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Overview

Introduction and motivation

Singular Value Decomposition (SVD)
= Every matrix has a SVD

= |ntuition

= Applications in dimensionality reduction

Principal Component Analysis (PCA)

= Visualization and exploration

= Goal: find low-dimensional projection that represents
data well

= Comments on Multi-Dimensonal Scaling (MDS) and
non-linear embedding



What is dimensionality reduction?

= Goal: find “structure” in high-dimensional data
= Structure means: patterns, dependencies, clusters,...

= Motivating example:

= Stock price analysis: we want to understand the
structure of the stock market

= One data point X;: stock quotes for one day
= 1000 stocks: dimension of full space (m = 1000)
= n data points

= |s there structure, i.e., exact or approximate
relationships?

= |In other words: does data “concentrate in” a subspace of
R™?



Example: 3d data with 2d structure

Linear relationship?



Case study: Smartvote dataset

= smartvote pre-electoral opinions of the 2011
parliamentary elections
= 2,985 candidates (82.4% of all candidates)
= 229,133 citizens (~9% of total turnout)

= Examples of questions:

= “Should Switzerland embark on negotiations in the next
four years to join the EU?”

= “How much should the public transport budget be?”
= Possible answers

= strongly disagree - disagree - agree - strongly agree

= less - no change - more



Case study: Smartvote dataset

@
SmartVOteO de |fr |it |en

Elections au Conseil national - 23 oct. 2011
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journaliere diminue au fur et & mesure que la durée du chémage augmente)? question, cliques surinformation. Ues

informations supplémentaires ainsi que des
arguments pour et contre seront alors

oui Plutétoui  Plutét non Non sl Pondération affichés.
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L= = compte lors du calcul de la recommandation

de vote.




Applications of dim reduction

Visualization & interpretation

= Useful first step in data analysis

Discover hidden correlations, laws, mechanisms
Noise reduction

= For example, data could be truly low-dimensional, but
noise is high-dimensional
Efficiency: compression & processing

= Many algorithms are hard in high dimensions (“the curse
of dimensionality”)

= E.g., nearest neighbor



Spectral theorem

Theorem:
= Areal symmetric matrix X can be factored as

X =QDQ",
where Q is orthogonal (Q~! = Q") and D is diagonal.

Convention:

= Write diagonal values in decreasing order

= D =diag(Ay, Ay, ... Ay)

Def: positive definite:

= AllA; >0

« xT'Xx > 0 for all nonzero vectors x

Def: positive semidefinite (PSD):

= AllA; =20 (44, ..., 4, > 0, where r = rank(X))
« xT'Xx = 0 for all vectors x



Singular Value Decomposition (SVD)

= Theorem:
= Any real n x m matrix X can be factored as

X=u0xvt

where
U is n X n and orthogonal,
V is m X m and orthogonal, and
2 is n X m diagonal
= Proof:
« XTX is m x m symmetric and positive semidefinite
= Apply spectral theorem to XX

- There exists orthogonal V = [v;|v,]...|, such that
VIXTXV = [g 8] , D is diagonal and positive



SVD: existence (cont.)

= Proof (cont):
= D = diag(}\.l,}\z, ...}\.r), }\.1 = }\.2 = e 2 }\r> 0
= v = rank(X)

b
vy
= This shows that

VIXTXV, =D,

and that

VIXTXV, = 0; this implies XV, = 0 (null space of X)
= Also: V orthogonal = VvVT =1 =V, VI + V,V.]

. - — " " " <
- v;'TXTXUj:XUi onj: )\] L ](l)] ._ T)
0 otherwise

D 0
ryv. V. =[
X' XV V] 0 0
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SVD: existence (cont.)

= Proof (cont.):
= Letg; = \/T]

Let Y = [‘/05 g] the n X m matrix with g; on the diagonal

(all other elements 0)
Set U; = XV,D 2 —X[
1

= Note u]- — —ij are orthonormal
Oj

Uy

o o "'ar = |uq Uy Uz ... U]

Complete remaining vectors U, = [u,4q, ..., U, | t0 have
orthonormal basis of R"

1
UsvT = [XVlD_E Uzl [‘/OD 8] [V, V,]T = XV, VT =
= X(I = V,V]) = X (because XV, = 0)
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SVD uxy?!




SVD: geometric interpretation of UXV'a
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Singular Value Decomposition (SVD)

= Alternative definition:

X=U0xyv"

where:
= 7 =rank(X)
= U is column-orthonormal (n x r) (“tall”)
= UTU =1
= VT is row-orthonormal (r x m) (“fat”)
= VIV =1
= Y is diagonal (r X r)
= Singular values of X
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SVD: low-rank approximation

XUZVT: IX.-DX—

r
X=zaiUiViT= I‘_ + l‘_ +
1




Singular Value Decomposition (SVD)

= Goal:

= Find low-dimensional latent space that “explains” data

= Motivating example: survey

= We have n = 5 individuals and m = 4 questions
= Each person answers questions in a range (e.g., -5 to 5)

5
—4
= Represent as a matrix: X =|-5
0
L 5

0
—1
5
4
-5

0
0
5
5
-5

4
4
5
0

_5.

= Latent space/concepts/hidden variables:
= Some people are similar, and some questions are similar

= Question: how many “degrees of freedom” or
“dimensions” does the system have?
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Singular Value Decomposition (SVD)

—0.30 054 -0.12 0.78 0 7
0.24 —-054 -0.72 0.35 0
= U= 0.62 0.11 0.23 0.21 0.71
0.26 063 —-0.60 —-043 O
—0.62 —-0.11 -0.23 -0.21 0.71.

—0.55 049 -=0.07 0.67 |
0.44 0.53 0.72 0.05
0.47 0.54 —-0.69 -0.09

. 053 =042 -0.06 0.73 .

= )Y = diag(16,7.7,0.9,0.5)
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SVD: Interpretation

= Reformulation as sum of outer products:

_ r T
X = )di=10: UiV,
= ¢g;: strength of concept i

= U;: influence of concept i on “people”
= V; :influence of concept i on “questions”
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SVD: Best rank(r)-approximation

= Frobenius norm:

HXHF Zl ]
= Theorem:
= Let X be any matrix, and X = UXVT its SVD
« Let X' =Y"_,0; U;V arank(r)-approximation of X

= Then || X — X'||4 is smallest possible for rank=r

Intuition:

« X' captures the most important dimensions of the linear
map

Criterion for r:

= Often, try to capture ~ 80-90% of “energy” in X, i.e., of
1X 1|5
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Best rank(r)-approx: example

5 0 0
—4 -1 0
= X=|-5 5 5
0 4 5
.5 -5 =5
= X’1 =0-1U1V1T=
- X', =Y 0, UV =

— 4

4
5
0

—5.
[ 2.7

—2.1
—5.5
—2.3

| 5.5
[ 4.7

—4.2
—5.1
0.1

L 5.1

—2.1
1.7
4.4
1.8

—4.4
0.06

—0.5
4.8
4.4

—4.3

—2.3
1.8
4.7
2.0

—4.7
—0.04

—0.4
5.1
4.6

—5.1

—2.6]
2.0
5.3
2.2

—5.3.

—4.37

3.8
4.9
0.1

—4.9.
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Principal Component Analysis (PCA)

= Data matrix X:
= Row: data point (n)
= Columns: dimensions/variables (m)
= Goal:
= Explain relationships between variables

= Approach:

= Low-dimensional representation conserving “variability”

—

n <




PCA

1 . : i
g £XTX: covariance matrix (X centered, i.e., every

column of X has average zero)
: (XTX)ij: inner (scalar) product of variables i and j

= Large value = strongly correlated dimensions
« Eigenpairs: (v;, ;) of XTX = VAVT
= v;: ith eigenvector (unit)
= A;: ith-largest eigenvalue
= Choose a dimension d <K m
« Define V = |vq,v,,...,v,4]: principal directions
= Define A = diag(A4, A, ..., A4]
= Y = XV: points of X projected on new space
« Note: YTY =VIXTXV = VIVAVTV = A
- principal components are decorrelated
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Example: 3d data with 2d structure

principal
direction 1:
max variance . .

brojection “..-N* - direction 2:

:*\*+* max variance in subspace L PC1
o b |
o5 b - -.--,j
1k )
-1.57 b N . ;
g
0 =5.5
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Principal direction v,

1st axis/direction

- Seriez-vous favorable a ce que le droit de vote au niveau communal soit
instaure pour les étrangers qui vivent en Suisse depuis au moins dix ans et ce,
dans toute la Suisse?

- Approuveriez-vous que la concurrence fiscale entre les cantons soit plus
limitee?
- Soutenez-vous l'initiative populaire qui souhaite que le salaire le plus élevé au

sein d'une entreprise ne puisse pas étre plus de douze fois supérieur au salaire le
plus bas versé par la méme entreprise. (initiative 1:12)?

- Une initiative populaire souhaite instaurer une caisse maladie unique et
publique pour l'assurance de base. Etes-vous favorable a ce projet?

'Social questions («égalité»)
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Principal direction v,

2nd axis/direction

- Approuvez-vous des engagements de soldats armeés (pour l'autoprotection) de
larmée suisse a l'étranger dans le cadre de missions de maintien de la paix de

'ONU ou de 'OSCE?
- Etes-vous en faveur d'un accord de libre-échange agricole avec 'UE ?

- Etes-vous favorable a l'accord sur la libre circulation des personnes existant
avec ['UE?

- Une imposition centrale sur les quantités dans la production laitiere doit-elle
étre réinstaurée en Suisse a la place du libre marché laitier?

‘ Economics, globalisation («liberté»)
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Principal direction v,

3rd axis/direction

- Seriez-vous favorables a ce que l'euthanasie active directe soit légalement
possible par le biais d'un médecin en Suisse?

- Les couples homosexuels sous le régime du partenariat enregistrés devraient-ils
pouvoir adopter des enfants?

- La Suisse possede des regles relativement strictes concernant la procréation
médicalement assistée. Celles-ci devrait-elles étre assouplies?

- La consommation ainsi que la possession pour la consommation personnelle de
drogues dures et douces doivent-elles étre légalisées?

Society, ethics («fraternité») In other words: PCA produces the
French flag ;)

Observation:
« Principal components correspond
to clearly interpretable political

and ideological dimensions .




PCA: Covariance vs correlation matrix

Assume X centered, i.e., 1, X =0,
= If not, do not forget to center it first!

. . 1
Covariance matrix: gXTX

Correlation matrix R:
_ X{ X;
ij B T T
(T x0T x,)
« Normalized, -1 <R;; <1

= Advantage: unit/range independent

= Good when different dimensions are numerically very
different, or even in different units

Ultimately scenario-dependent
= Considered a drawback of PCA

= R
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Multidimensional Scaling (MDS)

= PCA: two strong assumptions
= 1) Linear relationships among dimensions
= 2) Orthogonal principal components

= Often low-dimensional structure exists, but above
assumptions are too strong to bring them out

= Generalization: MDS

= PCA: find structure in data {X;}

= MDS: Find structure in metric space (distance function):
d(X;, X;)

= Choice of distance function allows to generalize
(Euclidean - PCA)
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Non-linear embedding: motivation

/

N

®
No meaningful linear :. oo ®

relationship, but clearly

one-dimensional

v
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Isomap: approximate geodesic distance

N

Graph G: embed

graph distance d;(i, j)

one-dimensional
manifold
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Isomap: example

Source: [Tenenbaum et al.]
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Stochastic Neighborhood Embedding

= Key idea: try to preserve nearest-neighbor
relationships as much as possible

= Penalize solution strongly when close points (x;, x;) is
mapped to distant (y;, y;)

= Do not care (much) about how distant (x;, x;) is mapped

= Definition: Kullback-Leibler divergence
= Two probability distributions P and Q

P
KL(P|IQ) = ¥ P log 2%

= Note: asymmetric (and no triangle equality)

= [ntuition:
= KL large if P is large where Q is small (or zero)

= The opposite is not the case: where P is zero, Q can be
anything
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SNE

= Map high-dimensional vectors to “probabilities of

similarity”:
B exp(—||xi—xj||2/20i2)
Pl Y exn(Clxi—xxl2/207)
of: controls the size of the “local neighborhood”

= Make p;; a symmetric joint distribution over all
pairs:
" Pij XDPij T Dji

= Similar form for g;; in the low-dim space

= Minimize KL(p;;||q;;) = recall that this tries to
avoid small g;; (ie, low-dim points far) where p;; is
large (original points close)
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MNIST dataset
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Example: t-SNE embedding of MNIST

OO

36



Summary & lessons

High-dimensional data often has structure, i.e., is
exactly or approximately lower-dimensional

Important for: visualizing; describing; modeling;
compressing

Simplest assumption: data lies in linear subspace

SVD: exists for every matrix, describes
relationships between two spaces

PCA: projection of high-dimensional data onto
“best” low-dimensional space

Connection SVD <-> PCA: see next homework
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