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Question 1: Multiple Choice Questions (30 points)

(30 pts) All questions have a single answer. Check the correct one. Grading:

− Correct answer: +2 points;
− Wrong answer: −1 point;
− No answer or ”I don’t know”: 0 point.

1. Here is a basic implementation of the power method to estimate the PageRank scores using
python and numpy:

def power_method(probas , G_matrix , S):

for iteration in range(S):

probas = probas @ G_matrix

return probas

G matrix is the google matrix, which has been created using a teleportation probablility
0 < 1− θ < 1.
We note N the number of nodes of the graph, M the number of edges of the graph and S
the number of iterations of the algorithm.
What is the smallest upper bound we can give on the number of operations of this function
(additions and multiplications)?

■ O(SN2)

□ O(SNM)

□ O(SM)

□ I don’t know

2. We propose the following algorithm to reduce the number of operations without changing
the result:

def power_method2(probas , graph_transitions , theta , S):

nb_nodes = len(probas [0])

for iteration in range(S):

probas = probas @ graph_transitions * theta

[.......................................................]

return probas

Which line of code is missing (marked by [...])?

■ probas += (1 - theta) * np.ones((1, nb nodes)) / nb nodes

□ probas = (1 - theta) * probas @ graph transitions

□ probas = (1 - theta) * probas + np.ones((1, nb nodes)) @ graph transitions

□ I don’t know

3. We use the same notation as 1.
What is the smallest upper bound we can give on the number of operations of the new
function power method2()? (we assume that adding 0 or multiplying by 0 does not count
as an operation)

□ O(SN log(M))

■ O(SM)

□ O(SN)

□ I don’t know
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4. We consider a random graph G whose edges are all independent. G has N nodes split in
two communities A and B. 50% of the nodes are in A and 50% are in B. For every pair of
nodes in A, the probablility of an edge is PAA = 0.1, for every pair in B, PBB = 0.2 and
for every pair of nodes in different communities, the edge probability is PAB = 0.001.
When N goes to infinity, which of the following is more likely to happen?

□ G will have a giant component and some other connected components.

■ G will be connected.

□ G will not have any giant component.

□ I don’t know

5. On the same graph G as the previous question, someone is trying to estimate the size of A
and B by performing a random walk on the graph. The random walk starts from a random
node. For each node visited, she records the cluster of the node (A or B).
After a very large number of steps, she tries to estimate the size of each cluster by naively
comparing the number of nodes of each cluster she visited.

Which cluster will she estimate to be bigger?

□ A

■ B

□ It depends on the starting point of the random walk.

□ I don’t know

6. Consider the undirected graph G = (V,E) with vertices V = {A,B,C,D} below. What
is the number of Bayesian networks compatible with G (same edges as G but all oriented)
where the following two conditional independences hold: A ⊥ B | D and C ⊥ D | A,B?

A

D

B

C

□ 0

■ 3

□ 4

□ I don’t know

7. Here is a simple implementation of the Latent Dirichlet Allocation (LDA) model using
RDD operations in spark.

– RDD corpus: An RDD of documents, where each document is represented as a tuple
of (docID, list of terms). Example:

RDD_corpus = sc.parallelize ([

(1, [’word1 ’, ’word2 ’, ’word3 ’]),

(2, [’word2 ’, ’word4 ’, ’word5 ’])

])

– num topics: Number of topics to be extracted from the documents.

– max iterations: Number of iterations for the LDA algorithm to converge.
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# Step 1: Initialize random topic assignments

def initialize_topics(doc):

docID , terms = doc

return [(docID , term , randint(0, num_topics - 1)) for term in terms]

topic_assignments = RDD_corpus.flatMap(initialize_topics)

# Step 2: Iterate to optimize the topic assignments

for iteration in range(max_iterations ):

# Calculate topic probabilities and assign new topics

def sample_topics ((docID , term , topic )):

# Placeholder for actual topic sampling logic

return (docID , term , randint(0, num_topics - 1))

topic_assignments = topic_assignments.map(sample_topics)

# Step 3: Aggregate topic assignments into final model structures

A = topic_assignments.map(lambda x: (x[0], x[2])). countByValue ()

B = topic_assignments.map(lambda x: (x[1], x[2])). countByValue ()

What are A and B:

■ doc topic distribution, term topic distribution

□ number of docs, number of topics

□ number of topics, number of docs

□ I don’t know

8. As seen in class, the Louvain method generates a sequence of increasingly smaller, weighted
graphs containing self-loops. The general expression for modularity in this case is

Q =
1

2m

∑
ci∈C

∑
u,v∈ci

(
wuv −

dudv
2m

)
, (1)

where wuv is the weight of the edge between node u and v (wuu for a self-loop), m is the
sum of the weights of all links in the network, du and dv are the sum of the weights of the
links incident to node u and v respectively.
Which combination of X and Y will cause the graph to have only two communities in the
next iteration?

1 2

34

X

Y

X

Y

6 6

66

□ X = 1, Y = 1

□ X = 0.5, Y = 1

■ X = 1, Y = 2

□ I don’t know
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9. We run the clustering methods K-means and Gaussian Mixture Models (GMM) on two-
dimensional data points, with both methods using K = 2 clusters. In each figure below,
points assigned to cluster 1 are represented by red crosses, while points assigned to cluster
2 are represented by blue squares. For each of the following figures, determine which
clustering methods could have led to the cluster assignments. Note that more than one
method could be correct for each figure, or none of them.
For GMM, a point is assigned to the cluster with maximum posterior.

Which of the following statements is true?

□ Only GMM can produce (c)

□ Only K-means can produce (c)

■ Both GMM and K-means can produce (c)

□ I don’t know

10. As in the previous question, which of the following statements is true?

□ K-means can produce (a)

■ GMM can produce (a) and (b)

□ None of the above statements are true

□ I don’t know

11. Which of the following statements is true?

□ The generative model of probabilistic Latent Semantic Analysis (pLSA) is:
For each document d in the corpus: (a) sample a topic z from a prior p(z); (b) sample
a document d according to p(d|z); (c) sample each word w in d according to p(w|z)

□ If PCA is performed on an uncorrelated data set (meaning that the covariance matrix
is diagonal), the variances along the different principal directions are all equal

■ If A is a real symmetric matrix with non-negative eigenvalues, then the eigenvalues
and singular values of A coincide

□ I don’t know

12. We classify a message M = (w1, w2, w3) consisting of three words as ham (G) or spam
(B), using a Naive Bayes classifier. Suppose the prior for both classes is positive: P (B) >
0, P (G) > 0, and the class posterior for message M is positive as well: P (G|M) > 0,
P (B|M) > 0.

Now we create a new, longer messageM ′, by repeatingM multiple times: M ′ = (w1, w2, w3,
w1, w2, . . . , w3). Which of the following inequalities guarantees that for M ′ sufficiently long,
we classify M ′ as ham (i.e., P (G|M ′) > P (B|M ′))?
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□ P (G) > P (B)

■ P (M |G) > P (M |B)

□ P (G)P (M |G) > P (B)P (M |B)

□ I don’t know

13. Which of the following assertions about the Latent Dirichlet Allocation (LDA) text model
is false?

□ Conditional on the topic, the word is independent of the document.

■ Increasing the α parameter of the Dirichlet prior tends to lead to sparser topic distri-
butions for documents.

□ It is possible to generate words for a new document not seen during training.

□ I don’t know

14. Consider a SIR epidemic model with one percent of the population initially infected on
a population of N = 10′000 people. We assume that each person meets on average 120
people every year, and patients stay infected for an average of one week.
Among the following options, what is the smallest percentage of the population that needs
to be vaccinated in order to prevent the epidemic to already be a large-scale epidemic? (we
assume the vaccine fully prevents transmission)

□ 1/2

■ 2/3

□ 3/4

□ I don’t know

15. In relation to Skip-gram, for a specific word-context pair (w, c), which of the following
is the partial derivative of the objective function Lwc = log σs(c, w) with respect to the
context vector vc? (uw ∈ Rd and vc ∈ Rd are the vectors of the word and context and

σs(c, w) =
eu

T
wvc∑

c′∈V eu
T
wvc′

)

□ uw

■ uw(1− σs(c, w))

□ uw(1− 1∑
c′∈V eu

T
wvc′

)

□ I don’t know
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Question 2: Network Structure (12 points)

1. (4 pts) Find the largest possible set of strong links such that the strong triadic closure (STC)
property holds for all nodes of the following graph. Mark the strong edges in the figure.

Solution:

Consider the following graph. We are interested in its transitivity.

a
b c

d

ef
2. (2 pts) What is the clustering coefficient cd of node d?

Solution:

2

3
(2)

3. (4 pts) What is the weighted average clustering coefficient (transitivity) of the entire graph of
the previous question?

Solution:

5 + 3 + 4 + 2 + 1 + 3(
5
2

)
+
(
3
2

)
+
(
4
2

)
+
(
3
2

)
+
(
2
2

)
+
(
3
2

) =
3× 6

26
=

9

13
(3)

The six triangles are abc, abf , bcf , acd, ade, and acf .
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4. (2 pts) Is this graph strongly clustered relative to an equivalent-density G(n, p)?

Solution:
We have n = 6 and m = 10, so the equivalent

p =
m(
n
2

) = 2/3. (4)

The actual clustering coefficient c(G) = 9/13 is slightly larger than 2/3, so we would consider
this graph clustered.
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Question 3: PageRank (14 points)

We perform PageRank on the following graph.

1

2

3

4

1. (1 pt) For θ = 1, which nodes are dangling nodes and what are the connected components?

Solution:
For θ = 1 (and for any other value of θ), any node can be reached from any node. Consequently,
there are no dangling nodes, and only one connected component (the whole graph).

2. (2 pts) For which values of θ is this Markov chain ergodic? When it is not, justify why not.

Solution:
To be ergodic, the Markov chain has to be irreductible and aperiodic.
For θ < 1, the teleportation adds an edge between each pair of nodes (in both directions). This
ensures both irreducibility and aperiodicity, so the Markov chain is ergodic.
For θ = 1, there is no teleportation. In that case, all nodes have a period of 3, which means the
Markov chain is not ergodic.

3. (3 pts) Approximate the PageRank scores for θ = 0.999.

Solution:
θ = 0.999 means that the probability of teleportation is very small (0.001). In this case, the
PageRank score of a node is very close to the frequency at which the random walk visits this
node when θ = 1.
For θ = 1, the frequencies of visit is 1/3 for nodes 1 and 3, and 1/6 for nodes 2 and 4. These
values are good approximations of the PageRank scores for θ = 0.999.

Now we add nodes 5, 6, 7 to the graph as shown on the image below.

1

2

3

4

5

6

7

4. (1 pt) For θ = 1, which nodes are dangling nodes and what are the connected components?
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Solution:
Every node has at least one edge going from it, so there are no dangling nodes.
There are 2 connected components : (1, 2, 3, 4) and (5, 6, 7).

5. (4 pts) Approximate the PageRank scores for θ = 0 and for θ = 0.999.

Solution:
For θ = 0, the probability of teleportation is 1, so the edges are irrelevant. At each step of the
random walk, we walk to any of the nodes with the same probability 1/7. So the PageRank
scores of all nodes are 1/7.

For any θ < 1, the random walk will spend 4/7 of the time in the component (1, 2, 3, 4) and 3/7
of the time in the component (5, 6, 7). In particular, this is the case for θ = 0.999.
Inside each component, this time will be split almost as if θ = 1, so 1

3 ,
1
3 ,

1
3 for component (5, 6, 7),

and we can reuse the results of question 3. for (1, 2, 3, 4).
This gives us PageRank scores PR(1) = PR(3) = 4

7
1
3 = 4

21 , PR(2) = PR(4) = 4
7
1
6 = 2

21 and
PR(5) = PR(6) = PR(7) = 3

7
1
3 = 3

21 = 1
7 .

6. (3 pts) Rank the nodes by increasing PageRank scores if θ = 0.001 (specify if there are equalities).

Solution:
For θ = 0.001, the probability of teleportation is very high. This means the PageRank scores are
almost all equal (to 1

7).
However, on average once every 1000 steps, the random does not teleport. This is what makes
a difference between the scores. So we have to look at the probability that each node is reached
after taking a random edge from a node selected uniformely at random.
Let us define, for all nodes i, the probability to reach that node after only one step without
teleportation (the previous step is teleportation). For node i, this is

P1(i) =
∑

j∈parent(i)

P0(j)
1

outdegreej
=

∑
j∈parent(i)

1

7

1

outdegreej

where P0(i) is the probability of being art node i after a teleportation step.

As we only care about the rank, we can ignore the factor 1
7 , which is the same for all nodes.

This gives us P1(1) = P1(5) = P1(6) = P1(7) = 1, P1(2) = P1(4) =
1
2 and P1(3) = 2.

We see that we have a lot of equalities. Nodes 2 and 4 are completely symetrical in the graph,
so it is clear that their rank should be the same. The same is true for nodes 5, 6, 7. However,
this is less clear for node 1 and 5.
If we consider the -one in a million- case of having no teleportation two steps in a row, we can
break this tie. Let P2(i) be the probability of reaching i after two non-teleportation steps. Then
we have :

P2(i) =
∑

j∈parent(i)

P1(j)
1

outdegreej

Using this formula for nodes 1 and 5 : P2(1) = P1(3) = 2 > 1 = P1(7) = P2(5), so we have
P2(1) > P2(5).

So the final rank is 2 = 4 < 5 = 6 = 7 < 1 < 3.
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Question 4: PCA (14 points)

You have a dataset of N data points x1, ..., xN ∈ R5. You rigorously follow the steps of PCA and
you plot the cumulative variance explained by the principal components.
This is the plot you obtain:
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1. (1 pt) From this plot, what can you deduce about the dimensionality of the data?

Solution:
We see that the variance is fully explained by the first 2 principal components. This means
that the data is actually 2-dimensionnal (more precisely that the points are all in the same
2-dimensionnal affine subspace of R5).

2. (4 pts) Is it possible to observe this plot if N = 1, N = 2, N = 3, N = 4? Justify your answers.

Solution:
A dataset of 1 point has no variance, and a dataset of 2 points can only have variance along 1
direction (2 points are always aligned).
Consequently, N = 1 and N = 2 are not possible.
In order to have the two first components explaining each 50% of the variance (as shown on
the plot), there must be at least 2 directions giving exactly the exact same (maximal) explained
variance. This happens if the dataset has a rotational invariance.
In particular, it works for N = 3 with an equilateral triangle, and for N = 4 for a square.

3. (3 pts) Let N0 be the smallest N you found for the previous question. Give an example of a set
of point(s) x1, ..., xN0 ∈ R5 that explain the plot (give their coordinates).

Solution:
The answer should be the coordinates of 3 points forming an equilateral triangle (centered on 0
or not).
Using the Pythagorean theorem, we can find that if the triangle has edges of length a, then its

height is
√
3
2 a.

So some possible answers are (x1 = (0, 0, 0, 0, 0), x2 = (a, 0, 0, 0, 0), x3 = ( r2a,
√
3
2 a, 0, 0, 0)) for all

a ∈ R∗.
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4. (3 pts) Compute the covariance matrix for these points. What are the eigenvalues of the covari-
ance matrix?

Solution:
To compute the covariance matrix, the data must be centered first. By taking the same example
as above, with a = 1, and focusing on the 2 first dimensions (the 3 others are only zeros), we

find that the center of the triangle is (12 ,
√
3
6 ).

This means that the coordinates of the centered dataset are ((−1
2 ,−

√
3
6 ), (12 ,−

√
3
6 ), (0, 2

√
3
6 )).

So the matrix in dimension 2 is :

−1
2 −

√
3
6

1
2 −

√
3
6

0 2
√
3
6


So the covariance matrix in dimension 2 is :

1

3

(
1
2 0
0 1

2

)
So the full covariance matrix in dimension 5 is :


1
6 0 0 0 0
0 1

6 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


The eigenvalues of the covariance matrix are (16 ,

1
6 , 0, 0, 0) for this example.

Depending on the dataset we chose (the size of the equilateral triangle), the eigenvalues can be
different, but two are nonzero and equal, and the 3 others are 0. This result is expected because
it is necessary and sufficient in order to get the plot.

5. (3 pts) You don’t change your dataset, but you add a new point to it. It now contains N0 + 1
points x1, ..., xN0+1 ∈ R5.
Can the new plot be plot (a)? Can it be plot (b)? Justify your answers.

0 1 2 3 4 5
Ordered Principal Components

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f e
xp

la
in

ed
 v

ar
ia

nc
e

Explained variance

(a)
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Solution:
By adding only one point, the dataset can ”gain” at most one dimension. So plot (b) is not
possible because it corresponds to a dataset where the points lie in a 4 dimensional subspace,
whereas the original data is in 2-dimensional subspace.
By adding one point to the equilateral triangle, it is possible to obtain a regular tetrahedron.
The regular thetraedron having rotational invariances in 3 dimensions, it has the same amount
of covariance explained by its 3 principal components.
So plot (a) is possible.
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Question 5: Collaborative Filtering (10 points)

Here are two different datasets (a) and (b) of the ratings given by 3 users (1, 2, 3) about 4 items
(A, B, C, D). The X represents a missing score.

A B C D

1 1 2 3 -1

2 0 1 2 -2

3 3 4 5 X

(a)

A B C D

1 1 2 3 -1

2 0 1 2 -2

3 0 4 5 X

(b)

1. (1 pt) Call rui the score given by user u to item i. Call (bu), u ∈ {1, 2, 3} the user biases and
(bi), i ∈ {A,B,C,D} the item biases. One of the two datasets follows the model rui = bu + bi,
the other one follows the model rui = bu + bi + qupi, where qu qnd pi are respectively a user
parameter and an item parameter.
Identify which dataset follows which model. Justify your answer.

Solution:
The easiest way to identify which matrix follows which model is to look at the rank. The first
column of matrix (b) has 2 zeros. This implies that row 1 cannot be generated by a linear
combination of the 2 other rows. In addition, rows 2 and 3 are not aligned vectors. So rows 1,
2 and 3 are independant, which means the rank of the matrix is 3. Consequently, dataset (b)
cannot be following the model with only biases.

For the rest of the exercise, we focus on the model rui = bu + bi.

2. (1 pt) Predict the score that user 3 would give to item D in the dataset you identified to follow
the model rui = bu + bi.

Solution:
In dataset (a), we can see that the scores of user 3 are 3 more than the scores of user 2. This means
that b3 = b2 +3. Consequently, the score given by user 3 to item D will be r3D = r2D +3 = 1.
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3. (2 pts) Suppose we have a single user u and a single item i, and the corresponding rating rui. We
are trying to find bias parameters in the usual way, which amounts to the optimization problem
(b∗u, b

∗
i ) = argmin(bu,bi)(rui − bu − bi)

2.
Give (all) the solution(s) to this minimization problem.

Solution:
There is no constraint on the values of bu and bi, so we can solve the problem such that (rui−bu−
bi)

2 = 0, which is equivalent to bu+bi = rui. So the solutions are (bu, bi) ∈ {(rui+c, rui−c), ∀c ∈
R}.

4. (3 pts) Modify the minimization problem above by adding a quadratic regularizer to the param-
eters.
Give (all) the solution(s) to the modified minimization problem.

Solution:
Adding a quadratic regularization to the parameters yields the following optimization problem :

(b∗u, b
∗
i ) = argmin(bu,bi)(rui − bu − bi)

2 + b2u + b2i

Because of the regularisation, the problem now has a unique solution. As the problem is sym-
metrical for bu and bi, we have b∗u = b∗i . Consequently, we can solve

(b∗u, b
∗
i ) = argmin(bu,bi)(rui − bu − bi)

2 + b2u + b2i , bu = bi

So
b∗u = b∗i = argminb(rui − 2b)2 + 2b2

Let us note f(x, b) = (x−2b)2+2b2. Then we have f(x, b) = x2−4xb+4b2+2b2 = x2−4xb+6b2.
This is a second degree polynom in b, so the derivative (in b) is zero at only one point.
Because the dominant coefficient is positiv (6), this point is the unique minimum of f(x, .).
So we solve 0 = d

db(f(x, b)) = −4x+ 12b.
Which gives b = 1

3x.
So we have (b∗u, b

∗
i ) = (13rui,

1
3rui)

5. (3 pts) We now return to the full problem with multiple u and i :
minbu,bi

∑
u,i(rui − bu − bi)

2

Under which condition does this problem have a unique solution?

Solution:
The solution is explained in Exercise 2 of Homework 4.
In the general case, the condition is the invertibility of the matrix A⊤A.
In our case, this matrix is not invertible. An easy way to see that is to realize that if you have a
valid solution to the problem, for any constant c ∈ R, you can remove c from all the user biases
and add it to the item biases, which produces another solution to the problem (like in question
3.).
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Question 6: Random Walk and Conductance (10 points)

A particle performs a random walk on a cycle graph with nodes numbered from 1 to n, denoted as
Cn. For example C7 is as follows:

1

2
3

4

5

6
7

1. (2 pts) For which n is this random walk ergodic? Justify your answer.

Solution:
A random walk on a cycle graph Cn is ergodic if it is both irreducible and aperiodic.

• Irreducibility: A graph is irreducible if there is a path between any two nodes. In a cycle
graph Cn, it is always possible to reach any node from any other node, as the nodes form
a closed loop. Thus, the random walk on Cn is irreducible for any n ≥ 3.

• Aperiodicity: A Markov chain is aperiodic if there is no fixed number of steps k (greater
than 1) such that all returns to a particular state occur in multiples of k. In Cn, if n is
even, the period of the graph is 2, as the only way to return to the starting node in an odd
number of steps is to move back and forth along the same edge, which is not possible in
a cycle. If n is odd, the period of the graph is 1, because it is possible to return to any
starting node in any number of steps.

Therefore, the random walk on Cn is ergodic if and only if n is odd.

For the rest of the exercise, consider all n such that this ergodicity condition is satisfied.

2. (3 pts) Let λ1(n) and λ2(n) be the first and second largest eigenvalues of the transition matrix
of the random walk Cn. Determine λ1(n) and λ2(n) as n goes to infinity?

Solution:

Because it is ergodic, the transition matrix P has a stationary distribution with a maximum
eigenvalue of 1.

To determine λ2(n), we compute the conductance Φ(Cn) of Cn for odd n. Conductance is given
by:

Φ(Cn) = min
S⊂V,0<|S|≤n

2

|∂S|
min(|S|, |V \ S|)

For Cn, the smallest cut is obtained by taking any consecutive set of
⌈
n
2

⌉
nodes. The boundary

size |∂S| for this set is 2. Therefore,

Φ(Cn) =
4n

n2 − 1

16



Following the Cheeger inequality, the second largest eigenvalue λ2(n) is related to the conductance
by:

1− 2Φ(Cn) ≤ λ2(n) ≤ 1− Φ(Cn)
2

2

Substituting Φ(Cn) =
4n

n2−1
, we get:

1− 8n

n2 − 1
≤ λ2(n) ≤ 1−

( 4n
n2−1

2
)

2

Therefore, as n goes to infinity:
λ2(n) ≈ 1

Thus,
λ1(n) = 1, λ2(n) ≈ 1 as n → ∞

3. (3 pts) For a fixed n, add an edge to Cn that increases the conductance the most. Where would
you add this edge? Call this new graph C ′

n and compute its conductance ΦC′
n
. Compute the

ratio
ΦC′

n
ΦCn

asymptotically when n goes to infinity.

Solution:
To maximize the conductance, we should add an edge that connects two nodes with the largest
shortest path distance in Cn. For Cn, the longest shortest path is ⌊n/2⌋. Therefore, we add an
edge between nodes 1 and ⌊n/2⌋+ 1.

For Cn, Φ(Cn) =
4n

n2−1
.

For C ′
n, the edge doesn’t change the the boundary size |∂S| for some subsets S. Specifically, the

set S that includes half of the nodes will now have an additional edge in the cut set, so:

Φ(C ′
n) =

2
2(n+1)(n+3)(n−1)

2(n+1)2(n+1)

Therefore, the ratio is:

ΦC′
n

ΦCn

=

4(n+1)
(n+3)(n−1)

4n
n2−1

=n→∞ 1

4. (2 pts) For the graph Cn, compute the expected number of steps for a particle starting at node 1
to visit node n+1

2 for the first time. Show your detailed calculations (Hint: consider this expected
number of steps for every node and write a system of equations based on them).

Solution:
Let E(i) be the expected number of steps to reach node n+1

2 from node i. We set up the following
system of equations for the expected hitting times:{

E
(
n+1
2

)
= 0

E(i) = 1 + 1
2 (E(i− 1) + E(i+ 1)) for i ̸= n+1

2

This simplifies to:

E(i) = 1+
1

2
(E(i− 1) + E(i+ 1)) ⇒ 2E(i) = 2+E(i−1)+E(i+1) ⇒ E(i) = 1+

E(i− 1) + E(i+ 1)

2

Solving this for all i from 1 to n−1
2 and using symmetry, we find:

E(1) =

n−1
2∑

k=1

2k =
(n− 1)(n+ 1)

4
=

n2 − 1

4

17



Thus, the expected number of steps for a particle starting at node 1 to visit node n+1
2 for the

first time is:

E(1) =
n2 − 1

4
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Question 7: Clustering (10 points)

This question concerns training Gaussian Mixture Models (GMMs). Throughout, we will assume
there are two Gaussian components in the GMM. We will use µ0, µ1, σ

2
0, and σ2

1 to define the
means and variances of these two components, and will use π0 and (1− π0) to denote the mixture
proportions of the two Gaussians (i.e., p(x) = π0N(µ0, σ

2
0I)+ (1−π0)N(µ1, σ

2
1I)). We will also use

θ to refer to the entire collection of parameters ⟨µ0, µ1, σ
2
0, σ

2
1, π0⟩ defining the mixture model p(x).

1. (2 pts) Consider applying EM to train a Gaussian Mixture Model (GMM) to cluster the data
below into two clusters. The ‘’+” points indicate the current means µ0 and µ1 of the two Gaussian
mixture components after the kth iteration of EM. Draw on the figure the directions in which µ0

and µ1 will move during the next M-step. Justify your answer.

Solution:
µ0 moves to the right, and µ1 moves to the left.

2. (1 pt) Is it possible that the marginal likelihood of the data (objective function),
∏

j P (xj |θ),
decreases on the next EM iteration? Justify your answer.

Solution:
No, Each iteration of the EM algorithm increases likelihood of the data, unless you happen to
be exactly at a local optimum.

3. (2 pts) Consider the set of training data below. After running the Gaussian Mixture Model
(GMM) twice on this data, with different initializations, we obtain the following results for the
determinants of the covariance matrices of the probability density functions (pdf) for each cluster
(we have two clusters, K = 2):

• For run a: det(Σ1) = 5 and det(Σ2) = 10

• For run b: det(Σ1) = 15 and det(Σ2) = 0.00001

Here, Σ1 and Σ2 represent the covariance matrices for the Gaussian distributions of clusters 1
and 2, respectively.

Which run, a or b, has the higher likelihood value? Provide a detailed justification for your
answer.
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Solution:
Run b has the higher likelihood value. This is because the very small determinant of Σ2 indicates
that the corresponding Gaussian component is very sharply peaked, which suggests that it fits
tightly around the point because of a bad initialization, leading to a higher likelihood. The
determinant of the covariance matrix is inversely related to the sharpness of the peak of the
Gaussian distribution: the smaller the determinant, the sharper the peak, and thus the higher
the likelihood of the data points near the peak.

4. (2 pts) Consider a training dataset consisting of partially labeled samples. For the firstm samples
x1, x2, . . . , xm, we have corresponding z labels (which can be 0 or 1). The remaining samples,
xm+1 . . . xm+n, are unlabeled with unknown z values. Given this setup, which of the likelihood
functions should be maximized to exploit both labeled and unlabeled data in GMM clustering?
Justify your answer.

(a) (
∏m

i=1 P (xi|zi, θ))(
∏m+n

i=m+1 P (xi|θ))

(b) (
∏m

i=1 P (xi, zi|θ))(
∏m+n

i=m+1 P (xi|θ))

(c) (
∏m

i=1 P (zi|θ)P (xi|θ))(
∏m+n

i=m+1 P (xi|θ))

Solution:
The correct answer is (b): (

∏m
i=1 P (xi, zi|θ))(

∏m+n
i=m+1 P (xi|θ)). This is because for the labeled

data, we need to consider the joint probability of the samples and the labels to fully explain the
information provided by the data. For the unlabeled data, we only consider the probability of
the samples itself.

5. (3 pts) How do you need to change the E-step and M-steps of the EM algorithm to fit the above
objective function?

Solution:
E: Same as before for xm+1 . . . xm+n, and for i ≤ m, γij = δj,z(i).

M: Same as before.

6. (0 pts, but a deep sense of satisfaction if you are right) Who wins the Euro 2024 championship?

Solution:
Based on the current team performances, the popular prediction is Spain. However, surprises
are always possible in football tournaments:)
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