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▪ Web search: result should be…
▪ …relevant to the query

▪ …of high quality/correctness/importance

▪ Importance: use network structure – hyperlinks
▪ A link is a vote for the target of the link

▪ PageRank:
▪ Graph eigenvector problem

▪ Heuristic turning graph structure into a score

▪ Power method for efficient computation

▪ HITS: hubs and authorities variant

▪ Implementation and search-engine optimization
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▪ Link “physically resides” at the tail → constraint 

on out-degree, not on in-degree

▪ In-degree more skewed (𝛾𝑖𝑛 ~ 2.1 vs 𝛾𝑜𝑢𝑡~2.7)

[Graph Structure in the Web, A. Broder, R. Kumar, F. Maghoul, P. Raghavan, 

S. Rajagopalan, R. Stata, A. Tomkins, J. Wiener, WWW9, 2000]
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▪ More recent study 

(2015):

[The Graph Structure in the Web – Analyzed on Different Aggregation 

Levels, R. Meusel, S. Vigna, O. Lehmberg, and Ch. Bizer, J. Web Science, 

2015, 1: 33–47]



▪ Classification of strongly connected components 

(SCC)
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▪ Search query → ranked list of results

▪ Two ingredients:
▪ Relevance score: how relevant is the result to the query 

(cf retrieval lectures)

▪ Importance score: quality, importance of the result 

independent of query

▪ This lecture: importance score

▪ Key idea: importance ranking from hyperlinks
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▪ Links are asymmetric
▪ Existence under control of link tail

▪ Means “X considers Y relevant”

▪ Does not necessarily mean “quality” or 

“agreement”

▪ Represented as directed graph

▪ Note:
▪ Very easy to extract out-links, but need to 

download entire web to extract in-links

▪ Google “link:” search query
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▪ Importance score of page 𝑢: 𝜋𝑢

▪ Approach 1: 𝜋𝑢 = 𝑖𝑢 (in-degree)
▪ More endorsements = more important

▪ Problem: easy to spam (e.g., link-farm)

▪ Approach 2: take into account

importance of endorser → circular

▪ 𝜋𝑢 = σ(𝑣,𝑢) 𝜋𝑣

▪ More important endorsers = more important

▪ Problem: a page pointing to a single other page should 

be stronger endorsement than e.g. a long list of links

▪ Approach 3:

▪ 𝜋𝑢 = σ(𝑣,𝑢)
𝜋𝑣

𝑜𝑣 9
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▪ Basic PageRank: 𝜋𝑢 = σ(𝑣,𝑢)
𝜋𝑣

𝑜𝑣

▪ Question: is there a 𝜋  that satisfies the above 

condition?
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▪ PageRank:
▪ A hyperlink “endorses” the target

▪ An endorsement depends on the “relevance” of the 

originator
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▪ Def: 𝐻𝑢𝑣 = ൝
1

𝑜𝑢
 (𝑢, 𝑣) ∈ 𝐸

0 otherwise
▪ Note: 𝐻 is the transition matrix of a RW on the 

web
▪ “random surfer”: 𝑃 at 𝑣 at time 𝑡 + 1 =

σ𝑢 𝑃(at 𝑢 at time 𝑡)/𝑜𝑢

▪ 𝑝 𝑡 + 1 = 𝑝 𝑡 𝐻

▪ If RW is ergodic, then 𝑝 𝑡 → 𝝅
▪ 𝝅 = 𝝅𝐻, i.e., solves the score-flow equation

▪ Condition for ergodicity: graph has to be non-periodic 

and strongly connected → aperiodic and irreducible 

Markov chain
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▪ Dangling node = absorbing state of RW (not 

strongly connected)

▪ There is no (non-zero) 𝜋 that solves 𝜋 = 𝜋𝐻

▪ Note: setting 𝐻44 = 1 does not solve problem 

either → 𝜋 = (0,0,0,1)
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▪ Idea: if random surfer arrives at dangling node → 

go to any webpage uniformly at random
▪ Or following some well-chosen distribution 𝑎 over all 

nodes

▪ Def: 𝑤=indicator of dangling nodes
▪ Example: 𝑤 = (0,0,0,1)

▪ ෡𝐻 = 𝐻 +
1

𝑛
(𝑤𝑇𝑒) ((row-)stochastic matrix)

▪  𝑒 = (1,1,1, … , 1)

▪ Example: ෡𝐻 =

0 0 0 1
1
3

0
1
3

1
3

1
3

1
3

0
1
3

1/4 1/4 1/4 1/4

 

14



▪ Does ෡𝐻 define an ergodic RW = single score vector 

𝜋? Not always…

▪ Dangling nodes = absorbing states are not the only 

classes we can get

▪ Examples:
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▪ Solution: add randomization (“teleportation”)
▪ At every iteration, coin flip: with prob. 𝜃 walk on the 

graph ( ෡𝐻), with prob. 1 − 𝜃 jump to a random page

▪ 𝐺 = 𝜃 ෡𝐻 + (1 − 𝜃)
𝑒𝑇𝑒

𝑛
▪ Theorem:

▪ If 𝜃 < 1, 𝜋 = 𝜋𝐺 has exactly one solution for any network 

graph

▪ 𝜃 = 0 → 𝜋 uniform

▪ In practice: 0.8 ≤ 𝜃 ≤ 0.9, i.e., 5-10 steps on web graph 

between random jumps

▪ PageRank algorithm computes this solution

16

teleportation 

matrix



▪ Irreducible:
▪ Every page is directly connected to every other page

▪ Aperiodic:
▪ 𝐺𝑖𝑖 > 0 (self-loops from teleportation matrix)

▪ This is enough to avoid periodic patterns

▪ Irreducible + aperiodic = ergodic:
▪ Single stationary distribution 𝜋

▪ Long-term page frequency of random surfer
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▪ Uniform jumps: crude
▪ We can incorporate more information about the a-priori 

importance of web pages

▪ Length of the URL

▪ Words in the domain

▪ Language

▪ HTML tags

▪ …

▪ Model: when randomizing, sample from

𝑎 = appropriate distribution over all nodes 

instead of from 
1

𝑛
𝑒

▪  𝐺 = 𝜃𝐻 + 𝜃𝑤𝑇 + 1 − 𝜃 𝑒𝑇 𝑎
18



▪ Approach 1: simulate random walker
▪ Stationary regime: 𝑃 walker at 𝑢 = 𝜋𝑢

▪ Problem: with Θ(100bn) web pages: slow convergence, 

very costly

▪ Approach 2: linear-system method

▪ Compute solution of 𝑥 𝐼 − 𝜃𝐻 = 𝑎

▪ Normalized rank: 𝜋 = 𝑥/(𝑥𝑒𝑇)

▪ Efficient for small graphs

▪ Approach 3: power method
▪ 𝜋 is (left) dominant eigenvector (eigenvalue=1) of 𝐺

▪ Iterating  𝜋𝑡+1 =
𝜋𝑡 𝐺

𝜋𝑡 𝐺𝑒𝑇
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▪ Theorem: approach 2 produces PageRank vector

▪ Proof:
▪ PageRank vector 𝜋: 𝜋𝐺 = 𝜋 and 𝜋𝑒𝑇 = 1

▪ Want to show that 𝑥 𝐼 − 𝜃𝐻 = 𝑎 ֜ 𝑥 𝐼 − 𝐺 = 0

▪ 𝑥 𝐼 − 𝐺 = 𝑥 𝐼 − 𝜃𝐻 − 𝜃𝑤𝑇𝑎 − 1 − 𝜃 𝑒𝑇𝑎 =

▪    = 𝑥 𝐼 − 𝜃𝐻 − 𝑥 𝜃𝑤𝑇 + 1 − 𝜃 𝑒𝑇 𝑎 =

▪    = 𝑎 − 𝑎 = 0

▪ Last step used:

▪ 1 = 𝑎𝑒𝑇 = 𝑥 𝐼 − 𝜃𝐻 𝑒𝑇 =

▪    = 𝑥𝑒𝑇 − 𝜃𝑥𝐻𝑒𝑇 =

▪    = 𝑥𝑒𝑇 − 𝜃𝑥 𝑒 − 𝑤 𝑇 =

▪    = 1 − 𝜃 𝑥𝑒𝑇 + 𝜃𝑥𝑤𝑇
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▪ Power method: obtaining dominant 

eigenvalue+eigenvector

▪ Why it works:
▪ Assume 𝐺 has 𝑛 distinct eigenvalues λ1 = 1 > λ2 > ⋯ >

λ𝑛

▪ The eigenvectors (𝑣1 = 𝜋, 𝑣2, … , 𝑣𝑛) are orthogonal, form 

a basis

▪ Write 𝜋(0) in this basis: 𝜋(0) = 𝜋 + σ2
𝑛 𝛼𝑖𝑣𝑖

▪ 𝜋 1 = 𝜋 + σ2
𝑛 𝛼𝑖𝑣𝑖 𝐺 = 𝜋 + σ𝑖=2

𝑛 𝛼𝑖λ𝑖𝑣𝑖

▪ 𝜋(2) = 𝜋 + σ2
𝑛 𝛼𝑖λ𝑖𝑣𝑖 𝐺 = 𝜋 + σ𝑖=2

𝑛 𝛼𝑖λ𝑖
2𝑣𝑖

▪ …

▪ λ2 < 1 → 𝜋 𝑡 → 𝜋
▪ Can be generalized to non-distinct EVs 21



▪ How many iterations are needed until PageRank 

score is close enough?

▪ Theorem:

▪ If spectrum of ෡𝐻 is (1, λ2, … , λ𝑛), then spectrum of 𝐺 is 

(1, 𝜃λ2, … , 𝜃λ𝑛)

▪ So convergence is at least ∝ 𝜃𝑘

▪ Intuition:
▪ We overlay over the real directed hyperlink graph a 

complete graph (with lower weight 1 − 𝜃)

▪ This ensures good conductance/good mixing/fast 

convergence of the power method

▪ In practice, 50-100 iterations are sufficient
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▪ 𝐻: has 𝑂 1020  elements, but very sparse

▪ 𝑤: list of dangling nodes, probably a few bn

▪ 𝜋: dense, 𝑂(1010), updated during PageRank

▪ 𝑎: dense, 𝑂(1010), obtained while crawling, const.

▪ 𝑒𝑇𝑎: teleportation matrix not computed & stored 

explicitly
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▪ Challenging scale:
▪ 10s of bn of webpages, 100s of bn of links

▪ Large, but sparse matrix:
▪ Sparse (adjacency) representation

▪ Ranking vs score:
▪ Exact scores not needed, only rank order → stop early

▪ Node-specific convergence:
▪ Most nodes converge fast → lock-in, iterate only rest

▪ Dangling nodes:
▪ Remove or collapse

▪ Aggregate related pages:
▪ Cluster related, hierarchical computation
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▪ Hierarchical decomposition of web graph (cf 

community detection)

▪ Conceptually: run random-surfing at each level
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▪ PageRank:
▪ Basic idea: An important page is pointed to by many 

other important pages

▪ HITS:
▪ “Hypertext Induced Topic Search”

▪ There are two importance scores for each node: hub and 

authority

▪ Authority: contains important primary information

▪ Hub: Points to a lot of primary information (directory)

▪ Basic idea:

▪ A hub points to many important authorities

▪ An authority is pointed to by many important hubs
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▪ Betweenness centrality:

▪  𝐶𝐵 𝑢 = σ𝑣,𝑤≠𝑢
𝜎𝑣𝑤(𝑢)

𝜎𝑣𝑤
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▪ Closeness centrality:

▪   𝐶𝐶 𝑢 = σ𝑣≠𝑢
1

𝑑(𝑢,𝑣)
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▪ Cottage industry helping to increase rankings for a 

fee
▪ Early search engines: term spamming and hiding (e.g., 

including terms that are invisible to user, but picked up 

by search engine)

▪ Cloaking: sending different content to crawlers and users

▪ Link manipulation to raise PageRank score:
▪ Trading links (I point to you if you point to me)

▪ Link farms

▪ Google Dance: monthly crawl + fiddling with 

parameters by Google
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▪ Search engines: Google, Bing, Baidu
▪ Big business (advertisement)

▪ Highly specialized datacenters and methods, details are 

trade secrets

▪ PageRank:
▪ Basic idea: interpret links as expressions of trust or 

endorsement

▪ Turn into an importance score

▪ Beautiful connections to random walk theory, spectral 

graph theory

▪ Related ideas can be applied to many other 

contexts
▪ E.g., impact of scientific publications; importance of 

patents; social capital in social networks;… 31



▪ [M. Chiang, Networked Life, Cambridge, 2012 

(chapter 3)]

▪ [A. N. Langville, C. D. Meyer, Google’s PageRank 

and Beyond – The Science of Search Engine 

Rankings, Princeton U Press, 2006]

▪ [D. Easley, J. Kleinberg: Networks, Crowds, and 

Markets, Cambridge 2010 (chapter 14)]
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