Recommender Systems 1

Internet Analytics (COM-308)

Prof. Matthias Grossglauser
School of Computer and Communication
Sciences

=P-L

Overview

= Motivation: why are recommenders so prevalent
today?

= Collaborative filtering vs content-based
recommenders

= Example: Netflix Prize

= Neighborhood methods

= Latent factor methods
= Overfitting, regularization, stochastic gradient descent

Choices: the good old days - the brave new

Choosing in the old days

po.

2

= Small number of alternatives

= Physical limits: shelf space, weight of the
encyclopedia, surface area of the dance
floor, cost of the record collection,...

Filtering + choosing

Information
retrieval,
databases,
streaming,
networks,

recommender

systems,...

google,
amazon,
netflix,

youtube,
tinder...

A

»

= Filtering: search, recommender

systems

= Choosing: the “last cognitive mile”

Situation today

= Traditional retailers:

= Shelf space & warehouse: expensive - carry only items
with sufficient sales volume

= Online:

= Potentially unlimited catalogue for digital goods (or
physical goods - amazon, iTunes, ...)

= Needs better filters: search & recommendations
= Recommenders are integral part of most online
services
= Amazon, Youtube, Spotify, LinkedIn, Twitter, ...
= Even search: google - “filter bubble”

= Limited user interface (mobile!):
= Recommendations even more important than search

Collaborative filtering

= Content-agnostic - learning from other users

X,
item 1 X X

= [

~

Model for (user, item)->rating

Overview: recommender systems
user

= Content-based recommenders g
item 1:

“Plane hijacked...” X \/

item 2:
“soccer game...” News item 1

item 3: News item 2
Pes . . o b3
swiss skiers win... News item 3

item 4: News item 4
“50.3% vote yes...” \

Y

Model for
(user, content)->rating

The Netflix competition

= Netflix: mail-based DVD rental company (today
streaming)

= New form of research outsourcing: Netflix Prize
= Goal: “increase performance of in-house system by 10%”
= Prize: 1m USD + yearly progress prize
= Anyone can participate
= Careful setup to avoid reverse-engineering of dataset,
overfitting, etc.
= Early example of data-driven competitions
= Kaggle etc.

Model

Set of users U (size n), set of items I (size m)
Utility or rating function r:U X I - R

= R: e.g. 0-5 stars; probability of liking an item; yes/no;..

Collecting r,,; values:
= Amazon: buying a product
= Youtube: watching/liking a video
= News reader: opening a news item from list
= |In general: depends on context and design
Explicit vs implicit:
= Explicit: Ask people to rate (stars, etc.)
- effort, sparse, reliable

= Implicit: derive from actions (delete, save, forward,

etc.)
- for free, dense, noisy

10

Model

= Ratings matrix R:
= Captures preference on some scale
= Matrix representation:
= Missing elements = unknown
= Bipartite weighted graph representation

5 2 4
20 4 31 3
5 4 5 4
11 2
3 3
2 4

user

item

11

Neighborhood vs latent factor methods

user item user factors item

H N H

H H
=

u B 0 N
H H =

= =

H H N H

H H N H

H H N H

H H H

H H N H

H H N H

Performance criterion for Netflix Prize

= RMSE: root mean squared error:

L —7)2
u RMSE p— \/Z(u,l) (T'ul Crul) ,

with C=# of rated pairs
- Why RMS?
= Penalizes larger errors

= Why not RMS?

= Often only interested in precision on top ratings
= Often not interested in absolute value, only order

13

Baseline predictor

= Assumption:
= Global average rating r
= Each user u has a bias (or average opinion) b,
= Each item i has a bias (or average quality) b;

= First approximation:
bui =71 + bu + bi

= No “interaction” between users and items
= Learning: data - model parameters?
= n + m parameters

= Data: up to nm
= |n general overdetermined - find best solution

14

Learning baseline predictor

= Given: training set of ratings R = {(u, i,7,;)}
= Could just use averages per user/item

= Not optimal
= Min RMS on training set:

" {IID?UIIE_}Z(LL,DER(TM — by;)?
= General form of quadratic min problem:

|IAb — c||5 = (Ab — ¢)T(Ab —¢) =
=bTATAb — 2bTATc + c'¢c

= Derivative w.r.t. b

= 2(ATA)b —24Tc =0 > find b
= This may lead to overfitting - regularization

15

Learning: overfitting

order-5

order-2

order-1

Hindsight vs Foresight

error overgeneralizes best model | overfits

foresight: error

/ on future (unknown)
data

hindsight: error

on training data

model complexity (# parameters)

17

Regularization: penalizing complexity

= Cost function to minimize:
mgin fo (X) : X is the data (here {r,;}), 6 the model

parameters ({b,, b;})

= Penalize complexity:

= QOverfitting: complex model does well on training set, but
poorly on future data (or test set)

= We want to use complex models (e.g., higher order
polynomial), but avoid overfitting

= Solution: build in preference for “small” parameters
= Regularizer:

min fg (X)+49(6)

= Choice of g(6) = 0 depends on context
= Example: g(0) = ||0]|3 18

Validation: simulating foresight

= Model selection:
= Degree of polynomial
= Regularization (hyper)parameter 4
= We don’t have future data - set aside some
training data and pretend it’s future data
= Validation set

Validation

—/’{

order

train

19

Validation: simulating foresight

= Model selection:
= Degree of polynomial
= Regularization (hyper)parameter 4

= We don’t have future data = set aside some
training data and pretend it’s future data
= Validation set

HERTEEEN
Smallest loss:

(order=2,2 = 3.0) = [1N
EECTHEEN

20

Cross-validation: averaged validation

= |f data is not abundant: validation is costly
= Tradeoff between training and validation data

= k-fold CV:
= Chop data into equal sized blocks (e.g., k = 10)

= For each block x =1, ..., k:
= Train model on all other blocks (training set)
= Evaluate model on v, (validation set)

= Performance = average error over all iterations

o000 21

Regularized bias estimates

= Quadratic form to minimize to obtain the bias
terms {b,} and {b;}:

(by, b;) =

= argmin 2 (ry; — 7 — by — b)? + 1, 2b5+2bi2
{bu:bi} :]
(u,i)ER u L

22

Residual error after baseline predictor

= Residual error:
= Captures dependence between user and item
- 7iui = Tyi — byi = Ty — (f'l'bu'l'bi)
* R = [7]
= How to capture residual error, i.e., how to model
user-item interaction?

23

Neighborhood models

= Goal: estimate rating r,; for user u and item i

= Approach: pairwise user-user or item-item
correlation

= User-user:
= For user u, find other users {v} that are similar to u
= Combine {r,;} into an estimate for ry;

« |[tem-item:
= For item i, find other items {j} that are similar to i
= Combine {r,;} into an estimate for r;

24

Similarity metric (user-user variant)

= Similarity between users u and v?

= Degree of agreement in ratings for joint items
= Cosine similarity:

= Def: x,, x, are vectors of ratings 13, #;, over items rated by
both

xﬂxv

lxull2 12wl 2
= For user u, evaluate sim(u, v)
over all other users v;

retain L highest (top-L)—> set L,

» sim(u,v) =

= cos(< Xy, Xy)

Neighborhood model

= Combine “opinions” of all the similar users L, :

s =4 b 2iveL,, SIMUV)Ty;
. Tui — T' + Uu + i ! .
2veL,, Sim(u,v)

= Pros:
= [ntuitively appealing and natural

= Cons:

= Hard to tune: choice of similarity metric sim(.,.), L (and
other parameters depending on variant)

= Sparsity: for many (u, i) pairs, no rating possible (if
nobody in set L, has rated i)

26

Neighborhood model: user-user vs item-item

= Two symmetric approaches:

= User-user: for user u, find similar users v, and their
ratings of i

= |[tem-item: for item i, find similar items j, and their
ratings by u
= |n practice they are different:

= Argument for item-item: in most applications, items tend
to “cluster” better (e.g., movies belong to a single
genre); users are more “mixed” (e.g., one user may like
many genres)

= Argument for user-user: often the application is not
“estimate r,;”, but “get highest rated items for u”

27

Recommending best item i to a user u

= With user-user:
= First find users v having rated same movie(s)
= Estimate all unrated items for u from these users
= Equal to two-hop neighborhood in bipartite rating graph

1] 5 2 2

24 3 1 1 4

u o m 5 4 m 1 m 4 m
4 11 2
53 ? 2 3

? 2 4 ?

28

Recommending best item i to a user u

= With item-item:
= For each item i not rated by u, find similar items L;
= Obtain 7,; from user u’s ratings for j € L;
= Much more costly: many unrated items j € L;

T D
| TR

u m 5 |4 m 1 |m 4+ m
4 N ¥
5 B 5 2 3 4
N 4

29

Latent factor models

= Dimensionality-reduction technique
= Hypothesis: simpler (lower-dim) space capturing user-
item dependencies
= Assume K concepts/latent factors/taste
dimensions

= Movies: Comedy vs drama; historic vs sci-fi; intellectual

vs entertainment; romantic vs action; specific cast,
directors; etc.

= Each user u has a K-dim factor vector p,,:
= pylk]: degree to which user u enjoys/hates factor k

= Each item i has a a K-dim factor vector g;:
= q;|k]: degree to which item i possesses factor k

30

Latent factor models

« fui =7+ by + by + puq;
Note:

= Contrary to SVD, no requirement that P, Q be orthogonal
(columns of P and rows of Q not unitary nor orthogonal)

2
Training the model: mln Z(u l)ER(rUl pZ;C[i)

H

m =N 1) What regularizer?

H-

R g ~ X

O 2) How to find P, Q?
0 H
)
Y

parameters 8 = (P,Q): d = K(n + m) degrees of freedom

31

Regularized latent factor model

- Cost function with regularizer: (b, b}, P*,Q*) =

{bu,bi,P,Q}

+24(
+ A5(

by
|P]

. _ 2
argmin Y., yep(ru — PLq; + 7 + by + bY))

>+ [1b;]1%)
7+ QIE)

= Three hyperparameters (K, A4, 1,) to optimize
= Not actually a convex problem!
= But convex (quadratic) over P, Q individually -

biconvex

= (P*,Q7) is only a local, not necessarily global,

minimum

32

Convex optimization

Convex function f(0), 6 = (64, ...,0,)

= For every two points 6, ¢, the line between
f(8) and f(¢) is «above» the function

Convex domain:

= For every two points 4, ¢ in the domain,
the line connecting them also in domain

Test for convexity of differentiable
function:
9% f

Hessian (V°f);; 20,00,
must be PSD (positive semidefinite)

Convex optimization:

= Local min = global min - we can use
methods for local min search

33

Minimization: stochastic gradient descent

= Gradient (Vf); = %

= Gradient descent:
» 90D = g() — g7 F (60
= a: learning rate

= |ntuition: move in direction of
local decrease

= In ML, f is often a sum over
the data:
- f:z:fn
* Here: f = Z(u,i)e;e(fui — PZZCIL')Z
= Log-likelihood: f =logP(Y|6) = Y log P(Y,,|0)
= Gradient costly to compute! (0(n) per step)

——————

34

Stochastic gradient descent

= Gradient descent: expensive
= Sum over all data points (u,i) € R

= Stochastic gradient descent:
= |dea: noisy but cheap gradient approximation
= Pick a random data point (u,i) (or some other order)
= Compute gradients w.r.t. this data point (or a small
batch of data points)
= |terate until convergence
= Intuition:
= Random walk that is biased towards minimum
= Pro: gradient much cheaper to compute
= Con: random walk may “veer” in the wrong direction
= Worth it if “detours” do not outweigh reduction in
computational cost 3s

Stochastic gradient descent

= Gradient descent vs stochastic gradient descent

36

ALS vs SGD

= Two solutions to deal with non-convexity:

= Optimize using SGD anyway - no guarantee of finding
global minimum, but in practice it usually finds a good
solution

= (some convexity guarantees exist under slightly
stronger assumptions)

= Alternating Least Squares (ALS):
= Fix P, minimize in Q: quadratic, explicit solution
= Fix @, minimize in P: quadratic, explicit solution
= Repeat until convergence
= From studies with real data: SGD usually wins in
terms of computational cost for a good solution,
except for very sparse datasets

37

Netflix Prize: outcomes and stats

= Data set:
= ~500k users, ~18k movies
= 100m ratings over 5 years
= Recommender system for movies: Cinematch
= RMSE = 0.9514
= One week until Cinematch got outperformed!
= Stats:
= 5000 teams (200 USD/team)
= 44000 submissions

= Netflix required for all results to be published

38

Netflix Prize

BellKor+BigChaos: RMSE=0.8616
Cinematch beaten (50kS annual)

BellKor: 8.26%

BellKor: 8.43%
(50kS annual)

BellKor Pragmatic Chaos: 10.06%

Last call (30 days): two teams
have RMSE=0.8567!!!
First to submit wins

BellKor’s Pragmatic Chaos wins 1m$ by
20 minutes over Ensemble

oct’06 oct’07 oct’08 june’0

39

Summary & lessons

Advantages of collaborative filtering (CF):

= Content-independent: works for any type of item
= Big data: exploits large user population

CF drawbacks:

= Cold start (new user and new item)
= Sparsity: most user-item pairs never observed

Extensions:

= Context: location, time, mood, etc.
= Temporal factors: e.g., age of a movie - critical in netflix

challenge
Next lecture:
= Using content to recommend

..and: “time is money”! ;-) (1mS$/20 minutes)

40

References

= [M. Chiang: Networked Life (chapter 4), 2012]

= [A. Rajaraman, J. D. Ullman: Mining of Massive

Datasets (chapter 9), 2012]

= [S. Shalev-Shwartz, S. Ben-David: Understanding
Machine Learning: From Theory to Algorithms,
2014]

= [Y. Koren, R. Bell, Ch. Volinsky: Matrix
Factorization Techniques for Recommender
Systems, IEEE Computer, Aug 2009]

= [E. Pariser: The Filter Bubble: What the Internet is
hiding from you, Penguin 2011]

41

	Slide 1: Recommender Systems 1
	Slide 2: Overview
	Slide 3: Choices: the good old days  the brave new world
	Slide 4: Choosing in the old days
	Slide 5: Filtering + choosing
	Slide 6: Situation today
	Slide 7: Collaborative filtering
	Slide 8: Overview: recommender systems
	Slide 9: The Netflix competition
	Slide 10: Model
	Slide 11: Model
	Slide 12: Neighborhood vs latent factor methods
	Slide 13: Performance criterion for Netflix Prize
	Slide 14: Baseline predictor
	Slide 15: Learning baseline predictor
	Slide 16: Learning: overfitting
	Slide 17: Hindsight vs Foresight
	Slide 18: Regularization: penalizing complexity
	Slide 19: Validation: simulating foresight
	Slide 20: Validation: simulating foresight
	Slide 21: Cross-validation: averaged validation
	Slide 22: Regularized bias estimates
	Slide 23: Residual error after baseline predictor
	Slide 24: Neighborhood models
	Slide 25: Similarity metric (user-user variant)
	Slide 26: Neighborhood model
	Slide 27: Neighborhood model: user-user vs item-item
	Slide 28: Recommending best item bold italic i. to a user bold italic u
	Slide 29: Recommending best item bold italic i. to a user bold italic u
	Slide 30: Latent factor models
	Slide 31: Latent factor models
	Slide 32: Regularized latent factor model
	Slide 33: Convex optimization
	Slide 34: Minimization: stochastic gradient descent
	Slide 35: Stochastic gradient descent
	Slide 36: Stochastic gradient descent
	Slide 37: ALS vs SGD
	Slide 38: Netflix Prize: outcomes and stats
	Slide 39: Netflix Prize
	Slide 40: Summary & lessons
	Slide 41: References

