

Social and Information Networks 2: Evolution

Internet Analytics (COM-308)

Prof. Matthias Grossglauser
School of Computer and Communication
Sciences

EPFL

Overview

- Herding and “watching thy neighbor”
 - Information cascades: why imitating your friends makes sense - and how it can lead to surprising group behavior
 - Heavy-tailed degree distributions: “the rich get richer” applied to networks
- Observing network properties
 - The importance of the observer
 - Example: your friends are more popular than you!

Watching thy Neighbor?

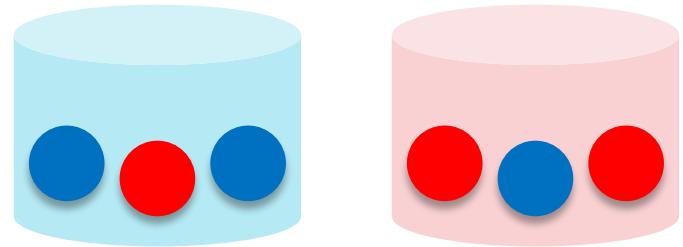
- Human decision-making:
 - Primary private information...
 - But also influenced by what decisions taken by others
- Reason:
 - Primary information: often too voluminous, noisy, not trustworthy,...
 - By imitating others, piggyback on their effort to interpret primary information
- Question:
 - Macro behavior of such systems?

Herding and information cascades

- Assumptions:
 - Decision: choose a restaurant, adopt new technology, political position, fashion,...
 - Sequential, and each person can observe choices made earlier by others
 - Each person has some private information to help guide decision: favorite food, taste,...
 - Private information not observed by others (can't see what others “know”), but decisions/actions are (can see what others “do”)

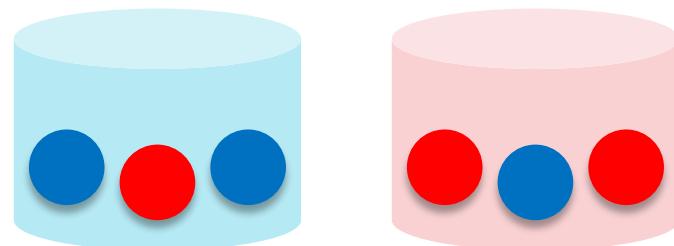
Herding: how it can go wrong

- Urn with 3 balls
 - A priori distribution (blue/red majority) = (0.5,0.5)
 - majority blue: 2 blue + 1 red
 - majority red: 2 red + 1 blue
- A group of people take turns:
 - Draw a ball from the urn at random
 - Check the color of the ball privately, put it back in urn
 - Announce their **guess** (blue/red majority) to everybody
 - Receive reward for correct guess



Herding: how it can go wrong

- Experiment at U. Virginia (1997) with students:
 - Subjects not told how to behave, just rules & payoff
 - Runs of 15 steps
 - Result: most runs (41/56) resulted in a cascade, ie, everyone after a while guesses the same thing
- Model for two extremes:
 - ① Each individual is altruistic: do what allows others to make best guess
 - ② Each individual is selfish = tries to make best guess for himself



Urn model: altruistic (1)

- Every person:
 - Selects a ball at random (with replacement)
 - Announces the color of the ball to everybody as their guess, even if previous information suggests a different guess
- As $n \rightarrow \infty$, majority color of urn is equal to color most frequently observed
 - Consequence of law of large numbers
- After a few “sacrifices”, everybody could produce best guess
 - Sacrifice in the sense that individuals might be forced to say **red** (color of their ball) even if previous information suggests **blue** majority

Urn model: selfish (2)

- Sequential decision-making
 - Selfish guess: use previous public and new private information to maximize own reward
 - Observed color remains private
- First individual:
 - Blue ball: announce $\text{guess}(1) = \text{blue}$
 - Red ball: announce $\text{guess}(1) = \text{red}$
 - Public guess of first fully reveals private information
- Second individual:
 - If $\text{color}(2) = \text{guess}(1)$: announce this color
 - If $\text{color}(2) \neq \text{guess}(1)$: does not matter (assume $\text{color}(2)$)
 - Public guess of second fully reveals private information

Urn model: selfish (2)

- Third individual:
 - If $\text{guess}(1) \neq \text{guess}(2)$: announce $\text{guess}(3) = \text{color}(3)$
 - If $\text{guess}(1) = \text{guess}(2)$:
 - Announce $\text{guess}(3) = \text{guess}(2) = \text{guess}(1)$, regardless of $\text{color}(3)$
 - Why is this?
 - Person 3 knows that guesses 1+2 reveal perfect information
 - Therefore, regardless of $\text{color}(3)$, $\text{guess}(1) = \text{guess}(2)$ dominates guess
- Fourth, ..., ∞ th individual:
 - If $\text{guess}(1) = \text{guess}(2)$:
 - Announce $\text{guess}(i) = \text{guess}(2) = \text{guess}(1)$, regardless of $\text{color}(i)$

Urn model: (2) leads to cascade

- If $\text{guess}(1) = \text{guess}(2)$ were both wrong, then all future guesses are wrong!
- This happens with prob. $1/9$
- Even though each individual is using available information in the best way to make a guess
- But long-term total payoff would be maximized if everyone made their private information public → ie, early subjects “take one for the team”

Information cascade: suboptimal decision

- Cascade: sequential decisions
- Individual:
 - Efficiency gain by observing others' decisions
- Global behavior:
 - Primary information can “wash out”
 - Suboptimal or random decisions
- Might these be cascades:
 - Stock market gyrations, “flash crash”
 - Inexplicable shifts in popularity of {restaurants, clubs, celebrities,...}
 - Fashion, style, celebrity,...
 - ...

Herding in networks

- Observation:
 - Degree distributions in networks often resemble power laws
- Power law:
 - $P(D > d) \propto d^{-\gamma}$
- Most distributions have “light tails”:
 - $P(D > d) \propto e^{-\alpha d}$ (or lighter/bounded)
 - Exponential, Geometric, Gaussian, Poisson, ...

Pareto (β, γ) distribution

- Support: $d \in [\beta, \infty)$
- CCDF (Complementary Cumulative Distribution Function):

$$\bullet P(D > d) = 1 - F_D(d) = \begin{cases} \left(\frac{d}{\beta}\right)^{-\gamma}, & d \geq \beta \\ 1 & \text{otherwise} \end{cases}$$

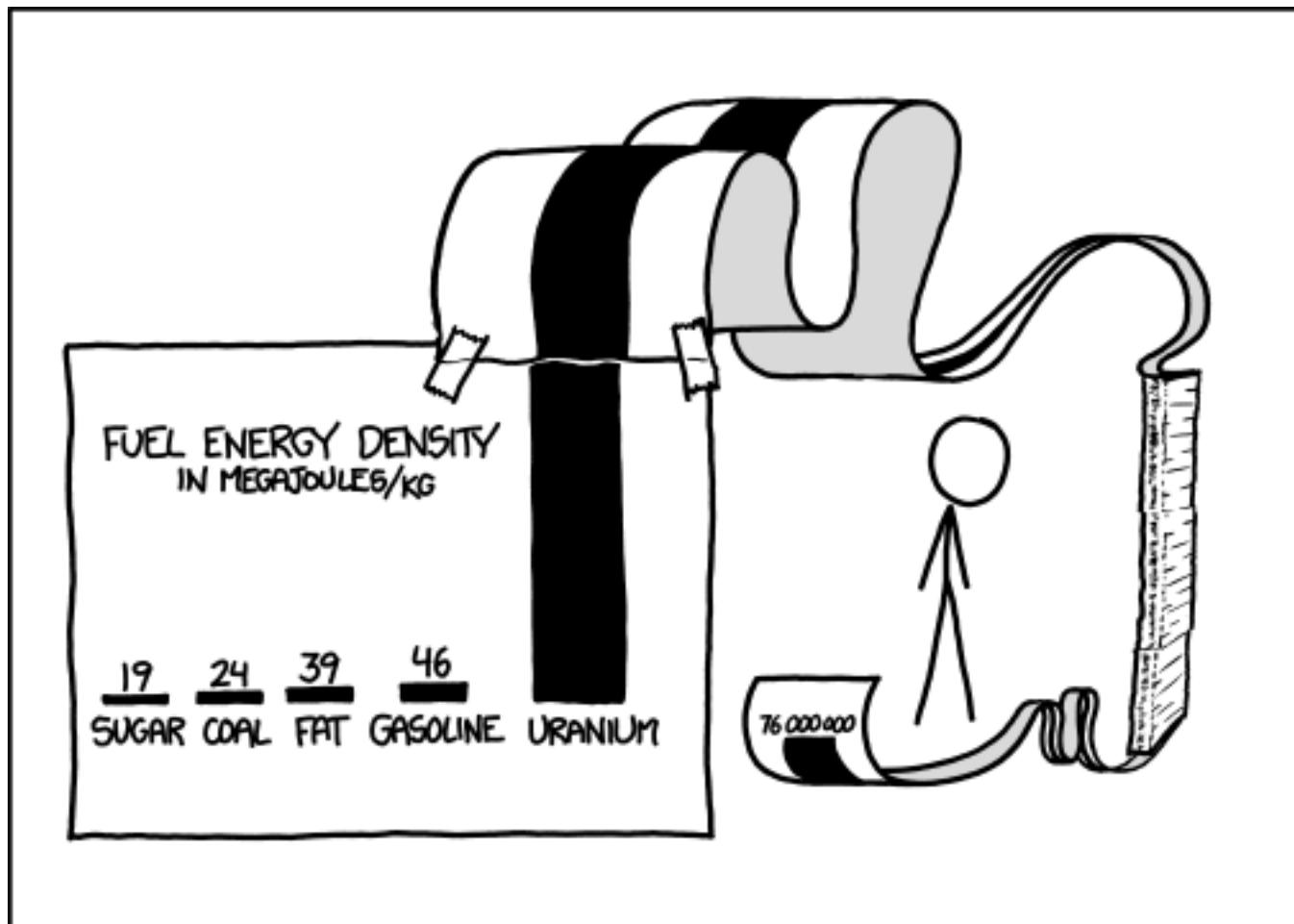
- γ : exponent, also called “Pareto index”
- Moments:

$$\bullet E[D^k] = \begin{cases} \frac{\beta^k \gamma}{\gamma - k}, & k < \gamma \\ \infty & \text{otherwise} \end{cases}$$

Numerical comparison exp/power

- Distribution of human height:
 - Mean = 178 cm
 - Stddev = 8 cm
- Compare tails: how tall are extremely tall people?
 - What is d^* such that $P(D > d^*) = 10^{-9}$
- Normal $N(178\text{cm}, (8\text{cm})^2)$:
 - $d^* = 226 \text{ cm}$
- Pareto: choose β, γ s.t. first and second moments match data
 - $\gamma \cong 23, \beta \cong 170\text{cm}$
 - $d^* = 420 \text{ cm} !!$
- Assumption very important for extremal values!

Log-log plot

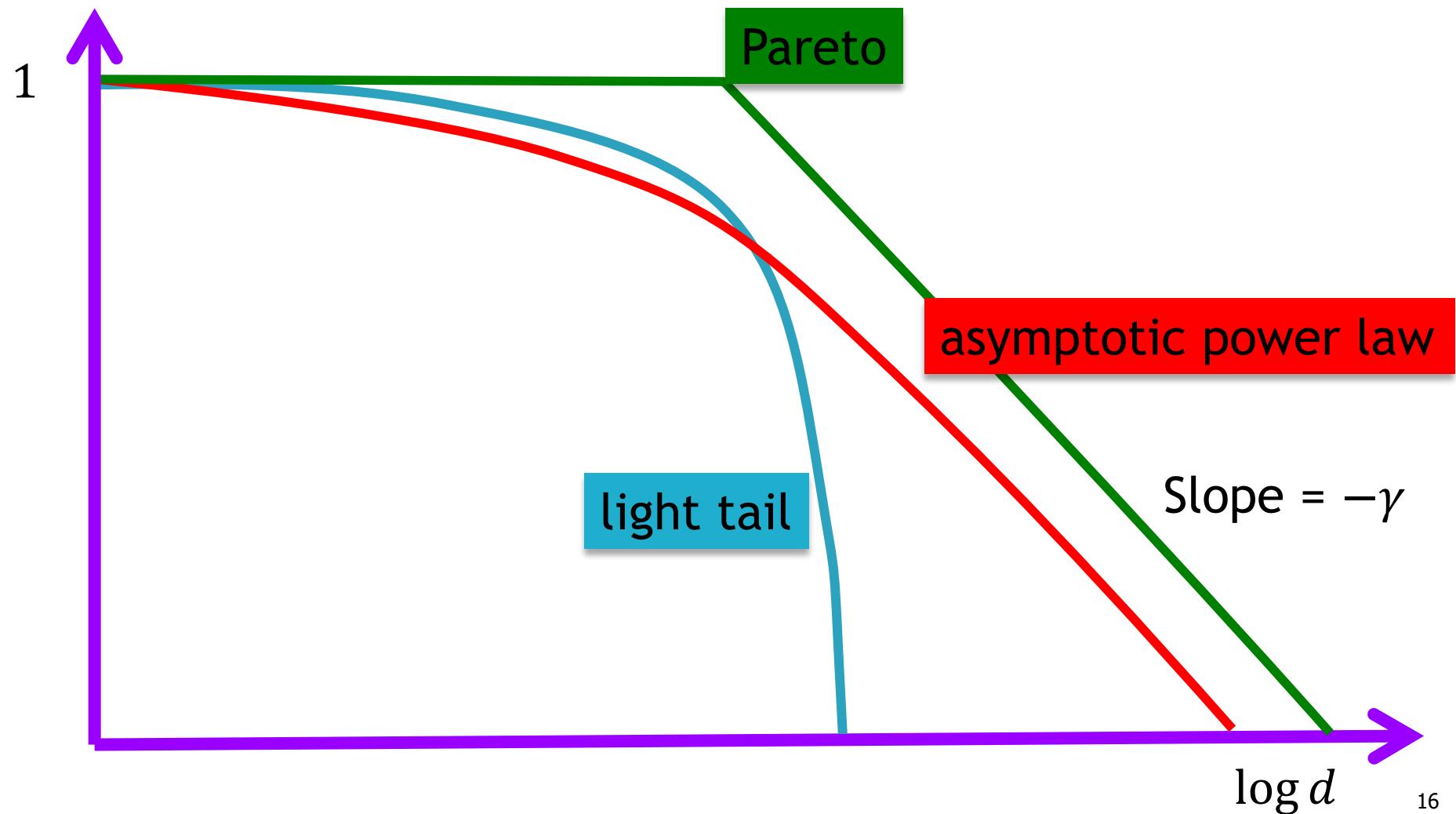


SCIENCE TIP: LOG SCALES ARE FOR QUITTERS WHO CAN'T FIND ENOUGH PAPER TO MAKE THEIR POINT PROPERLY.

Source: xkcd #1162

Log-log distribution plot

- $\log P(D > d)$



Examples of observed power laws

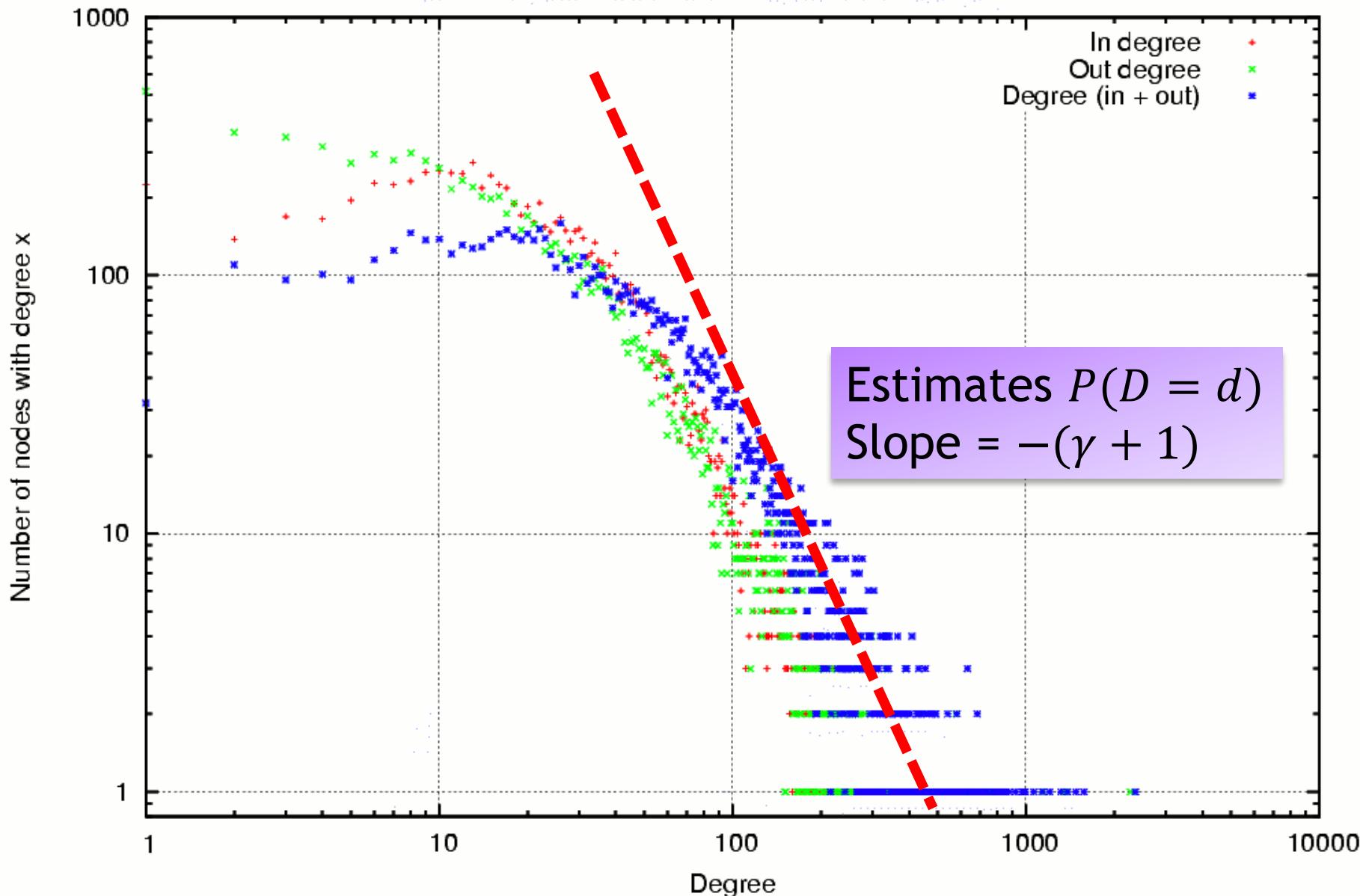
- File sizes on a computer
- Stock market crashes
- Sizes of cities
- Phone call length
- Wealth & income distribution
- Sizes of floods
- Popularity of web pages
- Word frequencies in prose
- Degree distribution in social networks
- ...

Why worry about the tail?

- Would you like to sit on a plane engineered under a Gaussian assumption for turbulence? 😬

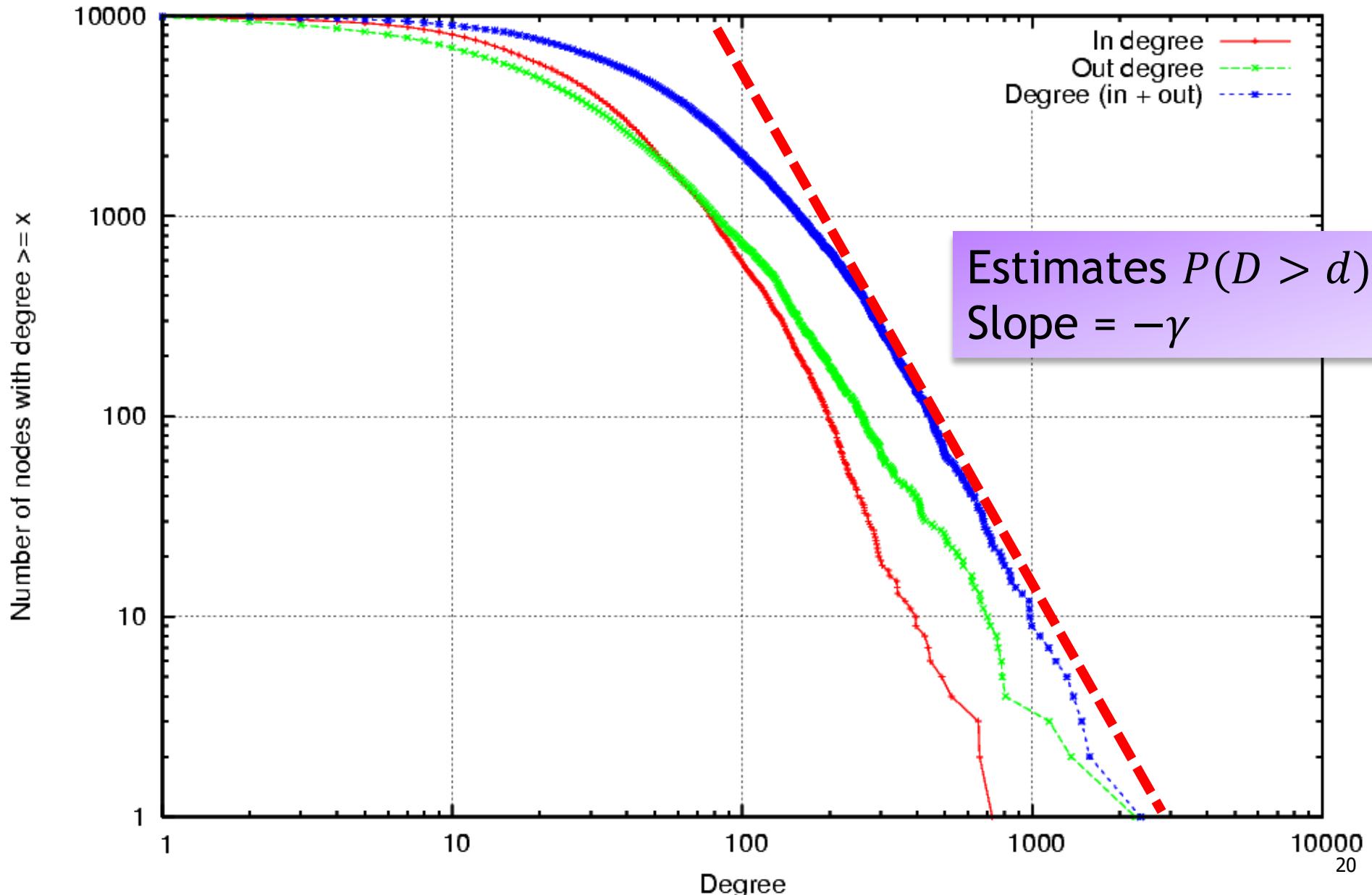
Log-log distribution plot

26 weeks data, 9909 nodes, 355954 directed edges



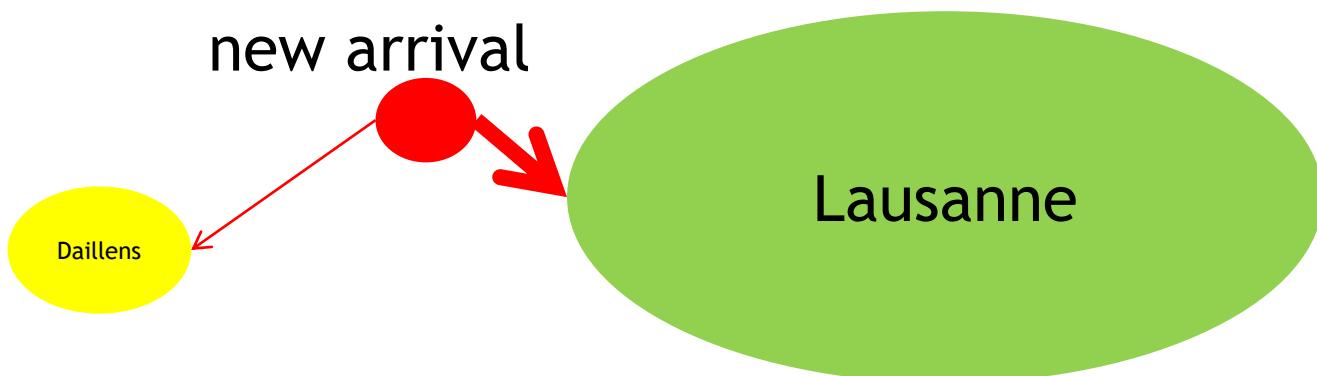
Log-log cumulative plot

26 weeks data, 9909 nodes, 355954 directed edges



One explanation: the rich get richer

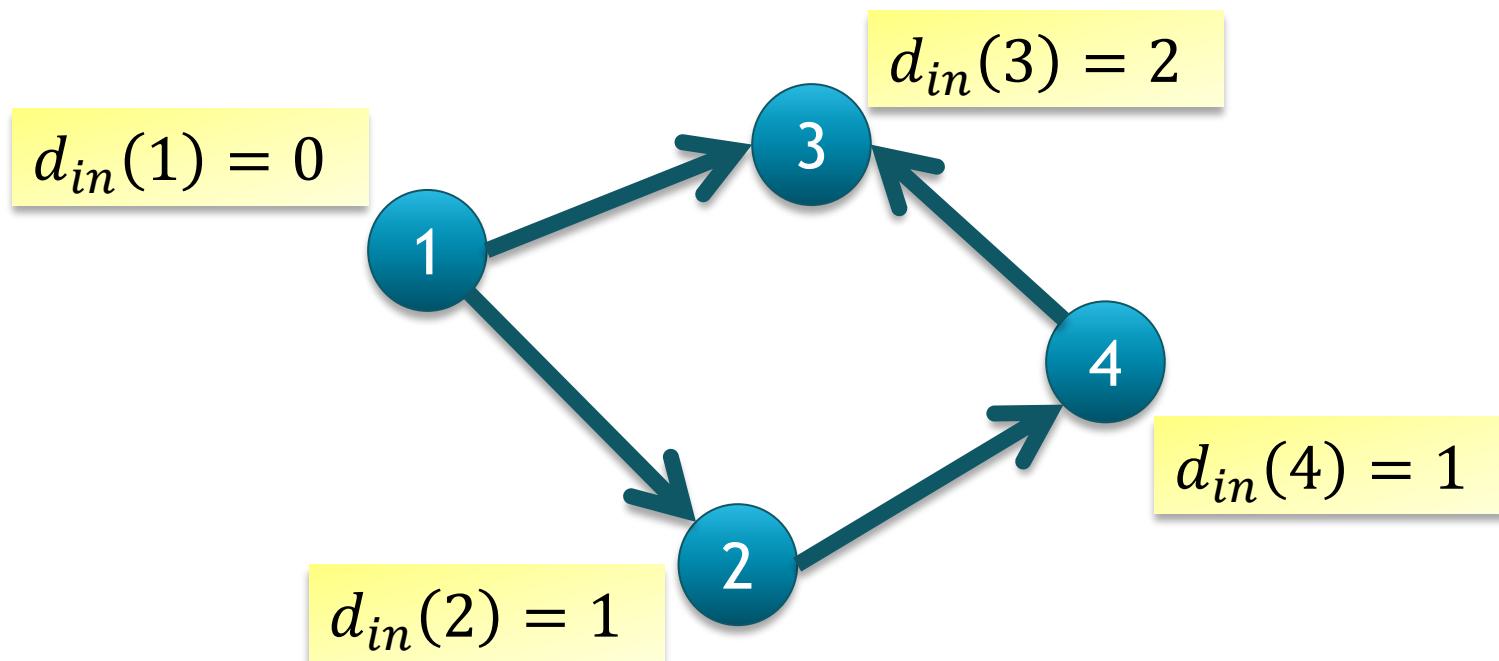
- New arrival in our region: move to Daillens or Lausanne?
 - More likely Lausanne, because **more people already there**
- City size distribution after many arrivals?



- Also: “the first million is the hardest” ;-)

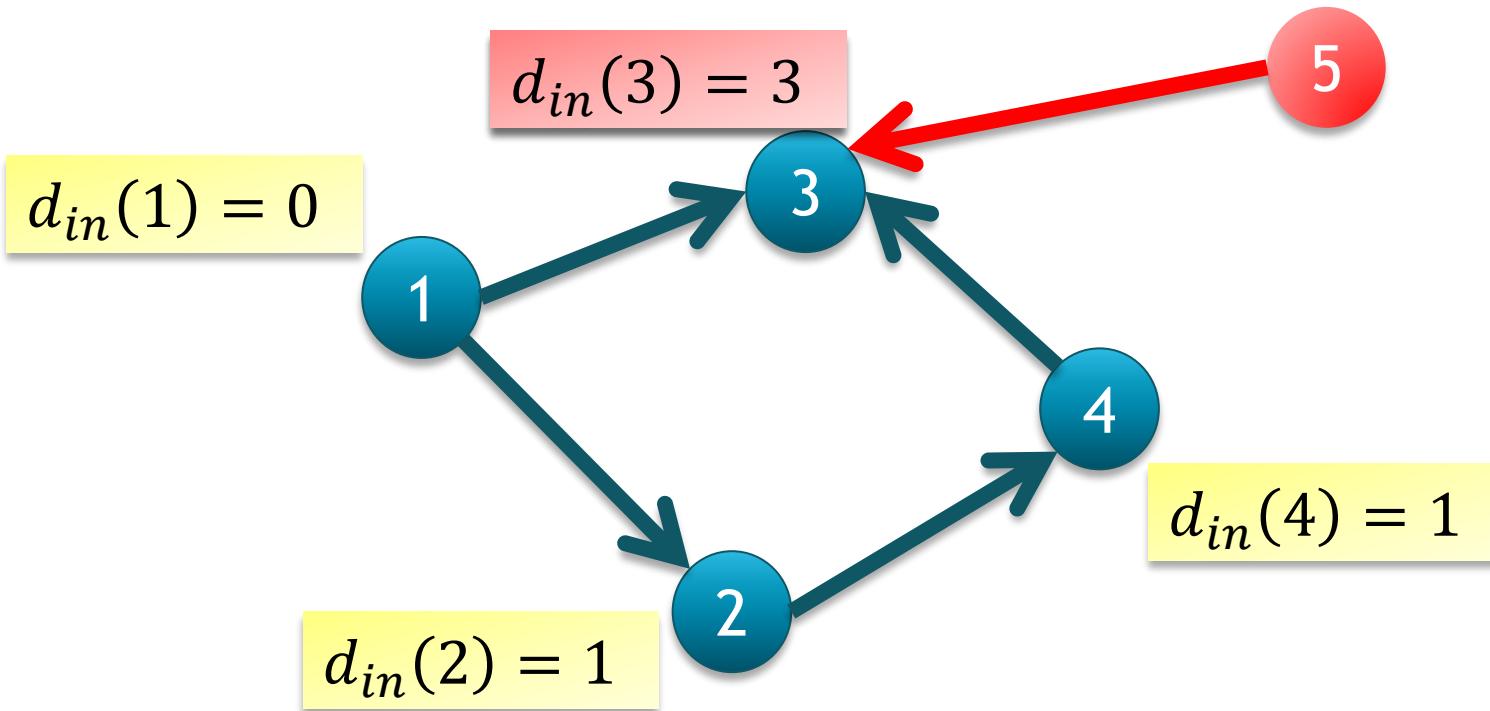
Preferential attachment in growing nets

- Growth model: nodes arrive one by one and join the existing network
 - Directed graph
 - In-degree $d_{in}(v)$ measures “popularity” and “attractiveness” of a node



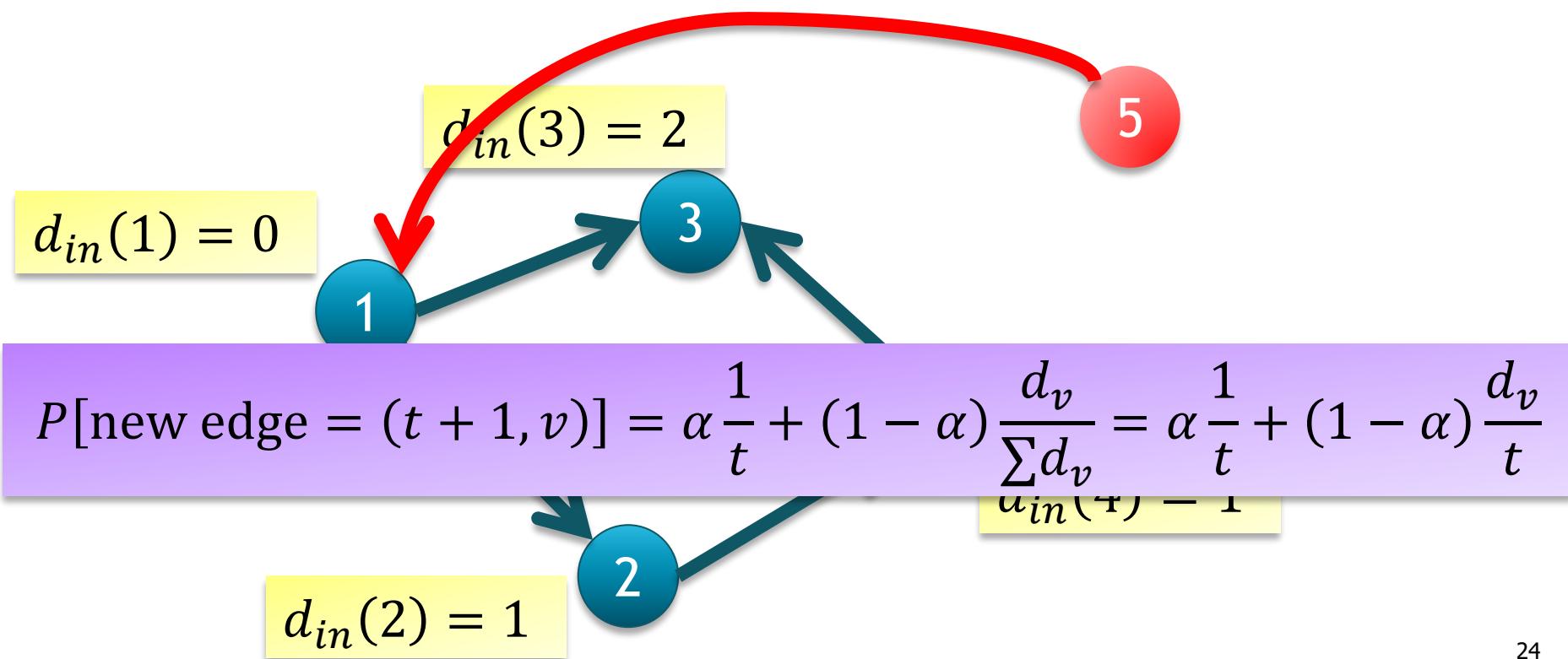
Preferential attachment

- Preferential attachment: new node creates one edge
- Prob. of connecting to v is $\propto d_{in}(v)$
 - Intuition: high-degree easier to meet; more popular; more useful;...



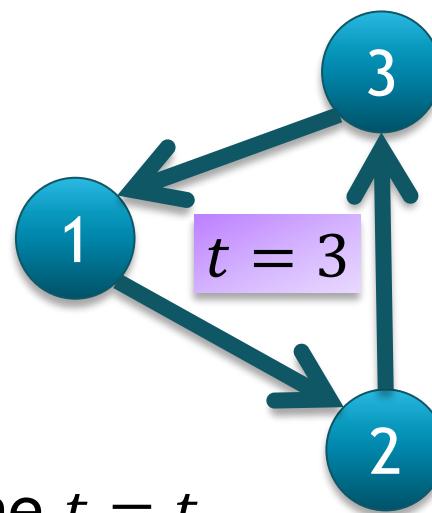
Preferential attachment

- Node with in-degree 0 never gets “started”
- Need another assumption:
 - With prob. α , new node connects uniformly at random
 - With prob. $(1 - \alpha)$, preferential attachment



Preferential attachment: analysis

- Evolution of this system:
 - Graph structure only matters through in-degrees
 - Markov chain $\{X_j(t)\}$: # nodes with in-degree = j at time t
- Initialize appropriately:
 - For example:



- Total # of nodes and edges at time $t = t$
- Notation: $X_j := X_j(t)$

Preferential attachment: analysis

- Drift:

$$P(X_j(t+1) = X_j(t) + 1) = \alpha \frac{X_{j-1}}{t} + (1 - \alpha)(j - 1) \frac{X_{j-1}}{t}$$

prob. of selecting a degree- $(j - 1)$ node uniformly at random

prob. of selecting a degree- $(j - 1)$ node with prob. \propto degree

$$P(X_j(t+1) = X_j(t) - 1) = \alpha \frac{X_j}{t} + (1 - \alpha)j \frac{X_j}{t}$$

prob. of selecting a degree- j node uniformly at random

prob. of selecting a degree- j node with prob. \propto degree

Preferential attachment: analysis

- Combined drift (pretend $X_j, t \in \mathbb{R}$)

- $$\frac{dX_j}{dt} = \frac{\alpha(X_{j-1} - X_j) + (1-\alpha)((j-1)X_{j-1} - jX_j)}{t}$$

- Assume as $t \rightarrow \infty$, degree sequence converges $y_j \triangleq \frac{X_j}{t}$, then solve for y_j :

- y_j : fraction of nodes with degree j , i.e., empirical distribution
- $$y_j = \alpha(y_{j-1} - y_j) + (1 - \alpha)((j - 1)y_{j-1} - jy_j)$$
- $$\frac{y_j}{y_{j-1}} = \frac{\alpha + (1 - \alpha)(j - 1)}{1 + \alpha + (1 - \alpha)j} = 1 - \frac{2 - \alpha}{1 + \alpha + (1 - \alpha)j}$$
- Asymptotically for large j , this is $\cong 1 - \frac{2 - \alpha}{1 - \alpha} j^{-1}$

Preferential attachment: analysis

- Note that $\left(\frac{j}{j-1}\right)^{-(\gamma+1)} = \left(1 - \frac{1}{j}\right)^{\gamma+1} \sim 1 - \frac{\gamma+1}{j}$
- So $\gamma = \frac{2-\alpha}{1-\alpha} - 1 = \frac{1}{1-\alpha}$
- Putting together:
 - $\frac{y_j}{y_{j-1}} = \left(\frac{j}{j-1}\right)^{-(\gamma+1)}$, hence
 - $y_j \propto j^{-(\gamma+1)}$: **asymptotic power law**
- The stronger the preferential attachment (α smaller), the “heavier” the tail of the degree distribution (γ smaller)
- Arguments can be made rigorous

Network effects and “winner-takes-all”

- Other examples of “rich-get-richer” phenomena:
 - Facebook vs {friendster, sixdegrees, xing,...}
 - Android vs iPhone
 - Technology standards: BluRay,...
- Metcalfe’s Law:
 - The value of a network is proportional to n^2
 - Because the value to an individual is proportional to n
- Lock-in
 - Being early is very important

Observer: Friendship Paradox

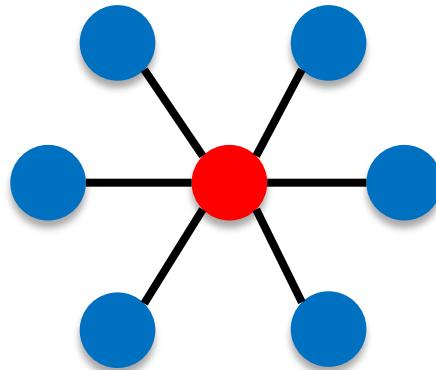
- “Your friends have more friends than you”
- Experiment:
 - Get on facebook and compute the average # friends of your friends
 - How does this compare to your own # friends?

Friendship Paradox

- Formally:
 - Social network = $G(V, E)$
 - d_v : degree of node v
 - $n = |V|$: number of nodes, $m = |E|$: number of edges
- Average number of friends: $\mu = \frac{\sum d_v}{n}$
- How to talk about average number of friends' friends?
 - Natural measure: $\frac{1}{n} \sum_{u \in V} \frac{1}{d_u} \sum_{v \in N_u} d_v$
 - Easier to analyze: degree “seen” by random edge

Friendship Paradox

- Star network ($|V| = n$):

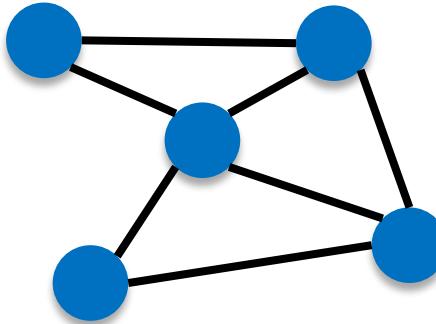


- Avg degree: $\frac{1}{n}((n-1) + (n-1)) = \frac{2(n-1)}{n} \rightarrow 2$
- Avg degree of neighbors:
 $\frac{1}{n}((n-1)^2 + 1) \rightarrow n$
- Degree of random edge: $\frac{1}{2}(n-1) + \frac{1}{2} = \frac{n}{2}$

Sampling nodes vs sampling edges

- Average degree over nodes:

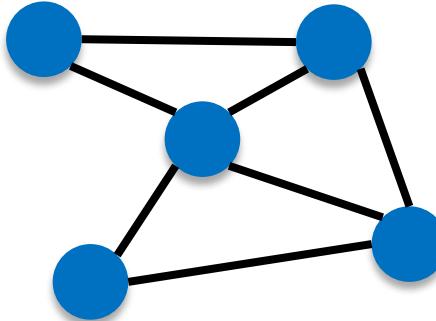
- $$\mu = \frac{\sum d_v}{n} = 2 \frac{m}{n}$$



“expected degree of a random person”

- Average degree over edges:

- $$\frac{\sum_{(u,v) \in E} d_v}{2m}$$



“expected degree of a random friend of a random person”

Friendship Paradox

- Lemma:

- $$\frac{\sum_{(u,v) \in E} d_v}{2m} = \mu \left(1 + \frac{\sigma^2}{\mu^2} \right)$$

- Degree (empirical) variance:

$$\begin{aligned}\sigma^2 &= \frac{1}{n} \sum_{v \in V} d_v^2 - \left(\frac{1}{n} \sum_{v \in V} d_v \right)^2 \\ &= \widehat{Var}[d_v]\end{aligned}$$

Friendship Paradox

- Proof:

- $$\frac{\sum_{(u,v) \in E} d_v}{2m} =$$
- $$= \frac{\sum_{v \in V} d_v^2}{2m} =$$
 (because v appears d_v times in sum over E)
- $$= \frac{\sum_{v \in V} d_v^2}{\mu n} =$$
 (because avg degree is $\mu = 2m/n$)
- $$= \frac{\sigma^2 + \left(\frac{1}{n} \sum_v d_v\right)^2}{\mu}$$

Why is it important?

- Epidemiology:
 - Best protection for a population with a given budget?
 - Assume social network is not knowable globally
- Two strategies:
 - (a) immunize a random set of people
 - (b) immunize random friends of a random set of people
- Friendship Paradox:
 - (b) better than (a)!
 - Bias towards “higher-degree friends”
- Other applications:
 - Finding good monitors, trend-setters, etc.

The observer matters

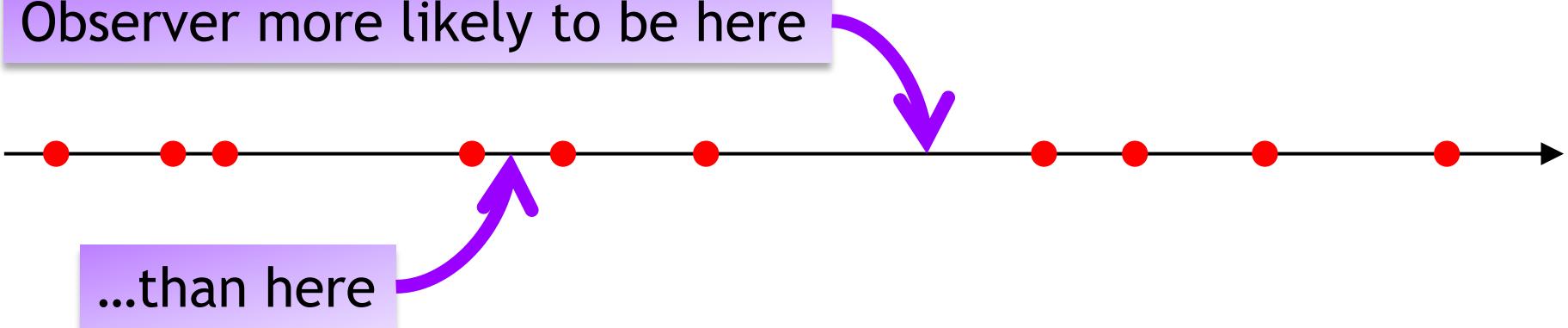
- Other examples:
 - Occupancy distribution:
 - Suppose a train is full 50% of the time, and empty 50% of the time
 - Observer: train is full 100% of the time

The observer
only sees this

The observer matters

- Waiting time:
 - Suppose buses arrive a Poisson(λ) point process
 - Average interarrival interval: $1/\lambda$
 - Observer point of view:
 - Residual time (until next bus): mean = $1/\lambda$
 - Since last bus: mean = $1/\lambda$
 - Mean observed interval length: $2/\lambda$!

Observer more likely to be here



Summary and lessons

- **Hherding**
 - Following others' decisions: natural social mechanism, can lead to suboptimal global behavior
 - Information cascades: watching others can wash out primary information
 - Rich-get-richer: huge differences in {wealth/degree/influence/membership/...}, winner-takes-all markets
- **Observing**
 - Choice of observer - sampling bias
 - Paradox: average friend is more popular than average individual
- **Next week:**
 - Processes on networks: epidemics, sampling

References

- [D. Easley and J. Kleinberg, Networks, Crowds, and Markets (chapter 16), 2010]
- [Grossglauser & Thiran, COM-512: Models and Methods for Random Networks (class notes)]
- [Anderson & Holt, Information Cascades in the Laboratory, American Econ Review, 87(5), 1997]