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Overview

= Herding and “watching thy neighbor”

= Information cascades: why imitating your friends makes
sense - and how it can lead to surprising group behavior

= Heavy-tailed degree distributions: “the rich get richer”
applied to networks
= Observing network properties
= The importance of the observer
= Example: your friends are more popular than you!



Watching thy Neighbor?

= Human decision-making:
= Primary private information...
= But also influenced by what
decisions taken by others
% = Reason:

= Primary information: often too
voluminous, noisy, not
trustworthyj,...

= By imitating others, piggyback
on their effort to interpret
primary information

= Question:
= Macro behavior of such systems?
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Herding and information cascades

= Assumptions:

= Decision: choose a restaurant, adopt new technology,
political position, fashion,...

= Sequential, and each person can observe choices made
earlier by others

= Each person has some private information to help guide
decision: favorite food, taste,...

= Private information not observed by others (can’t see
what others “know”), but decisions/actions are (can see
what others “do”)



Herding: how it can go wrong

= Urn with 3 balls
= A priori distribution (blue/red majority) = (0.5,0.5)
= majority blue: 2 blue + 1 red
= majority red: 2 red + 1 blue
= A group of people take turns: .“ "‘
= Draw a ball from the urn at random
= Check the color of the ball privately, put it back in urn
= Announce their guess (blue/red majority) to everybody
= Receive reward for correct guess



Herding: how it can go wrong

= Experiment at U. Virginia (1997) with students:
= Subjects not told how to behave, just rules & payoff
= Runs of 15 steps
= Result: most runs (41/56) resulted in a cascade, ie,
everyone after a while guesses the same thing
= Model for two extremes:

= @Each individual is altruistic: do what allows others to
make best guess

= @®@Each individual is selfish = tries to make best guess for
himself



Urn model: altruistic (@)

= Every person:
= Selects a ball at random (with replacement)

= Announces the color of the ball to everybody as their
guess, even if previous information suggests a different

guess
= As n — oo, majority color of urn is equal to color
most frequently observed
= Consequence of law of large numbers

= After a few “sacrifices”, everybody could produce
best guess

= Sacrifice in the sense that individuals might be forced to

say red (color of their ball) even if previous information
suggests blue majority



Urn model: selfish (®)

= Sequential decision-making

= Selfish guess: use previous public and new private
information to maximize own reward

= Observed color remains private

= First individual:
= Blue ball: announce guess(1) = blue
= Red ball: announce guess(1) = red
= Public guess of first fully reveals private information

= Second individual:
= |f color(2) = guess(1): announce this color
= |f color(2) # guess(1): does not matter (assume color(2))
= Public guess of second fully reveals private information



Urn model: selfish (®)

= Third individual:
= |f guess(1) + guess(2): announce guess(3) = color(3)
= |f guess(1) = guess(2):
= Announce guess(3)=guess(2)=guess(1), regardless of
color(3)

= Why is this?
= Person 3 knows that guesses 1+2 reveal perfect
information
= Therefore, regardless of color(3), guess(1)=guess(2)
dominates guess
= Fourth,...,~th individual:
= |f guess(1) = guess(2):
= Announce guess(i) = guess(2)=guess(1), regardless of
color(i)



Urn model: (®) leads to cascade

= |f guess(1) = guess(2) were both wrong, then all
future guesses are wrong!
= This happens with prob. 1/9

= Even though each individual is using available
information in the best way to make a guess

= But long-term total payoff would be maximized if
everyone made their private information public >
ie, early subjects “take one for the team”
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Information cascade: suboptimal decision

Cascade: sequential decisions

Individual:

= Efficiency gain by observing others’
decisions

Global behavior:

= Primary information can “wash out”

= Suboptimal or random decisions

Might these be cascades:

= Stock market gyrations, “flash
crash”

= Inexplicable shifts in popularity of
frestaurants, clubs, celebrities,...}

= Fashion, style, celebrity,...
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Herding in networks

= Observation:

= Degree distributions in networks often resemble power
laws

= Power law:

. P(D>d) «xd™Y

= Most distributions have “light tails”:

- P(D > d) X e_“d (or lighter/bounded)

= Exponential, Geometric, Gaussian, Poisson, ...
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Pareto (f,y) distribution

= Support: d € [, )
= CCDF (Complementary Cumulative Distribution
Function):

d 4

P> =1-Fp@y=1(5) 42
1  otherwise

= y:. exponent, also called “Pareto index”

= Moments:
By
. E[Dk] — ka; k < 4
oo otherwise
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Numerical comparison exp/power

= Distribution of human height:

= Mean = 178 cm
= Stddev = 8 cm

Compare tails: how tall are extremely tall people?
= What is d* such that P(D > d*) = 10~°

Normal N(178cm, (8cm)?):
d* =226 cm

Pareto: choose g,y s.t. first and second moments
match data

-y =23, =170cm
d* =420cm !!
Assumption very important for extremal values!
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Log-log plot

SCENCE TiP: LOG SCALES ARE FOR QUITTERS WHO CANT
FIND ENOUGH PAPER TOMAKE THEIR POINT AROPERLY

Source: xkcd #1162



Log-log distribution plot

= logP(D > d)

logd



Examples of observed power laws

= File sizes on a computer

= Stock market crashes

= Sizes of cities

= Phone call length

= Wealth & income distribution

= Sizes of floods

= Popularity of web pages

= Word frequencies in prose

= Degree distribution in social networks
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Why worry about the tail?

= Would you like to sit on a plane engineered under
a Gaussian assumption for turbulence? &
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Number ot nodes with degree x

Log-log distribution plot

26 weeks data, 9909 nodes, 355954 directed edges
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Slope = —(y + 1)

Estimates P(D = d)
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Log-log cumulative plot

26 weeks data, 9909 nodes, 355954 directed edges
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One explanation: the rich get richer

= New arrival in our region: move to Daillens or

Lausanne?

= More likely Lausanne, because more people already
there

= (City size distribution after many arrivals?

new arrival

/.\ Lausanne
Daillens

= Also: “the first million is the hardest” ;-)

21



Preferential attachment in growing nets

= Growth model: nodes arrive one by one and join

the existing network

= Directed graph
= In-degree d;,,(v) measures “popularity” and
“attractiveness” of a node

din(3) = 2

din(l) =0

din (4‘) =1

din(z) =1

22



Preferential attachment

= Preferential attachment: new node creates one
edge

= Prob. of connecting to v is « d;,,(v)
= Intuition: high-degree easier to meet; more popular;

more useful;...

din(3) =3

din(l) =0

din (4) =1

din (2) =1
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Preferential attachment

= Node with in-degree 0 never gets “started”

= Need another assumption:
= With prob. a, new node connects uniformly at random
= With prob. (1 — a), preferential attachment

fn(3) =2 a

din(1) =0

1 d
Plnewedge = (t + 1,v)] = Zd —a?+(1—a)7v

din(z) =1
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Preferential attachment: analysis

= Evolution of this system:
= Graph structure only matters through in-degrees
= Markov chain {X;(t)}: # nodes with in-degree = j at time t
= |nitialize appropriately:
= For example:

= Total # of nodes and edges at time t =t
= Notation: X; := X;(t)
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Preferential attachment: analysis

= Drift:
- P(X;(t+1D=X;(0) +1) = «a

\ 4
’/
- [
’¢
- I

Xj—l
t

2 (1-a)( - 1)
o

”

prob. of selecting a prob. of selecting a
degree-(j — 1) node degree-(j — 1) node
uniformly at random with prob. o degree

- P(Xj(t + 1)=X;(t) — 1) = a% +(1 - a)j%

a”' ‘\
prob. of selecting a prob. of selecting a
degree-j node degree-j node with

uniformly at random prob. « degree
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Preferential attachment: analysis

= Combined drift (pretend X;,t € R)
ax; a(Xj—1—X;)+(1-a)((J-DXj_1—jX})

dt t
= Assume as t — oo, degree sequence converges

yj & %, then solve for y;:

= y;: fraction of nodes with degree j,i.e., empirical
distribution

s yi=alyi1i—y)+Q—a)((— Dyji_1 —Jjy))

Vi _ a+(l-a)(j—-1) _ 2—a
. Yj-1 C lta+(l-a)j 1+a+(1—-a)j
= Asymptotically for large j, thisis = 1 2_O‘j‘1

1-«a
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Preferential attachment: analysis

. \—(y+1) y+1
= Note that (Ll) = (1 — %) ~1 — YTH

-Soy:i_a ]_:L

- 1-«

= Putting together:

.\ —(y+1
Vi __(J,) (v+1)
" = | — , hence
Yiji-1 J—1

= Y; X Ji —(r+1). asymptotic power law

= The stronger the preferential attachment («a
smaller), the “heavier” the tail of the degree
distribution (y smaller)

= Arguments can be made rigorous



Network effects and “winner-takes-all”

= Other examples of “rich-get-richer” phenomena:
= Facebook vs {friendster, sixdegrees, xing,...}

= Android vs iPhone
= Technology standards: BluRay,...

= Metcalfe’s Law:
« The value of a network is proportional to n?
= Because the value to an individual is proportional to n

= Lock-in
= Being early is very important
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Observer: Friendship Paradox

= “Your friends have more friends than you”

« Experiment:

= Get on facebook and compute the average # friends of
your friends

= How does this compare to your own # friends?
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Friendship Paradox

= Formally:
= Social network = G(V,E)
= d,: degree of node v
= n = |V|: number of nodes, m = |E|: number of edges

2, dy

n
= How to talk about average number of friends’

friends?
= Natural measure: %Zuevdizve,\,u d,

= Average number of friends: U =

= Easier to analyze: degree “seen” by random edge
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Friendship Paradox

= Star network (|V| = n):

2(n 1)

- Avg degree: - ((n —D+n-1)) =
= Avg degree of neighbors:
%((n— D?2+1)->n

= Degree of random edge: %(n - 1) +% = %

> 2
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Sampling nodes vs sampling edges

= Average degree over nodes:

Y d m “expected
- U = == 2— degree of a
n n random
person”
= Average degree over edges:
Z(u,v)e £ dy “expected
g degree of a
2m random friend
of a random

person”
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Friendship Paradox

= Lemma:

Z(u,v)EE dy _ o
- 2m _'u(l +u2)

= Degree (empirical) variance:

1 1 2
0° = EZvEV dy — (g 2ivev dv)
= Var[d,]




Friendship Paradox

= Proof:
Z(u,v)eE dy

(because v appears d,, times in sum

— (because avg degree is u = 2m/n)
un

0%+ (3 5 dv)
U
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Why is it important?

Epidemiology:

= Best protection for a population with a given budget?
= Assume social network is not knowable globally

Two strategies:

= (@) immunize a random set of people

= (b) immunize random friends of a random set of people
Friendship Paradox:

= (b) better than (a)!

= Bias towards “higher-degree friends”

Other applications:

= Finding good monitors, trend-setters, etc.
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The observer matters

= Other examples:
= Occupancy distribution:

= Suppose a train is full 50% of the time, and empty 50%
of the time

= Observer: train is full 100% of the time

e observer . |

| only sees this

Ll ’ v‘




The observer matters

= Waiting time:
= Suppose buses arrive a Poisson(A) point process
= Average interarrival interval: 1/A
= Observer point of view:
= Residual time (until next bus): mean = 1/A
= Since last bus: mean = 1/A
= Mean observed interval length: 2/A!

Observer more likely to be here \

—0—00 @ @ @ @ @ @
...than here j
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Summary and lessons

= Herding
= Following others’ decisions: natural social mechanism,
can lead to suboptimal global behavior

= Information cascades: watching others can wash out
primary information

= Rich-get-richer: huge differences in
fwealth/degree/influence/membership/...}, winner-
takes-all markets

= Observing

= Choice of observer - sampling bias
= Paradox: average friend is more popular than average

individual
= Next week:
= Processes on networks: epidemics, sampling

39



References

= [D. Easley and J. Kleinberg, Networks, Crowds,
and Markets (chapter 16), 2010]

= [Grossglauser & Thiran, COM-512: Models and
Methods for Random Networks (class notes)]

= [Anderson & Holt, Information Cascades in the
Laboratory, American Econ Review, 87(5), 1997]

40



	Slide 1: Social and Information Networks 2: Evolution
	Slide 2: Overview
	Slide 3: Watching thy Neighbor?
	Slide 4: Herding and information cascades
	Slide 5: Herding: how it can go wrong
	Slide 6: Herding: how it can go wrong
	Slide 7: Urn model: altruistic ()
	Slide 8: Urn model: selfish ()
	Slide 9: Urn model: selfish ()
	Slide 10: Urn model: () leads to cascade
	Slide 11: Information cascade: suboptimal decision
	Slide 12: Herding in networks
	Slide 13: Pareto open paren bold italic beta ,bold italic gamma close paren  distribution
	Slide 14: Numerical comparison exp/power
	Slide 15: Log-log plot
	Slide 16: Log-log distribution plot
	Slide 17: Examples of observed power laws
	Slide 18: Why worry about the tail?
	Slide 19: Log-log distribution plot
	Slide 20: Log-log cumulative plot
	Slide 21: One explanation: the rich get richer
	Slide 22: Preferential attachment in growing nets
	Slide 23: Preferential attachment
	Slide 24: Preferential attachment
	Slide 25: Preferential attachment: analysis
	Slide 26: Preferential attachment: analysis
	Slide 27: Preferential attachment: analysis
	Slide 28: Preferential attachment: analysis
	Slide 29: Network effects and “winner-takes-all”
	Slide 30: Observer: Friendship Paradox
	Slide 31: Friendship Paradox
	Slide 32: Friendship Paradox
	Slide 33: Sampling nodes vs sampling edges
	Slide 34: Friendship Paradox
	Slide 35: Friendship Paradox
	Slide 36: Why is it important?
	Slide 37: The observer matters
	Slide 38: The observer matters
	Slide 39: Summary and lessons
	Slide 40: References

