, and, a, in, that, have, I, it, for, not, on, with, he, as, you, do, at,...
 - No information, because common to all docs
 - We want words that are frequent **only** in target docs
- IDF: Inverse Document Frequency
 - Function of whole corpus
 - Def: $n_i = \# \text{ documents } j \text{ where word } i \text{ occurs (at least once)}$
 - Def: $IDF_i = -\log_2 \frac{n_i}{N}$
 - If I know word i , number of bits of information I learn about which document is the target within corpus

TF-IDF vector space model

- Document profile D within a corpus:
 - $TFIDF_{ij} = TF_{ij} \times IDF_i$



- High score: word frequent in this document, but not in most other documents

TF-IDF vector space model

- Vectors are high-dimensional but sparse
- Refinements: text preprocessing
 - Remove stop words: the, be, to, of, and, a,...
 - Stemming & lemming: transforming
 - “the boy's cars are different colors” ->
“the boy car be differ color” [Manning et al.]
 - Vector cutoff to most important terms
 - Allow multi-word (“multi-gram”) terms (“United States”)

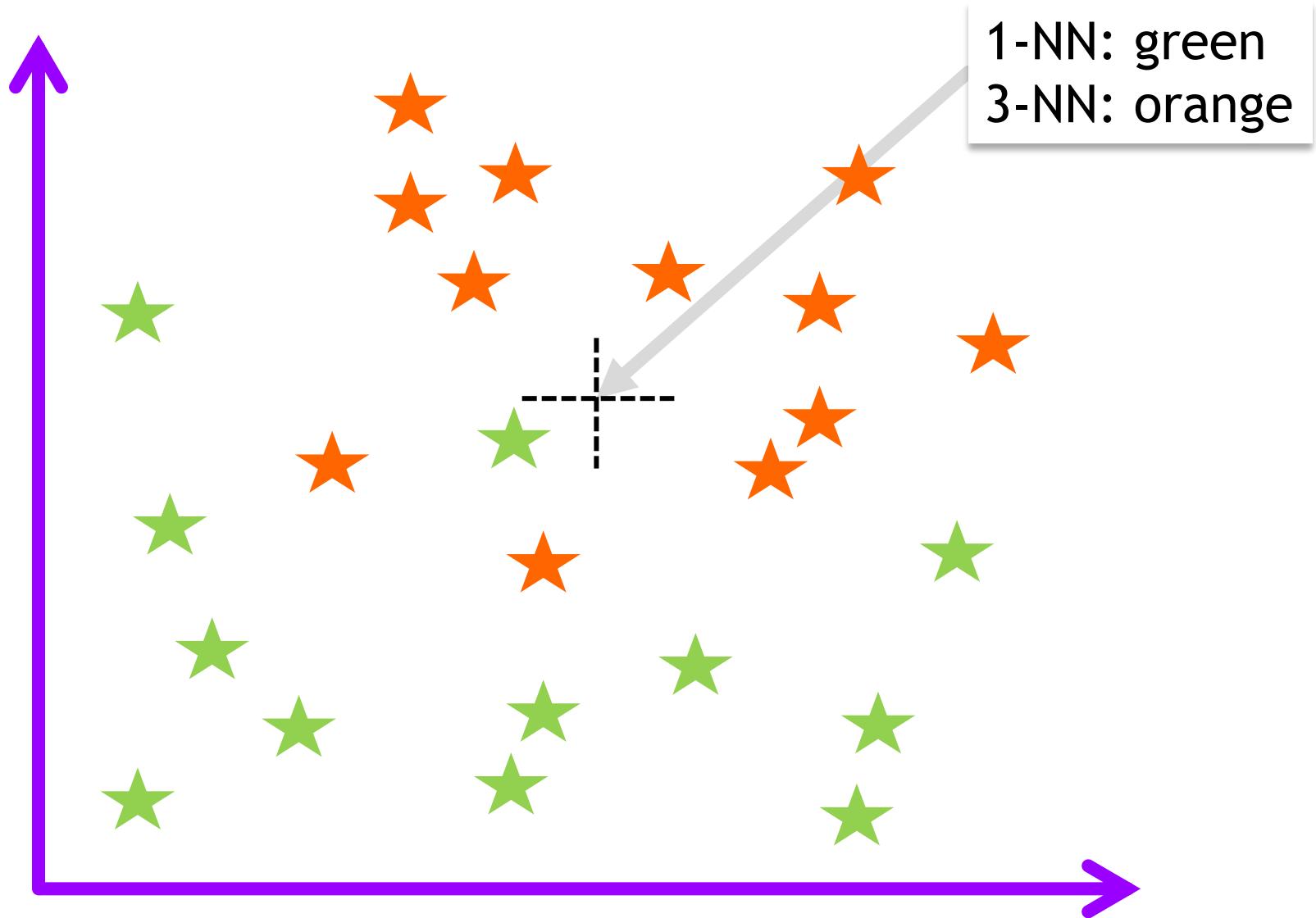
Queries and recommendations

- User profile (query) Q :
 - Explicit: e.g., declaring an interest (“north korea”)
 - Implicit: ratings (e.g., thumbs up/down)
- Explicit:
 - These models are from information retrieval:
 - Searching by query: return most similar docs to query
 - Query terms \rightarrow TF-IDF vector Q
- Assumption:
 - Likelihood that user profile Q likes document D :
 $sim(Q, TFIDF_{*,D})$, where
 - Usually:
 - $sim(x, y) = \cos(\langle x, y \rangle)$

From queries to ratings

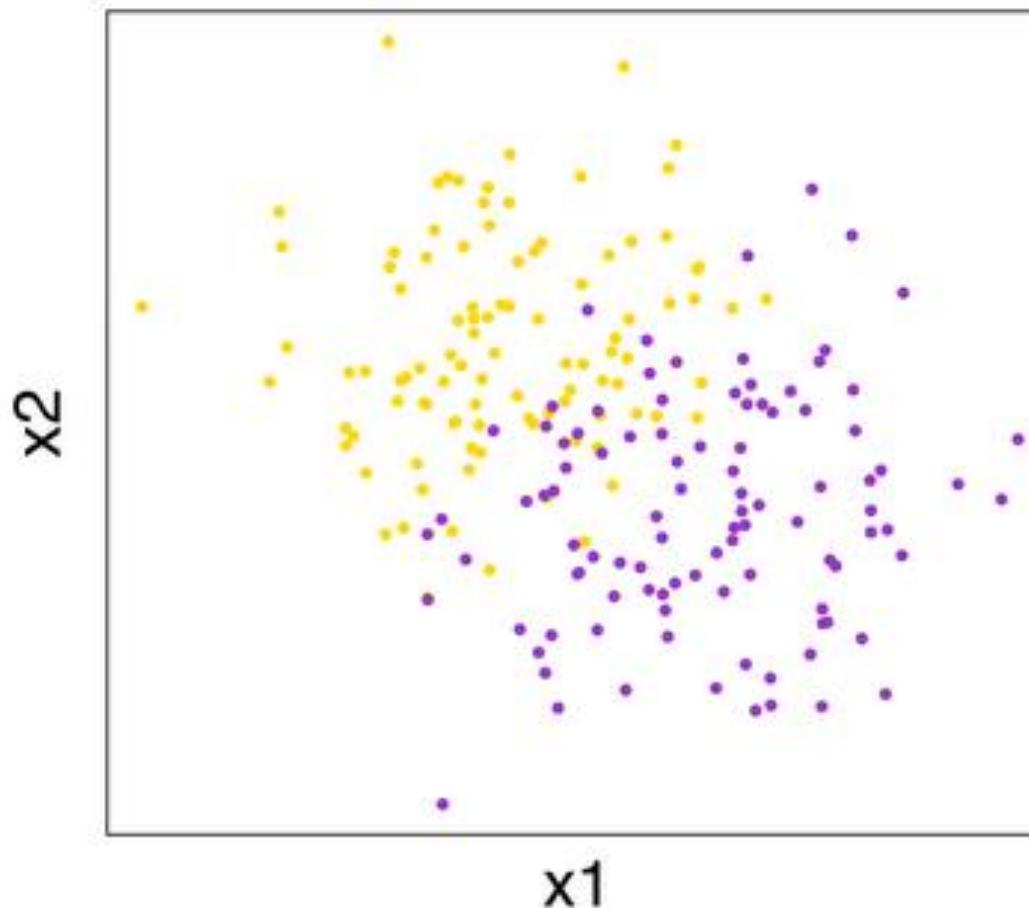
- Implicit: user rates documents rather than queries:
 - Treat highly rated/liked docs as “positive queries”, low rated/not liked as “negative queries”
 - Past ratings are “green/red” points in a high-dimensional vector space
- How to rate a new document D ?
 - Classification problem: many methods
 - Generic non-parametric method: kNN (k nearest neighbors)
 - Select k rated docs in Q closest to D according to $\text{sim}(Q, D)$; majority in this set is predictor

kNN classifier



kNN classifier: selecting k

Binary kNN Classification Training Set



[Burton DeWilde: Data Science Rules (datasciencerules.blogspot.com), Oct 2012]

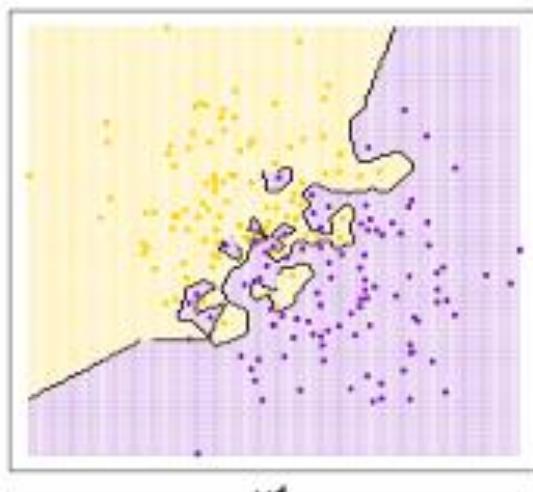
kNN: impact of k

overfits

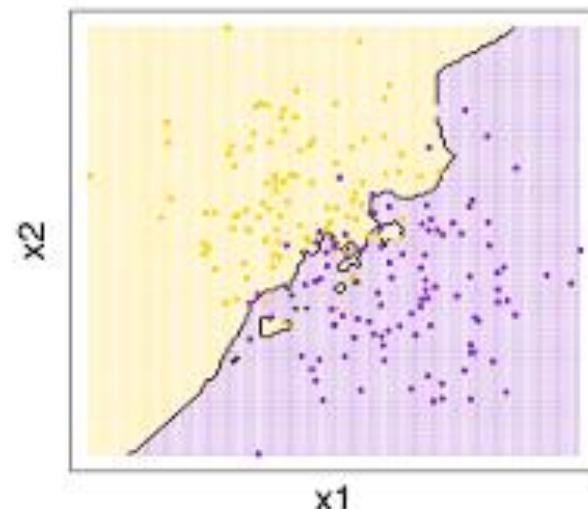
best model

overgeneralizes

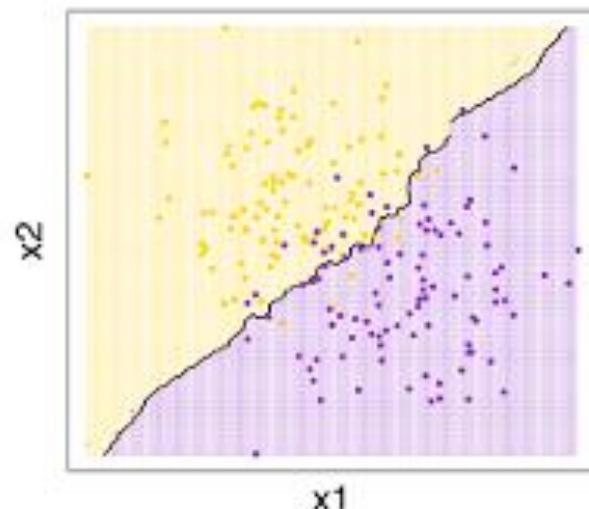
Binary kNN Classification ($k=1$)



Binary kNN Classification ($k=5$)



Binary kNN Classification ($k=25$)



[Burton DeWilde: Data Science Rules (datasciencerules.blogspot.com), Oct 2012]

Critique of vector-space approach

- Assumptions implicit in approach
 - “small angle between TF-IDF vectors means document close to query”: intuitively ok
 - Quantities do not have “physical meaning”, purely heuristic
- We would like a clean model: assumptions, performance measure we can optimize & compare
 - Probabilistic model: rigorous treatment of uncertainty

Probabilistic models

- Significant uncertainty in predictions
 - Quantization effects: like/dislike -> how much?
 - Context: e.g.: dislike right now (mood), or dislike categorically?
 - Errors, confusions, etc.
- Uncertainty → model explicitly as probability
 - Make assumptions explicit
 - Easier to interpret significance
 - Result comes with measure of uncertainty (confidence interval, etc.)

Bayesian inference

- Statistical inference: frequentist (non-Bayesian)
 - Observation X
 - Model: $p_\theta(x)$: distribution of X , depending on hidden parameter θ
 - Goal: infer θ from observation(s) of X
 - Maximum Likelihood estimator: $\hat{\theta} = \max_{\theta} p_\theta(X)$
 - Estimated parameter best explains observed data

Bayesian inference

- Statistical inference: Bayesian
 - We know something about θ : prior knowledge about the problem
 - θ is a random variable with a known distribution: prior
 - Model: $p(X|\theta)$: distribution of X , conditional on hidden random variable θ
 - Bayes' rule:

$$P(\theta|X) = \frac{P(\theta, X)}{P(X)} = \frac{P(X|\theta)P(\theta)}{\sum_{\theta'} P(X|\theta')P(\theta')}$$

- Maximum A Posteriori (MAP) estimator:
$$\hat{\theta} = \max_{\theta} P(\theta|X)$$
- But the full posterior distribution $P(\theta|X)$ carries additional information!
 - How certain/uncertain are we about θ given data X

Example: Max-Likelihood vs Bayesian

- Medical test
 - You take a medical test whose accuracy is 90% - that is, prob. test gives right result = 0.9
 - Frequentist:
 - $P(pos|sick) = 0.9$; $P(pos|healthy) = 0.1$
 - ML: $X = pos \rightarrow \hat{\theta} = \text{sick}$
 - Test comes back positive \rightarrow you conclude you are sick

Example: ML vs Bayesian

- Medical test:
 - Bayesian:
 - Medical test; prior = one in a million: $P(\text{sick}) = 10^{-6}$
 - If test comes back positive:
 - $$P(\text{sick}|pos) = \frac{P(pos|\text{sick})P(\text{sick})}{P(pos|\text{sick})P(\text{sick}) + P(pos|\text{healthy})P(\text{healthy})}$$
 - $P(\text{sick}|pos) \cong 0.9 \times 10^{-5}$
 - You conclude you are very likely healthy!
 - Watch out: doctors apparently do not always get this intuitively right

Naïve Bayes classifier

- Need a probabilistic model for a document
- Simplest model:
 - Naïve = independent terms (features)
 - Each word is generated according to i.i.d. distribution

$$P(X_1, \dots, X_n | \theta) = \prod_i P(X_i | \theta)$$

- Hidden variable θ :
 - Relevant (good, G) or not relevant (bad, B)
- Observable variable:
 - Message = set of words (x_1, x_2, \dots, x_n)
- Classify message into (G, B)
- Model $p(X|\{G, B\}), p(\{G, B\})$:
 - Learn from data

Example: naïve Bayes classifier learning

- Training set:

Get nice watch
New York rocks!
Watch for rocks

Cheap replica watch
New cheap loan
Get lottery million
Million dollar watch

- Prior: $P(\theta = G) = \frac{3}{7}; P(\theta = B) = \frac{4}{7}$
- Conditional word distributions $P(X|\theta)$:

X	Get	nice	watch	new	york	rocks	for	cheap	replica	loan	lottery	million	dollar	perfect
9 $\times P(X G)$	1	1	2	1	1	2	1	0	0	0	0	0	0	0
12 $\times P(X B)$	1	0	2	1	0	0	0	2	1	1	1	2	1	0

Example: naïve Bayes classifier

- Classifying sentences $M = (X_1, X_2, X_3, \dots)$:
 - «get new watch»:

$$P(G|M) =$$

$$= \frac{P(X_1|G)P(X_2|G)P(X_3|G)P(G)}{P(X_1|G)P(X_2|G)P(X_3|G)P(G) + P(X_1|B)P(X_2|B)P(X_3|B)P(B)} =$$

$$= \frac{9^{-3} \cdot 1 \cdot 1 \cdot 2 \cdot 3/7}{9^{-3} \cdot 1 \cdot 1 \cdot 2 \cdot \frac{3}{7} + 12^{-3} \cdot 1 \cdot 1 \cdot 2 \cdot 4/7} = 0.64$$

X	Get	nice	watch	new	york	rocks	for	cheap	replica	loan	lottery	million	dollar	perfect
9 $\times P(X G)$	1	1	2	1	1	2	1	0	0	0	0	0	0	0
12 $\times P(X B)$	1	0	2	1	0	0	0	2	1	1	1	2	1	0

Example: naïve Bayes classifier

- Classifying sentences $M = (X_1, X_2, X_3, \dots)$:
 - «cheap replica rocks»:

$$P(G|M) =$$

$$= \frac{=0 \quad P(X_3|G)P(G)}{=0 \quad P(X_3|G)P(G) + P(X_1|B)P(X_2|B) \quad =0 \quad P(B)}$$

- Undefined!

X	get	nice	watch	new	york	rocks	for	cheap	replica	loan	lottery	million	dollar	perfect
9 $\times P(X G)$	1	1	2	1	1	2	1	0	0	0	0	0	0	0
12 $\times P(X B)$	1	0	2	1	0	0	0	2	1	1	1	2	1	0

Problem with unseen training terms

- Sparsity problem:
 - If alphabet of words is large w.r.t. training set, there are some words x we never see (e.g., x = “mesonoxian”)
 - Estimate: $P(\text{mesonoxian}|\{G, B\}) = 0$
 - If target message contains “mesonoxian”:

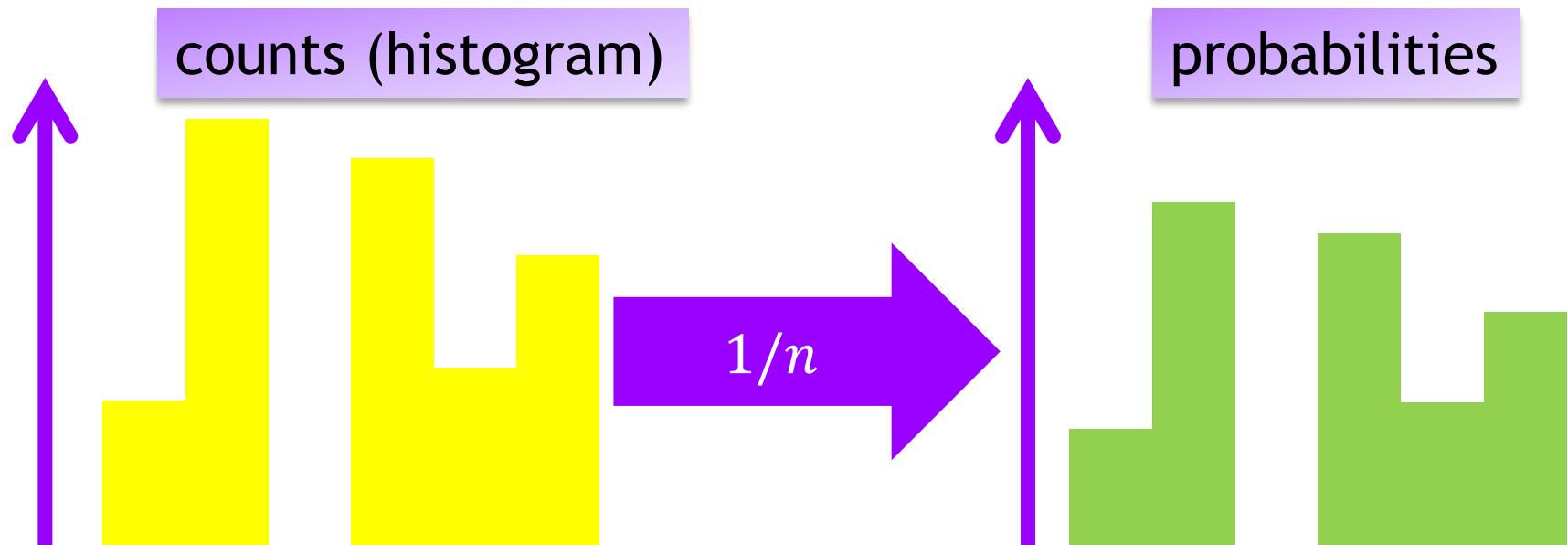
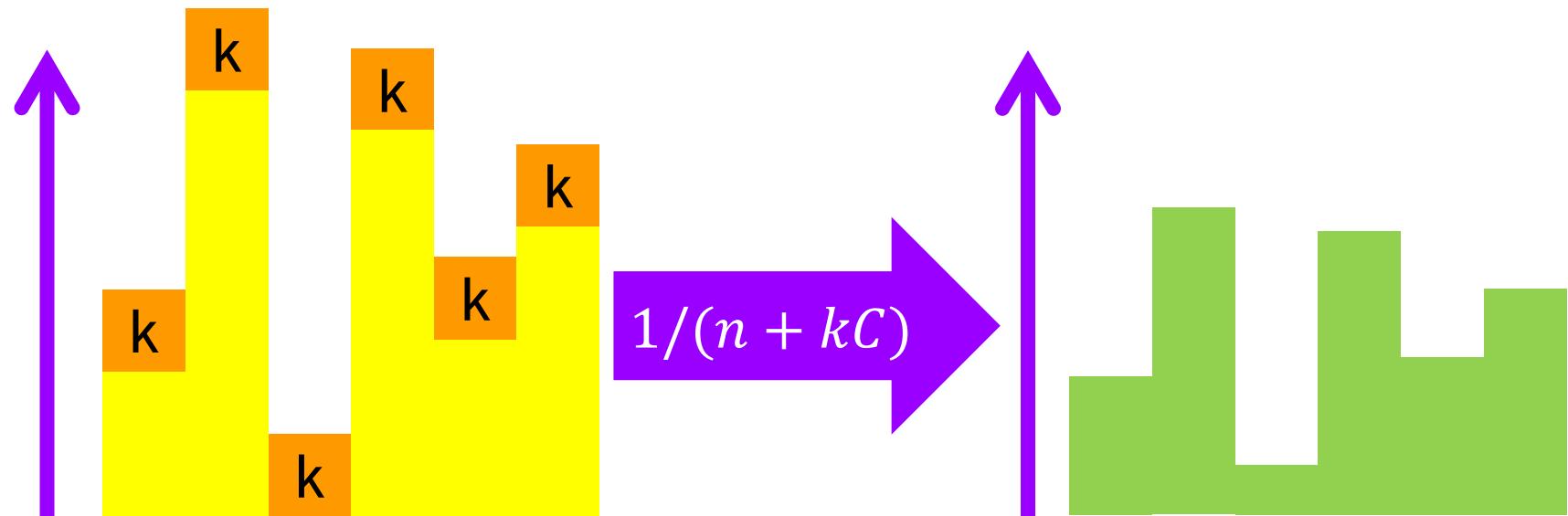
$$P(\{G, B\}) = \frac{P(x|\theta)P(\theta)}{\sum_{\theta'} P(x|\theta')P(\theta')} = \frac{0}{0}$$

- Problem:
 - We estimate a distribution from a very small set of samples - a form of overfitting
 - How to correctly estimate very rare words?
- Approach 1:
 - Ignore unseen words \rightarrow simple, but crude; throws away information

Laplace smoothing

- Idea: assume every word occurs at least once
 - Aka “additive smoothing”, “add-one smoothing”
- Bias towards uniform distribution
 - A form of regularization
- Estimate of a distribution over domain $D = \{1, \dots, C\}$ from data set $\{x_1, x_2, \dots, x_n\}$
 - Unsmoothed: $p(X = x) = \frac{|\{x_i: x_i = x\}|}{n}$ ($n = \# \text{ samples}$)
 - Smoothed: assume k “fake” observations for each class
$$p(X = x) = \frac{|\{x_i: x_i = x\}| + k}{n + kC}$$
 - Empty dataset ($n = 0$) $\rightarrow P(X|\theta)$ uniform
 - Large dataset ($n \gg 1$) \rightarrow smoothed $P(X|\theta) \cong$ unsmoothed $P(X|\theta)$

Laplace smoothing



Example: Laplace-smoothed classifier

- Sentence M = «cheap replica rocks»:

$$P(G|M) =$$

$$= \frac{P(X_1|G)P(X_2|G)P(X_3|G)P(G)}{P(X_1|G)P(X_2|G)P(X_3|G)P(G) + P(X_1|B)P(X_2|B)P(X_3|B)P(B)} =$$

$$= \frac{23^{-3} \cdot 1 \cdot 1 \cdot 3 \cdot 4/9}{23^{-3} \cdot 1 \cdot 1 \cdot 3 \cdot 4/9 + 26^{-3} \cdot 3 \cdot 2 \cdot 1 \cdot 5/9} = 0.37$$

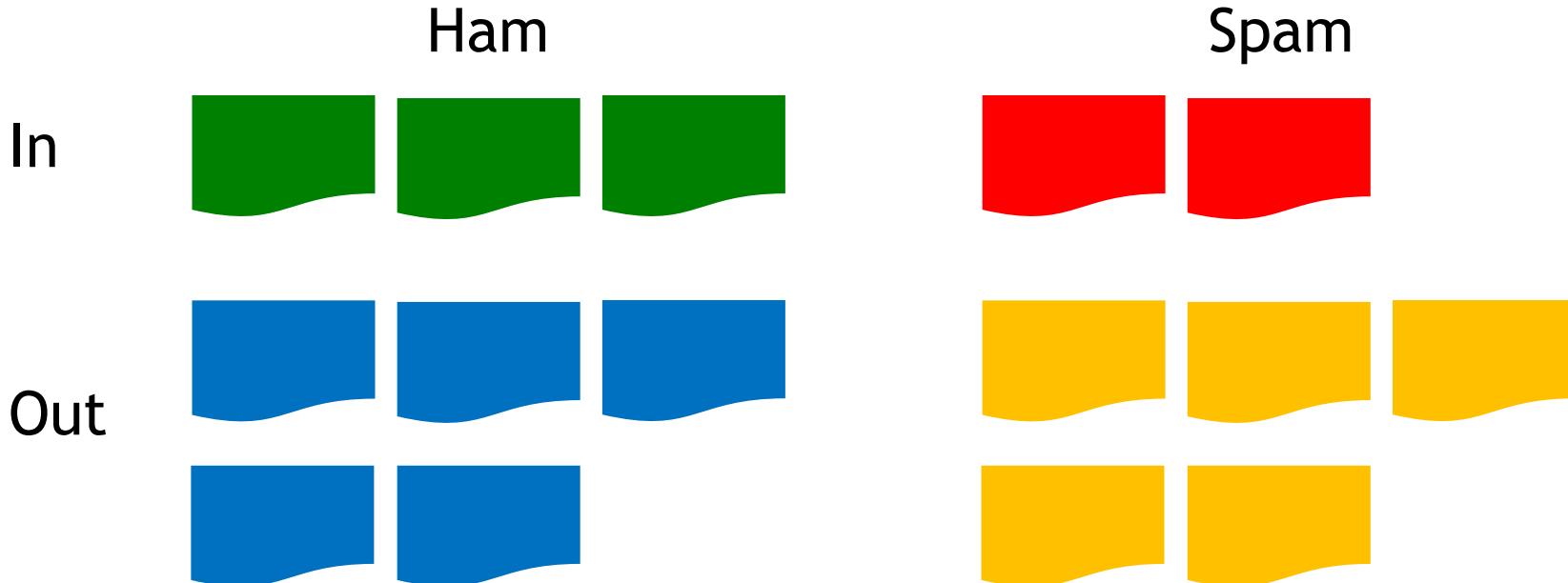
- Advantages:
 - We can compute an estimate for any message
 - For small training sets → avoids overfitting

Note: we smoothed the prior as well:
 $(3/7, 4/7) \rightarrow (4/9, 5/9)$

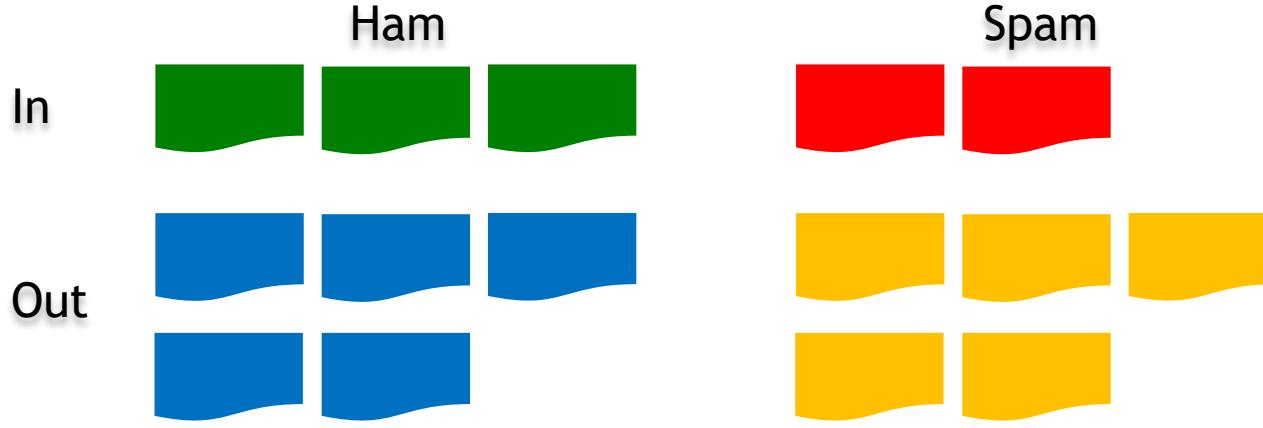
X	Get	nice	watch	new	york	rocks	for	cheap	replica	loan	lottery	million	dollar	perfect
23 × $P(X G)$	2	2	3	2	2	3	2	1	1	1	1	1	1	1
26 × $P(X B)$	2	1	3	2	1	1	1	3	2	2	2	3	2	1

Precision and recall

- Problem: how to set the threshold for ham/spam?
 - Too restrictive: ham gets deleted
 - Too permissive: spam gets through
- Information-retrieval performance metrics:
 - Precision: % of search results that are ham vs spam
 - Recall: % of all ham that are in search results



Precision and recall



- Precision =

$$\frac{\text{True Positives}}{\text{True Positives} + \text{False Positives}}$$

True Positives

+

False Positives

- Recall =

$$\frac{\text{True Positives}}{\text{True Positives} + \text{False Negatives}}$$

True Positives

+

False Negatives

Critique of methods so far

- Both models treat any two words as completely independent signals
- But language has a lot of ambiguity and overlap:
 - Two words can mean something very similar:
 - “happy” vs “joyful”, “rich” vs “wealthy”
 - One word can mean different things:
 - “match”: soccer game or a device to light a fire
 - “right”: opposite of left or correct
- Approaches we saw today do not learn and exploit these relationships
- Next week: word embeddings → map words in low-dimensional feature space

RecSys: content vs collaborative

Pros of content-based

Independent of other users → no cold start problem for new items (item comes with features)

Independent of other users → can recommend for unique tastes, no “trend to average”

Can provide explanation for recommendation (e.g., matching keywords)

Cons of content-based

Multimedia etc.: hard to identify features

Independent of other users → no discovery or “surprises”

Cold start problem for new user

- In practice: combination
 - Lack of ratings, few users → rely more on content
 - Lots of users, few tags → collaborative

Summary

- Content: text, tags, user comments, subtitles,...
- Collaborative filtering vs content-based:
 - Blind to content vs blind to other users
- Classical approaches from information retrieval:
 - Vector space models, similarity metrics
- More modern probabilistic approaches from ML:
 - Naïve Bayes, language models (n -grams), word embeddings
- Other application for naïve Bayes: spam filtering
 - $P(B) \cong 0.8 \dots 0.9$

References

- [C Aggarwal: Content-Based Recommender Systems, 2016]
- [P Lops, M de Gemmis, G Semeraro: Content-based Recommender Systems: State of the Art and Trends, 2011]
- [A. Rajaraman, J. D. Ullman: Mining of Massive Datasets, Cambridge, 2012 (chapter 9)]
- [S. Russell, P. Norvig: Artificial Intelligence - A Modern Approach (3rd ed), Pearson, 2010 (chapter22)]
- [W. B. Croft, D. Metzler, T. Strohman: Search Engines - Information Retrieval in Practice, Addison Wesley, 2010 (chapters 7&10)]