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▪ Motivation: why are recommenders so prevalent 

today?

▪ Collaborative filtering vs content-based 

recommenders

▪ Example: Netflix Prize

▪ Neighborhood methods

▪ Latent factor methods
▪ Overfitting, regularization, stochastic gradient descent
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Choices have exploded!



▪ Small number of alternatives
▪ Physical limits: shelf space, weight of the 

encyclopedia, surface area of the dance 

floor, cost of the record collection,…
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▪ Filtering: search, recommender 

systems

▪ Choosing: the “last cognitive mile”
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google, 

amazon, 

netflix, 

youtube,

tinder…

Information 
retrieval, 
databases, 
streaming, 
networks, 
recommender 
systems,…

Data!



▪ Traditional retailers:
▪ Shelf space & warehouse: expensive → carry only items 

with sufficient sales volume

▪ Online:
▪ Potentially unlimited catalogue for digital goods (or 

physical goods – amazon, iTunes, …)

▪ Needs better filters: search & recommendations

▪ Recommenders are integral part of most online 

services
▪ Amazon, Youtube, Spotify, LinkedIn, Twitter, …

▪ Even search: google → “filter bubble”

▪ Limited user interface (mobile!):
▪ Recommendations even more important than search
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▪ Content-agnostic → learning from other users
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▪ Content-based recommenders
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item 1: 

“Plane hijacked…”

item 2:

“soccer game…”

item 3:

“swiss skiers win…”

item 4:

“50.3% vote yes…”

News item 2

News item 3

News item 1

News item 4

user

Model for

(user, content)→rating



▪ Netflix: mail-based DVD rental company (today 

streaming)

▪ New form of research outsourcing: Netflix Prize
▪ Goal: “increase performance of in-house system by 10%”

▪ Prize: 1m USD + yearly progress prize

▪ Anyone can participate

▪ Careful setup to avoid reverse-engineering of dataset, 

overfitting, etc.

▪ Early example of data-driven competitions
▪ Kaggle etc.
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▪ Set of users 𝑈 (size 𝑛), set of items 𝐼 (size 𝑚)

▪ Utility or rating function 𝑟: 𝑈 × 𝐼 → 𝑅
▪ 𝑅: e.g. 0-5 stars; probability of liking an item; yes/no;…

▪ Collecting 𝑟𝑢𝑖 values:
▪ Amazon: buying a product

▪ Youtube: watching/liking a video

▪ News reader: opening a news item from list

▪ In general: depends on context and design

▪ Explicit vs implicit:
▪ Explicit: Ask people to rate (stars, etc.) 

→ effort, sparse, reliable

▪ Implicit: derive from actions (delete, save, forward, 

etc.) 

→ for free, dense, noisy 10



▪ Ratings matrix 𝑅:
▪ Captures preference on some scale

▪ Matrix representation:

▪ Missing elements = unknown

▪ Bipartite weighted graph representation
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▪ RMSE: root mean squared error:

▪ 𝑅𝑀𝑆𝐸 = σ(𝑢,𝑖)
𝑟𝑢𝑖− Ƹ𝑟𝑢𝑖

2

𝐶
,

with 𝐶=# of rated pairs

▪ Why RMS?
▪ Penalizes larger errors

▪ Why not RMS?
▪ Often only interested in precision on top ratings

▪ Often not interested in absolute value, only order
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▪ Assumption:
▪ Global average rating ҧ𝑟

▪ Each user 𝑢 has a bias (or average opinion) 𝑏𝑢

▪ Each item 𝑖 has a bias (or average quality) 𝑏𝑖

▪ First approximation:

▪  𝑏𝑢𝑖 = ҧ𝑟 + 𝑏𝑢 + 𝑏𝑖
▪ No “interaction” between users and items

▪ Learning: data → model parameters?
▪ 𝑛 + 𝑚 parameters

▪ Data: up to 𝑛𝑚

▪ In general overdetermined → find best solution
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▪ Given: training set of ratings 𝑅 = 𝑢, 𝑖, 𝑟𝑢𝑖

▪ Could just use averages per user/item
▪ Not optimal

▪ Min RMS on training set:

▪ min
{𝑏𝑢,𝑏𝑖}

σ(𝑢,𝑖)∈𝑅 𝑟𝑢𝑖 − 𝑏𝑢𝑖
2

▪ General form of quadratic min problem:

𝐴𝑏 − 𝑐 2
2 = 𝐴𝑏 − 𝑐 𝑇 𝐴𝑏 − 𝑐 = 
 = 𝑏𝑇𝐴𝑇𝐴𝑏 − 2𝑏𝑇𝐴𝑇𝑐 + 𝑐𝑇𝑐

▪ Derivative w.r.t. 𝑏
▪ 2 𝐴𝑇𝐴 𝑏 − 2𝐴𝑇𝑐 = 0 → find 𝑏

▪ This may lead to overfitting → regularization
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order-1

order-2

order-5
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model complexity (# parameters)

error

hindsight: error

on training data

foresight: error

on future (unknown)

data

best model overfitsovergeneralizes



▪ Cost function to minimize:

▪  min
𝜃

𝑓𝜃 𝑋  : 𝑋 is the data (here {𝑟𝑢𝑖}), 𝜃 the model 

parameters ({𝑏𝑢, 𝑏𝑖})

▪ Penalize complexity:
▪ Overfitting: complex model does well on training set, but 

poorly on future data (or test set)

▪ We want to use complex models (e.g., higher order 

polynomial), but avoid overfitting

▪ Solution: build in preference for “small” parameters

▪ Regularizer:

▪  min
𝜃

𝑓𝜃 𝑋 +𝜆𝑔 𝜃

▪ Choice of 𝑔 𝜃 ≥ 0 depends on context

▪ Example: 𝑔 𝜃 = 𝜃 2
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▪ Model selection:
▪ Degree of polynomial

▪ Regularization (hyper)parameter 𝜆

▪ We don’t have future data → set aside some 

training data and pretend it’s future data
▪ Validation set
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training Validation

train

𝜆
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▪ Model selection:
▪ Degree of polynomial

▪ Regularization (hyper)parameter 𝜆

▪ We don’t have future data → set aside some 

training data and pretend it’s future data
▪ Validation set
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training Validation

Smallest loss:

(order=2,𝜆 = 3.0)



▪ If data is not abundant: validation is costly
▪ Tradeoff between training and validation data

▪ 𝑘-fold CV:
▪ Chop data into equal sized blocks (e.g., 𝑘 = 10)

▪ For each block 𝑥 = 1, … , 𝑘:
▪ Train model on all other blocks (training set)

▪ Evaluate model on 𝑣𝑥 (validation set)

▪ Performance = average error over all iterations
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▪ Quadratic form to minimize to obtain the bias 

terms {𝑏𝑢} and {𝑏𝑖}:
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= argmin
𝑏𝑢,𝑏𝑖

෍

𝑢,𝑖 ∈𝑅

𝑟𝑢𝑖 − ҧ𝑟 − 𝑏𝑢 − 𝑏𝑖
2 + 𝜆1 ෍

𝑢

𝑏𝑢
2 + ෍

𝑖

𝑏𝑖
2

𝑏𝑢
∗ , 𝑏𝑖

∗ =



▪ Residual error:
▪ Captures dependence between user and item

▪ ǁ𝑟𝑢𝑖 = 𝑟𝑢𝑖 − 𝑏𝑢𝑖 = 𝑟𝑢𝑖 − ( ҧ𝑟 + 𝑏𝑢 + 𝑏𝑖)
▪ ෨𝑅 = [෤𝑟𝑢𝑖]

▪ How to capture residual error, i.e., how to model 

user-item interaction?
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▪ Goal: estimate rating 𝑟𝑢𝑖 for user 𝑢 and item 𝑖

▪ Approach: pairwise user-user or item-item 

correlation

▪ User-user:
▪ For user 𝑢, find other users {𝑣} that are similar to 𝑢

▪ Combine {𝑟𝑣𝑖} into an estimate for 𝑟𝑢𝑖

▪ Item-item:
▪ For item 𝑖, find other items {𝑗} that are similar to 𝑖

▪ Combine {𝑟𝑢𝑗} into an estimate for 𝑟𝑢𝑖
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▪ Similarity between users 𝑢 and 𝑣?

▪ Degree of agreement in ratings for joint items

▪ Cosine similarity:
▪ Def: 𝑥𝑢, 𝑥𝑣 are vectors of ratings ෥𝑟𝑢, ෥𝑟𝑣 over items rated by 

both

▪ 𝑠𝑖𝑚 𝑢, 𝑣 =
𝑥𝑢

𝑇𝑥𝑣

𝑥𝑢 2 𝑥𝑣 2
= cos(< 𝑥𝑢, 𝑥𝑣)

▪ For user 𝑢, evaluate 𝑠𝑖𝑚(𝑢, 𝑣)
over all other users 𝑣; 

retain 𝐿 highest (top-𝐿)→ set 𝐿𝑢

25
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▪ Combine “opinions” of all the similar users 𝐿𝑢:

▪  Ƹ𝑟𝑢𝑖 = ҧ𝑟 + 𝑏𝑢 + 𝑏𝑖 +
σ𝑣∈𝐿𝑢

𝑠𝑖𝑚 𝑢,𝑣 ǁ𝑟𝑣𝑖

σ𝑣∈𝐿𝑢
𝑠𝑖𝑚(𝑢,𝑣)

▪ Pros:
▪ Intuitively appealing and natural

▪ Cons:
▪ Hard to tune: choice of similarity metric 𝑠𝑖𝑚(. , . ), 𝐿 (and 

other parameters depending on variant)

▪ Sparsity: for many (𝑢, 𝑖) pairs, no rating possible (if 

nobody in set 𝐿𝑢 has rated 𝑖)
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▪ Two symmetric approaches:
▪ User-user: for user 𝑢, find similar users 𝑣, and their 

ratings of 𝑖

▪ Item-item: for item 𝑖, find similar items 𝑗, and their 

ratings by 𝑢

▪ In practice they are different:
▪ Argument for item-item: in most applications, items tend 

to “cluster” better (e.g., movies belong to a single 

genre); users are more “mixed” (e.g., one user may like 

many genres)

▪ Argument for user-user: often the application is not 

“estimate 𝑟𝑢𝑖”, but “get highest rated items for 𝑢”
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▪ With user-user:
▪ First find users 𝑣 having rated same movie(s)

▪ Estimate all unrated items for 𝑢 from these users

▪ Equal to two-hop neighborhood in bipartite rating graph

28

1 2 3 4 5 6 7 8

1 5 2 2

2 4 3 1 1 4

u ??? 5 4 ??? 1 ??? 4 ???

4 1 1 2

5 3 ? ? 3

6 ? 2 4 ?



▪ With item-item:
▪ For each item 𝑖 not rated by 𝑢, find similar items 𝐿𝑖

▪ Obtain Ƹ𝑟𝑢𝑖 from user 𝑢’s ratings for 𝑗 ∈ 𝐿𝑖

▪ Much more costly: many unrated items 𝑗 ∈ 𝐿𝑖
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▪ Dimensionality-reduction technique
▪ Hypothesis: simpler (lower-dim) space capturing user-

item dependencies

▪ Assume 𝐾 concepts/latent factors/taste 

dimensions
▪ Movies: Comedy vs drama; historic vs sci-fi; intellectual 

vs entertainment; romantic vs action; specific cast, 

directors; etc.

▪ Each user 𝑢 has a 𝐾-dim factor vector 𝑝𝑢:
▪ 𝑝𝑢 𝑘 : degree to which user 𝑢 enjoys/hates factor 𝑘

▪ Each item 𝑖 has a a 𝐾-dim factor vector 𝑞𝑖:
▪ 𝑞𝑖 𝑘 : degree to which item 𝑖 possesses factor 𝑘
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parameters 𝜃 = (𝑃, 𝑄): 𝑑 = 𝐾(𝑛 + 𝑚) degrees of freedom

▪ Ƹ𝑟𝑢𝑖 = ҧ𝑟 + 𝑏𝑢 + 𝑏𝑖 + 𝑝𝑢
𝑇𝑞𝑖

▪ Note:
▪ Contrary to SVD, no requirement that 𝑃, 𝑄 be orthogonal 

(columns of 𝑃 and rows of 𝑄 not unitary nor orthogonal)

▪ Training the model: min
𝑃,𝑄

σ 𝑢,𝑖 ∈𝑅 ǁ𝑟𝑢𝑖 − 𝑝𝑢
𝑇𝑞𝑖

2
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෨𝑅 𝑃 𝑄≈ x
2) How to find 𝑃, 𝑄?

1) What regularizer?



▪ Cost function with regularizer: 𝑏𝑢
∗ , 𝑏𝑖

∗, 𝑃∗, 𝑄∗ =

▪  = argmin
𝑏𝑢,𝑏𝑖,𝑃,𝑄

σ 𝑢,𝑖 ∈𝑅 𝑟𝑢𝑖 − (𝑝𝑢
𝑇𝑞𝑖 + ҧ𝑟 + 𝑏𝑢 + 𝑏𝑖)

2
 

+𝜆1 𝑏𝑢
2 + 𝑏𝑖

2

+ 𝜆2( 𝑃 𝐹
2 + 𝑄 𝐹

2 )
▪ Three hyperparameters (𝐾, 𝜆1, 𝜆2) to optimize

▪ Not actually a convex problem!

▪ But convex (quadratic) over 𝑃, 𝑄 individually → 

biconvex

▪ 𝑃∗, 𝑄∗  is only a local, not necessarily global, 

minimum
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▪ Convex function 𝑓(𝜃), 𝜃 = (𝜃1, … , 𝜃𝑑)
▪ For every two points 𝜃, 𝜙, the line between

𝑓(𝜃) and 𝑓(𝜙) is «above» the function

▪ Convex domain:
▪ For every two points 𝜃, 𝜙 in the domain, 

the line connecting them also in domain

▪ Test for convexity of differentiable

function:

▪ Hessian (𝛻2𝑓)𝑖𝑗 =
𝜕2𝑓

𝜕𝜃𝑖𝜕𝜃𝑗
 

must be PSD (positive semidefinite)

▪ Convex optimization:
▪ Local min = global min → we can use 

methods for local min search 33



34

domain

contour functions

▪ Gradient 𝛻𝑓 𝑖 =
𝜕𝑓

𝜕𝜃𝑖

▪ Gradient descent:

▪ 𝜃(𝑘+1) = 𝜃(𝑘) − 𝛼𝛻𝑓(𝜃(𝑘))

▪ 𝛼: learning rate

▪ Intuition: move in direction of 

local decrease

▪ In ML, 𝑓 is often a sum over

 the data:
▪ 𝑓 = σ 𝑓𝑛

▪ Here: 𝑓 = σ 𝑢,𝑖 ∈𝑅 ǁ𝑟𝑢𝑖 − 𝑝𝑢
𝑇𝑞𝑖

2

▪ Log-likelihood: 𝑓 = log 𝑃 𝑌 𝜃 = σ log 𝑃(𝑌𝑛|𝜃)

▪ Gradient costly to compute! (𝑂(𝑛) per step)

𝜃∗



▪ Gradient descent: expensive
▪ Sum over all data points (𝑢, 𝑖) ∈ 𝑅

▪ Stochastic gradient descent:
▪ Idea: noisy but cheap gradient approximation

▪ Pick a random data point (𝑢, 𝑖) (or some other order)

▪ Compute gradients w.r.t. this data point (or a small 

batch of data points)

▪ Iterate until convergence

▪ Intuition:
▪ Random walk that is biased towards minimum

▪ Pro: gradient much cheaper to compute

▪ Con: random walk may “veer” in the wrong direction

▪ Worth it if “detours” do not outweigh reduction in 

computational cost 35



▪ Gradient descent vs stochastic gradient descent

36

𝜃∗



▪ Two solutions to deal with non-convexity:
▪ Optimize using SGD anyway → no guarantee of finding 

global minimum, but in practice it usually finds a good 

solution

▪ (some convexity guarantees exist under slightly 

stronger assumptions)

▪ Alternating Least Squares (ALS):

▪ Fix 𝑃, minimize in 𝑄: quadratic, explicit solution

▪ Fix 𝑄, minimize in 𝑃: quadratic, explicit solution

▪ Repeat until convergence

▪ From studies with real data: SGD usually wins in 

terms of computational cost for a good solution, 

except for very sparse datasets
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▪ Data set:
▪ ~500k users, ~18k movies

▪ 100m ratings over 5 years

▪ Recommender system for movies: Cinematch
▪ RMSE = 0.9514

▪ One week until Cinematch got outperformed!

▪ Stats:
▪ 5000 teams (200 USD/team)

▪ 44000 submissions

▪ Netflix required for all results to be published
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oct’06 oct’07 oct’08 june’09

Cinematch beaten

BellKor: 8.26%

BellKor: 8.43%

(50k$ annual)

BellKor+BigChaos: RMSE=0.8616

(50k$ annual)

BellKor Pragmatic Chaos: 10.06%

Last call (30 days): two teams 

have RMSE=0.8567!!!

First to submit wins

BellKor’s Pragmatic Chaos wins 1m$ by

20 minutes over Ensemble



▪ Advantages of collaborative filtering (CF):
▪ Content-independent: works for any type of item

▪ Big data: exploits large user population

▪ CF drawbacks:
▪ Cold start (new user and new item)

▪ Sparsity: most user-item pairs never observed

▪ Extensions:
▪ Context: location, time, mood, etc.

▪ Temporal factors: e.g., age of a movie – critical in netflix 

challenge

▪ Next lecture:
▪ Using content to recommend

▪ …and: “time is money”! ;-) (1m$/20 minutes)
40



▪ [M. Chiang: Networked Life (chapter 4), 2012]

▪ [A. Rajaraman, J. D. Ullman: Mining of Massive 

Datasets (chapter 9), 2012]

▪ [S. Shalev-Shwartz, S. Ben-David: Understanding 

Machine Learning: From Theory to Algorithms, 

2014]

▪ [Y. Koren, R. Bell, Ch. Volinsky: Matrix 

Factorization Techniques for Recommender 

Systems, IEEE Computer, Aug 2009]

▪ [E. Pariser: The Filter Bubble: What the Internet is 

hiding from you, Penguin 2011]
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