
1

Internet Analytics (COM-308)

Prof. Matthias Grossglauser

School of Computer and Communication 

Sciences



▪ Introduction and motivation

▪ Singular Value Decomposition (SVD)
▪ Every matrix has a SVD

▪ Intuition

▪ Applications in dimensionality reduction

▪ Principal Component Analysis (PCA)
▪ Visualization and exploration

▪ Goal: find low-dimensional projection that represents 

data well

▪ Comments on Multi-Dimensonal Scaling (MDS) and 

non-linear embedding
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▪ Goal: find “structure” in high-dimensional data
▪ Structure means: patterns, dependencies, clusters,…

▪ Motivating example:
▪ Stock price analysis: we want to understand the 

structure of the stock market

▪ One data point 𝑋𝑖: stock quotes for one day

▪ 1000 stocks: dimension of full space (𝑚 = 1000)

▪ 𝑛 data points

▪ Is there structure, i.e., exact or approximate 

relationships?

▪ In other words: does data “concentrate in” a subspace of 

ℝ𝑚?
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Linear relationship?



▪ smartvote pre-electoral opinions of the 2011 

parliamentary elections
▪ 2,985 candidates (82.4% of all candidates)

▪ 229,133 citizens (~9% of total turnout)

▪ Examples of questions:
▪ “Should Switzerland embark on negotiations in the next 

four years to join the EU?”

▪ “How much should the public transport budget be?”

▪ Possible answers
▪ strongly disagree - disagree - agree - strongly agree

▪ less - no change - more
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▪ Visualization & interpretation
▪ Useful first step in data analysis

▪ Discover hidden correlations, laws, mechanisms

▪ Noise reduction
▪ For example, data could be truly low-dimensional, but 

noise is high-dimensional

▪ Efficiency: compression & processing
▪ Many algorithms are hard in high dimensions (“the curse 

of dimensionality”)

▪ E.g., nearest neighbor
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▪ Theorem:
▪ A real symmetric matrix 𝑋 can be factored as

𝑋 = 𝑄𝐷𝑄𝑇
,

where 𝑄 is orthogonal (𝑄−1 = 𝑄𝑇) and 𝐷 is diagonal.

▪ Convention:
▪ Write diagonal values in decreasing order

▪ 𝐷 = 𝑑𝑖𝑎𝑔(λ1, λ2, … λ𝑛)

▪ Def: positive definite:
▪ All λ𝑖 > 0

▪ 𝑥𝑇𝑋𝑥 > 0 for all nonzero vectors 𝑥

▪ Def: positive semidefinite (PSD):
▪ All λ𝑖 ≥ 0 (𝜆1, … , 𝜆𝑟 > 0, where 𝑟 = 𝑟𝑎𝑛𝑘(𝑋))

▪ 𝑥𝑇𝑋𝑥 ≥ 0 for all vectors 𝑥
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▪ Theorem:
▪ Any real 𝑛 × 𝑚 matrix 𝑋 can be factored as

 𝑋 = 𝑈𝛴𝑉𝑇
,

where

𝑈 is 𝑛 × 𝑛 and orthogonal,

𝑉 is 𝑚 × 𝑚 and orthogonal, and

𝛴 is 𝑛 × 𝑚 diagonal

▪ Proof:
▪ 𝑋𝑇𝑋 is 𝑚 × 𝑚 symmetric and positive semidefinite

▪ Apply spectral theorem to 𝑋𝑇𝑋

▪ There exists orthogonal 𝑉 = 𝑣1ห𝑣2ȁ… , such that 

𝑉𝑇𝑋𝑇𝑋𝑉 =
𝐷 0
0 0

, 𝐷 is diagonal and positive
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▪ Proof (cont):

▪ 𝐷 = 𝑑𝑖𝑎𝑔(λ1, λ2, … λ𝑟), λ1 ≥ λ2 ≥ ⋯ ≥ λ𝑟> 0

▪ 𝑟 = 𝑟𝑎𝑛𝑘(𝑋)

▪

𝑉1
𝑇

𝑉2
𝑇 𝑋𝑇𝑋 𝑉1 𝑉2 =

𝐷 0
0 0

▪ This shows that 

𝑉1
𝑇𝑋𝑇𝑋𝑉1 = 𝐷, 

and that 

𝑉2
𝑇𝑋𝑇𝑋𝑉2 = 0; this implies 𝑋𝑉2 = 0 (null space of 𝑋)

▪ Also: 𝑉 orthogonal → 𝑉𝑉𝑇 = 𝐼 = 𝑉1𝑉1
𝑇 + 𝑉2𝑉2

𝑇

▪ 𝑣𝑖
𝑇𝑋𝑇𝑋𝑣𝑗 = 𝑋𝑣𝑖  ∘ 𝑋𝑣𝑗 = ቊ

λ𝑗 𝑖 = 𝑗 (𝑖, 𝑗 ≤ 𝑟)

0 otherwise
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▪ Proof (cont.):

▪ Let 𝜎𝑗 = λ𝑗

▪ Let 𝛴 = 𝐷 0
0 0

 the 𝑛 × 𝑚 matrix with 𝜎𝑗 on the diagonal 

(all other elements 0)

▪ Set 𝑈1 = 𝑋𝑉1𝐷−
1

2 = 𝑋
𝑣1

𝜎1

𝑣2

𝜎2

𝑣3

𝜎3
 …

𝑣𝑟

𝜎𝑟
= 𝑢1 𝑢2 𝑢3  … 𝑢𝑟

▪ Note 𝑢𝑗 =
1

𝜎𝑗
𝑋𝑣𝑗  are orthonormal

▪ Complete remaining vectors 𝑈2 = [𝑢𝑟+1, … , 𝑢𝑛] to have 

orthonormal basis of ℝ𝑛

▪ 𝑈𝛴𝑉𝑇 = 𝑋𝑉1𝐷−
1

2 𝑈2
√𝐷 0
0 0

𝑉1 𝑉2
𝑇 = 𝑋𝑉1𝑉1

𝑇 =

 = 𝑋 𝐼 − 𝑉2𝑉2
𝑇 = 𝑋 (because 𝑋𝑉2 = 0)
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𝑋
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𝑋𝑎

𝑉𝑇𝑎

𝑈𝛴𝑉𝑇𝑎

null space

𝑚 = 3

𝑛 = 2

𝑟 = 2

𝛴𝑉𝑇𝑎



▪ Alternative definition:

 𝑋 = 𝑈𝛴𝑉𝑇

where: 

▪ 𝑟 = 𝑟𝑎𝑛𝑘(𝑋)

▪ 𝑈 is column-orthonormal (𝑛 × 𝑟) (“tall”)

▪ 𝑈𝑇𝑈 = 𝐼

▪ 𝑉𝑇 is row-orthonormal ( 𝑟 × 𝑚) (“fat”)

▪ 𝑉𝑇𝑉 = 𝐼

▪ Σ is diagonal ( 𝑟 × 𝑟)

▪ Singular values of 𝑋
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𝑋 = x x𝑋 = 𝑈𝛴𝑉𝑇

𝑋 = ෍

1

𝑟

𝜎𝑖𝑈𝑖𝑉𝑖
𝑇 = + +



▪ Goal:
▪ Find low-dimensional latent space that “explains” data

▪ Motivating example: survey
▪ We have 𝑛 = 5 individuals and 𝑚 = 4 questions

▪ Each person answers questions in a range (e.g., -5 to 5)

▪ Represent as a matrix: 𝑋 =

5 0 0 −4
−4 −1 0 4
−5 5 5 5
0 4 5 0
5 −5 −5 −5

▪ Latent space/concepts/hidden variables:
▪ Some people are similar, and some questions are similar

▪ Question: how many “degrees of freedom” or 

“dimensions” does the system have?
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▪ 𝑈 =

−0.30 0.54 −0.12 0.78 0
0.24 −0.54 −0.72 0.35 0
0.62 0.11 0.23 0.21 0.71
0.26 0.63 −0.60 −0.43 0

−0.62 −0.11 −0.23 −0.21 0.71

▪ 𝑉 =

−0.55 0.49 −0.07 0.67
0.44 0.53 0.72 0.05
0.47 0.54 −0.69 −0.09
0.53 −0.42 −0.06 0.73

▪ 𝛴 = diag(𝟏𝟔, 𝟕. 𝟕, 0.9, 0.5)
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▪ Reformulation as sum of outer products:

 𝑋 =  σ𝑖=1
𝑟 𝜎𝑖 𝑈𝑖𝑉𝑖

𝑇

▪ 𝜎𝑖: strength of concept 𝑖

▪ 𝑈𝑖: influence of concept 𝑖 on “people”

▪ 𝑉𝑖 : influence of concept 𝑖 on “questions”
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▪ Frobenius norm:

▪ 𝑋 𝐹
2 =  σ𝑖,𝑗 𝑋𝑖,𝑗

2

▪ Theorem:
▪ Let 𝑋 be any matrix, and 𝑋 = 𝑈Σ𝑉𝑇 its SVD

▪ Let 𝑋′ = σ𝑖=1
𝑟 𝜎𝑖 𝑈𝑖𝑉𝑖

𝑇 a rank(𝑟)-approximation of 𝑋

▪ Then 𝑋 − 𝑋′
𝐹
2  is smallest possible for rank=𝑟

▪ Intuition:
▪ 𝑋′ captures the most important dimensions of the linear 

map

▪ Criterion for 𝑟:
▪ Often, try to capture ~ 80-90% of “energy” in 𝑋, i.e., of 

𝑋 𝐹
2
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▪ 𝑋 =

5 0 0 −4
−4 −1 0 4
−5 5 5 5
0 4 5 0
5 −5 −5 −5

▪ 𝑋′1 = 𝜎1𝑈1𝑉1
𝑇 =  

2.7 −2.1 −2.3 −2.6
−2.1 1.7 1.8 2.0
−5.5 4.4 4.7 5.3
−2.3 1.8 2.0 2.2
5.5 −4.4 −4.7 −5.3

▪ 𝑋′2 = σ𝑖=1
2 𝜎𝑖 𝑈𝑖𝑉𝑖

𝑇 =

4.7 0.06 −0.04 −4.3
−4.2 −0.5 −0.4 3.8
−5.1 4.8 5.1 4.9
0.1 4.4 4.6 0.1
5.1 −4.8 −5.1 −4.9
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▪ Data matrix 𝑋:
▪ Row: data point (𝑛)

▪ Columns: dimensions/variables (𝑚)

▪ Goal:
▪ Explain relationships between variables

▪ Approach:
▪ Low-dimensional representation conserving “variability”

21

Stock A Stock B Stock C Stock D

𝑛

𝑚



▪

1

𝑛
𝑋𝑇𝑋: covariance matrix (𝑋 centered, i.e., every 

column of 𝑋 has average zero)

▪ 𝑋𝑇𝑋
𝑖𝑗

: inner (scalar) product of variables 𝑖 and 𝑗

▪ Large value = strongly correlated dimensions

▪ Eigenpairs: (𝑣𝑖 , λ𝑖) of 𝑋𝑇𝑋 = 𝑉ΛVT

▪ 𝑣𝑖: 𝑖th eigenvector (unit)

▪ λ𝑖: 𝑖th-largest eigenvalue

▪ Choose a dimension 𝑑 ≪ 𝑚

▪ Define 𝑉 = 𝑣1, 𝑣2, … , 𝑣𝑑 : principal directions

▪ Define Λ = diag λ1, λ2, … , λ𝑑

▪ 𝑌 = 𝑋𝑉: points of 𝑋 projected on new space
▪ Note: 𝑌𝑇𝑌 = 𝑉𝑇𝑋𝑇𝑋𝑉 = 𝑉𝑇𝑉Λ𝑉𝑇𝑉 = Λ 

→ principal components are decorrelated 22
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principal

direction 1:

max variance

projection

principal

direction 2:

max variance in subspace ⊥ PC1

orthogonal
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3 PCs capture

~ 60% of variance



1st axis/direction

- Seriez-vous favorable à ce que le droit de vote au niveau communal soit 

instauré pour les étrangers qui vivent en Suisse depuis au moins dix ans et ce, 

dans toute la Suisse?

- Approuveriez-vous que la concurrence fiscale entre les cantons soit plus 

limitée?

- Soutenez-vous l'initiative populaire qui souhaite que le salaire le plus élevé au 

sein d'une entreprise ne puisse pas être plus de douze fois supérieur au salaire le 

plus bas versé par la même entreprise. (initiative 1:12)?

- Une initiative populaire souhaite instaurer une caisse maladie unique et 

publique pour l'assurance de base. Êtes-vous favorable à ce projet?

25

Social questions («égalité»)



2nd axis/direction

- Approuvez-vous des engagements de soldats armés (pour l'autoprotection) de 

l'armée suisse à l'étranger dans le cadre de missions de maintien de la paix de 

l'ONU ou de l'OSCE?

- Êtes-vous en faveur d'un accord de libre-échange agricole avec l'UE ?

- Êtes-vous favorable à l'accord sur la libre circulation des personnes existant 

avec l'UE?

- Une imposition centrale sur les quantités dans la production laitière doit-elle

être réinstaurée en Suisse à la place du libre marché laitier?

26

Economics, globalisation («liberté»)



3rd axis/direction

- Seriez-vous favorables à ce que l'euthanasie active directe soit légalement 

possible par le biais d'un médecin en Suisse?

- Les couples homosexuels sous le régime du partenariat enregistrés devraient-ils 

pouvoir adopter des enfants?

- La Suisse possède des règles relativement strictes concernant la procréation

médicalement assistée. Celles-ci devrait-elles être assouplies?

- La consommation ainsi que la possession pour la consommation personnelle de 

drogues dures et douces doivent-elles être légalisées?

27

Observation:
• Principal components correspond 

to clearly interpretable political
and ideological dimensions

Society, ethics («fraternité») In other words: PCA produces the 
French flag ;)



▪ Assume 𝑋 centered, i.e., 1𝑛𝑋 = 0𝑚

▪ If not, do not forget to center it first!

▪ Covariance matrix: 
1

𝑛
𝑋𝑇𝑋

▪ Correlation matrix 𝑅: 

▪ 𝑅𝑖𝑗 =
𝑋𝑖

𝑇𝑋𝑗

(𝑋𝑖
𝑇𝑋𝑖)(𝑋𝑗

𝑇𝑋𝑗)

▪ Normalized, −1 ≤ 𝑅𝑖𝑗 ≤ 1

▪ Advantage: unit/range independent

▪ Good when different dimensions are numerically very 

different, or even in different units

▪ Ultimately scenario-dependent
▪ Considered a drawback of PCA
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▪ PCA: two strong assumptions
▪ 1) Linear relationships among dimensions

▪ 2) Orthogonal principal components

▪ Often low-dimensional structure exists, but above 

assumptions are too strong to bring them out

▪ Generalization: MDS
▪ PCA: find structure in data 𝑋𝑖

▪ MDS: Find structure in metric space (distance function): 

𝑑(𝑋𝑖 , 𝑋𝑗)

▪ Choice of distance function allows to generalize 

(Euclidean → PCA)

29
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No meaningful linear

relationship, but clearly

one-dimensional
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Graph 𝐺: embed

graph distance 𝑑𝐺(𝑖, 𝑗)
one-dimensional

manifold
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Source: [Tenenbaum et al.]



▪ Key idea: try to preserve nearest-neighbor 

relationships as much as possible
▪ Penalize solution strongly when close points (𝑥𝑖 , 𝑥𝑗) is 

mapped to distant (𝑦𝑖 , 𝑦𝑗)

▪ Do not care (much) about how distant (𝑥𝑖 , 𝑥𝑗) is mapped

▪ Definition: Kullback-Leibler divergence
▪ Two probability distributions 𝑃 and 𝑄

▪  𝐾𝐿(𝑃ȁ 𝑄 = σ𝑘 𝑃𝑘 log
𝑃𝑘

𝑄𝑘

▪ Note: asymmetric (and no triangle equality)

▪ Intuition:
▪ KL large if 𝑃 is large where 𝑄 is small (or zero)

▪ The opposite is not the case: where 𝑃 is zero, 𝑄 can be 

anything 33



▪ Map high-dimensional vectors to “probabilities of 

similarity”:

▪  𝑝𝑗ȁ𝑖 =
𝑒𝑥𝑝 − 𝑥𝑖−𝑥𝑗

2
/2𝜎𝑖

2

σ𝑘≠𝑖 𝑒𝑥𝑝 − 𝑥𝑖−𝑥𝑘
2/2𝜎𝑖

2

▪  𝜎𝑖
2: controls the size of the “local neighborhood”

▪ Make 𝑝𝑖𝑗 a symmetric joint distribution over all 

pairs:
▪  𝑝𝑖𝑗 ∝ 𝑝𝑖ȁ𝑗 + 𝑝𝑗ȁ𝑖 

▪ Similar form for 𝑞𝑖𝑗 in the low-dim space

▪ Minimize 𝐾𝐿(𝑝𝑖𝑗ȁȁ𝑞𝑖𝑗) → recall that this tries to 

avoid small 𝑞𝑖𝑗 (ie, low-dim points far) where 𝑝𝑖𝑗 is 

large (original points close)
34
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▪ High-dimensional data often has structure, i.e., is 

exactly or approximately lower-dimensional

▪ Important for: visualizing; describing; modeling; 

compressing

▪ Simplest assumption: data lies in linear subspace

▪ SVD: exists for every matrix, describes 

relationships between two spaces

▪ PCA: projection of high-dimensional data onto 

“best” low-dimensional space

▪ Connection SVD <-> PCA: see next homework
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▪ [A. Rajaranam, J. D. Ullman: Mining of Massive 

Datasets (chapter 11), Cambridge, 2012]

▪ [J. B. Tenenbaum, V. de Silva, J. C. Langford: A 

Global Geometric Framework for Nonlinear 

Dimensionality Reduction, Science, vol 290, 2000]
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