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▪ Herding and “watching thy neighbor”
▪ Information cascades: why imitating your friends makes 

sense – and how it can lead to surprising group behavior

▪ Heavy-tailed degree distributions: “the rich get richer” 

applied to networks

▪ Observing network properties
▪ The importance of the observer

▪ Example: your friends are more popular than you!
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▪ Human decision-making:
▪ Primary private information…

▪ But also influenced by what 

decisions taken by others

▪ Reason:
▪ Primary information: often too 

voluminous, noisy, not 

trustworthy,…

▪ By imitating others, piggyback 

on their effort to interpret 

primary information

▪ Question:
▪ Macro behavior of such systems?
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▪ Assumptions:
▪ Decision: choose a restaurant, adopt new technology, 

political position, fashion,…

▪ Sequential, and each person can observe choices made 

earlier by others

▪ Each person has some private information to help guide 

decision: favorite food, taste,…

▪ Private information not observed by others (can’t see 

what others “know”), but decisions/actions are (can see 

what others “do”)
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▪ Urn with 3 balls
▪ A priori distribution (blue/red majority) = (0.5,0.5)

▪ majority blue: 2 blue + 1 red

▪ majority red: 2 red + 1 blue

▪ A group of people take turns:
▪ Draw a ball from the urn at random

▪ Check the color of the ball privately, put it back in urn

▪ Announce their guess (blue/red majority) to everybody

▪ Receive reward for correct guess
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▪ Experiment at U. Virginia (1997) with students:
▪ Subjects not told how to behave, just rules & payoff

▪ Runs of 15 steps

▪ Result: most runs (41/56) resulted in a cascade, ie, 

everyone after a while guesses the same thing

▪ Model for two extremes:
▪ Each individual is altruistic: do what allows others to 

make best guess

▪ Each individual is selfish = tries to make best guess for 

himself
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▪ Every person:
▪ Selects a ball at random (with replacement)

▪ Announces the color of the ball to everybody as their 

guess, even if previous information suggests a different 

guess

▪ As 𝑛 → ∞, majority color of urn is equal to color 

most frequently observed
▪ Consequence of law of large numbers

▪ After a few “sacrifices”, everybody could produce 

best guess
▪ Sacrifice in the sense that individuals might be forced to 

say red (color of their ball) even if previous information 

suggests blue majority
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▪ Sequential decision-making
▪ Selfish guess: use previous public and new private 

information to maximize own reward

▪ Observed color remains private

▪ First individual:
▪ Blue ball: announce guess(1) = blue

▪ Red ball: announce guess(1) = red

▪ Public guess of first fully reveals private information

▪ Second individual:
▪ If color(2) = guess(1): announce this color

▪ If color(2) ≠ guess(1): does not matter (assume color(2))

▪ Public guess of second fully reveals private information
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▪ Third individual:
▪ If guess(1) ≠ guess(2): announce guess(3) = color(3)

▪ If guess(1) = guess(2):

▪ Announce guess(3)=guess(2)=guess(1), regardless of 

color(3)

▪ Why is this?

▪ Person 3 knows that guesses 1+2 reveal perfect 

information

▪ Therefore, regardless of color(3), guess(1)=guess(2) 

dominates guess

▪ Fourth,…,∞th individual:
▪ If guess(1) = guess(2):

▪ Announce guess(i) = guess(2)=guess(1), regardless of 

color(i)
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▪ If guess(1) = guess(2) were both wrong, then all 

future guesses are wrong!

▪ This happens with prob. 1/9

▪ Even though each individual is using available 

information in the best way to make a guess

▪ But long-term total payoff would be maximized if 

everyone made their private information public → 

ie, early subjects “take one for the team”
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▪ Cascade: sequential decisions

▪ Individual:
▪ Efficiency gain by observing others’ 

decisions

▪ Global behavior:
▪ Primary information can “wash out”

▪ Suboptimal or random decisions

▪ Might these be cascades:
▪ Stock market gyrations, “flash 

crash”

▪ Inexplicable shifts in popularity of 

{restaurants, clubs, celebrities,…}

▪ Fashion, style, celebrity,…

▪ …



▪ Observation:
▪ Degree distributions in networks often resemble power 

laws

▪ Power law:

▪  𝑃 𝐷 > 𝑑  ∝ 𝑑−𝛾

▪ Most distributions have “light tails”:

▪   𝑃 𝐷 > 𝑑 ∝ 𝑒−𝛼𝑑
 (or lighter/bounded)

▪ Exponential, Geometric, Gaussian, Poisson, …
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▪ Support: 𝑑 ∈ [𝛽, ∞)

▪ CCDF (Complementary Cumulative Distribution 

Function):

▪ 𝑃 𝐷 > 𝑑 = 1 − 𝐹𝐷(𝑑) = ቐ
𝑑

𝛽

−𝛾

,  𝑑 ≥ 𝛽

1 otherwise
▪ 𝛾: exponent, also called “Pareto index”

▪ Moments:

▪ 𝐸 𝐷𝑘 =  ቐ
𝛽𝑘𝛾

𝛾−𝑘
,  𝑘 < 𝛾

∞ otherwise
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▪ Distribution of human height:
▪ Mean = 178 cm

▪ Stddev = 8 cm

▪ Compare tails: how tall are extremely tall people?
▪ What is 𝑑∗ such that 𝑃 𝐷 > 𝑑∗ = 10−9

▪ Normal 𝑁(178cm, 8cm 2):
▪  𝑑∗ = 226 cm

▪ Pareto: choose 𝛽, 𝛾 s.t. first and second moments 

match data

▪  𝛾 ≅ 23, 𝛽 ≅ 170cm
▪  𝑑∗ = 420 cm !!

▪ Assumption very important for extremal values!
14



15Source: xkcd #1162



▪ log 𝑃(𝐷 > 𝑑)
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light tail Slope = −𝛾

Pareto

asymptotic power law

log 𝑑
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▪ File sizes on a computer

▪ Stock market crashes

▪ Sizes of cities

▪ Phone call length

▪ Wealth & income distribution

▪ Sizes of floods

▪ Popularity of web pages

▪ Word frequencies in prose

▪ Degree distribution in social networks

▪ …
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▪ Would you like to sit on a plane engineered under 

a Gaussian assumption for turbulence? 

18



19

Estimates 𝑃(𝐷 = 𝑑)
Slope = −(𝛾 + 1)
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Estimates 𝑃(𝐷 > 𝑑)
Slope = −𝛾



▪ New arrival in our region: move to Daillens or 

Lausanne?
▪ More likely Lausanne, because more people already 

there

▪ City size distribution after many arrivals?

▪ Also: “the first million is the hardest” ;-) 
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new arrival



▪ Growth model: nodes arrive one by one and join 

the existing network
▪ Directed graph

▪ In-degree 𝑑𝑖𝑛(𝑣) measures “popularity” and 

“attractiveness” of a node
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▪ Preferential attachment: new node creates one 

edge

▪ Prob. of connecting to 𝑣 is ∝ 𝑑𝑖𝑛(𝑣)
▪ Intuition: high-degree easier to meet; more popular; 

more useful;…
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▪ Node with in-degree 0 never gets “started”

▪ Need another assumption:
▪ With prob. 𝛼, new node connects uniformly at random

▪ With prob. 1 − 𝛼 , preferential attachment
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𝑃 new edge = 𝑡 + 1, 𝑣 = 𝛼
1

𝑡
+ 1 − 𝛼

𝑑𝑣

∑𝑑𝑣
= 𝛼

1

𝑡
+ 1 − 𝛼

𝑑𝑣

𝑡



▪ Evolution of this system:
▪ Graph structure only matters through in-degrees

▪ Markov chain {𝑋𝑗 𝑡 }: # nodes with in-degree = 𝑗 at time 𝑡

▪ Initialize appropriately:
▪ For example:

▪ Total # of nodes and edges at time 𝑡 = 𝑡

▪ Notation: 𝑋𝑗 ≔ 𝑋𝑗(𝑡)
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▪ Drift:

▪ 𝑃 𝑋𝑗 𝑡 + 1 =𝑋𝑗 𝑡 + 1 =  𝛼
𝑋𝑗−1

𝑡
+ 1 − 𝛼 𝑗 − 1

𝑋𝑗−1

𝑡

▪ 𝑃 𝑋𝑗 𝑡 + 1 =𝑋𝑗 𝑡 − 1 =  𝛼
𝑋𝑗

𝑡
+ 1 − 𝛼 𝑗

𝑋𝑗

𝑡
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prob. of selecting a 

degree- 𝑗 − 1  node 

with prob. ∝ degree

prob. of selecting a 

degree- 𝑗 − 1  node

uniformly at random

prob. of selecting a 

degree-𝑗 node with 

prob. ∝ degree

prob. of selecting a 

degree-𝑗 node

uniformly at random



▪ Combined drift (pretend 𝑋𝑗 , 𝑡 ∈ ℝ)

▪

𝑑𝑋𝑗

𝑑𝑡
=

𝛼 𝑋𝑗−1−𝑋𝑗 +(1−𝛼)( 𝑗−1 𝑋𝑗−1−𝑗𝑋𝑗)

𝑡
▪ Assume as 𝑡 → ∞, degree sequence converges

𝑦𝑗 ≜
𝑋𝑗

𝑡
, then solve for 𝑦𝑗:

▪ 𝑦𝑗: fraction of nodes with degree 𝑗,i.e., empirical 

distribution

▪  𝑦𝑗 = 𝛼 𝑦𝑗−1 − 𝑦𝑗 + 1 − 𝛼 ( 𝑗 − 1 𝑦𝑗−1 − 𝑗𝑦𝑗)

▪

𝑦𝑗

𝑦𝑗−1
=

𝛼+(1−𝛼)(𝑗−1)

1+𝛼+ 1−𝛼 𝑗
= 1 −

2−𝛼

1+𝛼+ 1−𝛼 𝑗

▪ Asymptotically for large 𝑗, this is ≅ 1 −
2−𝛼

1−𝛼
𝑗−1
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▪ Note that 
𝑗

𝑗−1

− 𝛾+1

= 1 −
1

𝑗

𝛾+1

~1 −
𝛾+1

𝑗

▪ So 𝛾 =
2−𝛼

1−𝛼
− 1 =

1

1−𝛼

▪ Putting together:

▪

𝑦𝑗

𝑦𝑗−1
=

𝑗

𝑗−1

− 𝛾+1

, hence

▪ 𝑦𝑗 ∝ 𝑗− 𝛾+1
: asymptotic power law

▪ The stronger the preferential attachment (𝛼 
smaller), the “heavier” the tail of the degree 

distribution (𝛾 smaller)

▪ Arguments can be made rigorous 28



▪ Other examples of “rich-get-richer” phenomena:
▪ Facebook vs {friendster, sixdegrees, xing,…}

▪ Android vs iPhone

▪ Technology standards: BluRay,…

▪ Metcalfe’s Law:
▪ The value of a network is proportional to 𝑛2

▪ Because the value to an individual is proportional to 𝑛

▪ Lock-in
▪ Being early is very important
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▪ “Your friends have more friends than you”

▪ Experiment:
▪ Get on facebook and compute the average # friends of 

your friends

▪ How does this compare to your own # friends?
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▪ Formally:
▪ Social network = 𝐺 𝑉, 𝐸

▪ 𝑑𝑣: degree of node 𝑣

▪ 𝑛 = 𝑉 : number of nodes, 𝑚 = 𝐸 : number of edges

▪ Average number of friends: 𝜇 =
∑ 𝑑𝑣

𝑛
▪ How to talk about average number of friends’ 

friends?

▪ Natural measure: 
1

𝑛
∑𝑢∈𝑉

1

𝑑𝑢
∑𝑣∈𝑁𝑢

𝑑𝑣

▪ Easier to analyze: degree “seen” by random edge
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▪ Star network ( 𝑉 = 𝑛):

▪ Avg degree: 
1

𝑛
𝑛 − 1 + 𝑛 − 1 =

2 𝑛−1

𝑛
→ 2

▪ Avg degree of neighbors:
1

𝑛
𝑛 − 1 2 + 1 → 𝑛

▪ Degree of random edge: 
1

2
𝑛 − 1 +

1

2
=

𝑛

2
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▪ Average degree over nodes:

▪  𝜇 =
∑ 𝑑𝑣

𝑛
= 2

𝑚

𝑛

▪ Average degree over edges:

▪

∑ 𝑢,𝑣 ∈𝐸 𝑑𝑣

2𝑚
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“expected 

degree of a 

random 

person”

“expected 

degree of a 

random friend 

of a random 

person”



▪ Lemma:

▪

∑ 𝑢,𝑣 ∈𝐸 𝑑𝑣

2𝑚
= 𝜇 1 +

𝜎2

𝜇2

▪ Degree (empirical) variance:

 𝜎2 =
1

𝑛
∑𝑣∈𝑉 𝑑𝑣

2 −
1

𝑛
∑𝑣∈𝑉 𝑑𝑣

2

        = ෢𝑉𝑎𝑟[𝑑𝑣]
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▪ Proof:

▪

∑ 𝑢,𝑣 ∈𝐸 𝑑𝑣

2𝑚
=

▪  =
∑𝑣∈𝑉 𝑑𝑣

2

2𝑚
= (because 𝑣 appears 𝑑𝑣 times in sum 

over 𝐸)

▪=
∑𝑣∈𝑉 𝑑𝑣

2

𝜇𝑛
= (because avg degree is 𝜇 = 2𝑚/𝑛)

▪  =
𝜎2+

1

𝑛
∑𝑣 𝑑𝑣

2

𝜇
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▪ Epidemiology:
▪ Best protection for a population with a given budget?

▪ Assume social network is not knowable globally

▪ Two strategies:
▪ (a) immunize a random set of people

▪ (b) immunize random friends of a random set of people

▪ Friendship Paradox:
▪ (b) better than (a)!

▪ Bias towards “higher-degree friends”

▪ Other applications:
▪ Finding good monitors, trend-setters, etc.
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▪ Other examples:
▪ Occupancy distribution:

▪ Suppose a train is full 50% of the time, and empty 50% 

of the time

▪ Observer: train is full 100% of the time
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The observer

only sees this



▪ Waiting time:
▪ Suppose buses arrive a Poisson(λ) point process

▪ Average interarrival interval: 1/λ

▪ Observer point of view:

▪ Residual time (until next bus): mean = 1/λ

▪ Since last bus: mean = 1/λ

▪ Mean observed interval length: 2/λ !
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Observer more likely to be here

…than here



▪ Herding
▪ Following others’ decisions: natural social mechanism, 

can lead to suboptimal global behavior

▪ Information cascades: watching others can wash out 

primary information

▪ Rich-get-richer: huge differences in 

{wealth/degree/influence/membership/…}, winner-

takes-all markets

▪ Observing
▪ Choice of observer – sampling bias

▪ Paradox: average friend is more popular than average 

individual

▪ Next week:
▪ Processes on networks: epidemics, sampling
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▪ [D. Easley and J. Kleinberg, Networks, Crowds, 

and Markets (chapter 16), 2010]

▪ [Grossglauser & Thiran, COM-512: Models and 

Methods for Random Networks (class notes)]

▪ [Anderson & Holt, Information Cascades in the 

Laboratory, American Econ Review, 87(5), 1997]
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