
Za
m

ir

C
O

M
-3

04

Proximal policy
optimization (PPO)
in 1 hour
A brief introduction to modern RL

Jason Toskov

￼1

▪ The problem

• Reinforcement learning
▪ The formalization

• Markov decision processes (MDP)

• The MDP optimization target
▪ Solving an MDP

• Policy gradient

• REINFORCE

• TRPO

• PPO
▪ What's missing?

￼2Lecture Outline

How do we teach a robot to solve a rubiks cube?
(Sped up by 5x)

▪ The problem
• Reinforcement learning

▪ The formalization

• Markov decision processes (MDP)

• The MDP optimization target
▪ Solving an MDP

• Policy gradient

• REINFORCE

• TRPO

• PPO
▪ What's missing?

￼3Lecture Outline

How do we teach a robot to solve a rubiks cube?
(Sped up by 5x)

￼4

C
O

M
-3

04

▪ Reinforcement learning:

• Learning what to do in a situation to
maximize some reward signal

Definition ￼5

C
O

M
-3

04

▪ The setup:

Reinforcement
Learning (RL)

￼6

C
O

M
-3

04

▪ The setup:
• An agent

Reinforcement
Learning (RL)

￼7

Za
m

ir

C
S

-5
03

: V
is

ua
l I

nt
el

lig
en

ce
: M

ac
hi

ne
s

an
d

M
in

ds

▪ Agent: Dog

Reinforcement
Learning (RL)

￼8

C
O

M
-3

04

▪ The setup:
• An agent takes an action

Reinforcement
Learning (RL)

￼9

Za
m

ir

C
S

-5
03

: V
is

ua
l I

nt
el

lig
en

ce
: M

ac
hi

ne
s

an
d

M
in

ds

▪ Agent: Dog

▪ Action: Moves legs

Reinforcement
Learning (RL)

￼10

C
O

M
-3

04

▪ The setup:
• An agent takes an action in the

environment.

Reinforcement
Learning (RL)

￼11

Za
m

ir

C
S

-5
03

: V
is

ua
l I

nt
el

lig
en

ce
: M

ac
hi

ne
s

an
d

M
in

ds

▪ Agent: Dog

▪ Action: Moves legs

▪ Environment: The room

Reinforcement
Learning (RL)

￼12

C
O

M
-3

04

▪ The setup:
• An agent takes an action in the

environment.
• The environment gives us a new

state

Reinforcement
Learning (RL)

￼13

Za
m

ir

C
S

-5
03

: V
is

ua
l I

nt
el

lig
en

ce
: M

ac
hi

ne
s

an
d

M
in

ds

▪ Agent: Dog

▪ Action: Moves legs

▪ Environment: The room

▪ State: The dogs location in the
room

Reinforcement
Learning (RL)

￼14

C
O

M
-3

04

▪ The setup:
• An agent takes an action in the

environment.
• The environment changes to a

new state and gives a reward.

Reinforcement
Learning (RL)

￼15

Za
m

ir

C
S

-5
03

: V
is

ua
l I

nt
el

lig
en

ce
: M

ac
hi

ne
s

an
d

M
in

ds

▪ Agent: Dog

▪ Action: Moves legs

▪ Environment: The room

▪ State: The dogs location in the
room

▪ Reward: The treat in the bowl

Reinforcement
Learning (RL)

￼16

C
O

M
-3

04

▪ The setup:
• An agent takes an action in the

environment.
• The environment changes to a

new state and gives a reward.
• The agent will try to act to

maximize the reward it gets in a
rollout.

Reinforcement
Learning (RL)

￼17

Za
m

ir

C
S

-5
03

: V
is

ua
l I

nt
el

lig
en

ce
: M

ac
hi

ne
s

an
d

M
in

ds

▪ Agent: Dog

▪ Action: Moves legs

▪ Environment: The room

▪ State: The dogs location in the
room

▪ Reward: The treat in the bowl

▪ Rollout: One dog's attempt to
get the treat

Reinforcement
Learning (RL)

￼18

C
O

M
-3

04

▪ The setup:
• An agent takes an action in the

environment.
• The environment changes to a

new state and gives a reward.
• The agent will try to act to

maximize the reward it gets in a
rollout

▪ Assumptions:
• The agent can see the state.
• We only care about the current

state.

Reinforcement
Learning (RL)

￼19

C
O

M
-3

04
Reinforcement
Learning (RL)

￼20

Markov process

▪ The problem

• Reinforcement learning
▪ The formalization

• Markov decision processes (MDP)
• The MDP optimization target

▪ Solving an MDP

• Policy gradient

• REINFORCE

• TRPO

• PPO
▪ What's missing?

￼21Lecture Outline

How do we teach a robot to solve a rubiks cube?
(Sped up by 5x)

C
O

M
-3

04

▪ Mathematically, this problem can be
described with a Markov Decision
Process (MDP).

▪ MDPs are a mathematically idealized
form of the more general reinforcement
learning problem.
• We can make theoretically grounded

statements about MDPs with math
• Hence, we can actually solve our

problems when described with a MDP

Markov Decision
Processes (MDP)

￼22

C
O

M
-3

04

▪ A MDP is defined by:
• The set of possible states S
• The set of possible actions A
• A transition function P(s' | s, a)
• A reward function R(s, a, s')
• An initial state s0
• A discount factor γ
• A horizon H

▪ Note: everything only depends on the current state!

Markov Decision
Processes (MDP)

￼23

C
O

M
-3

04

▪ MDPs are a very considerable abstraction.

▪ We assume everything (sensors, memory, control, objectives) can be
reduced to 3 signals, actions, states and rewards passing between an
agent and the environment.
• And, we assume that only considering the last state is enough for

everything

▪ But often this is enough, allowing us to make incredibly complex
problems tractable.

Markov Decision
Processes (MDP)

￼24

C
O

M
-3

04

▪ To solve an RL problem, we typically cast the problem as an MDP, and
then solve the MDP using standard techniques

▪ E.g.
• Robotics:

▪ Walking robot
▪ Cleaning robot

• Games:
▪ Blackjack
▪ Backgammon
▪ DOTA2

The goal of RL ￼25

C
O

M
-3

04

▪ If the agent does a full rollout (acts until it reaches the horizon H) in the
environment, it will get a sequence of rewards r .

▪ The return is some function of these rewards that we can use to measure
the performance of our agent.

▪ In the simplest case, the return is just the sum of the rewards:

The goal of RL ￼26

C
O

M
-3

04

▪ So, we aim to learn a policy π(a|s) to control the agent's actions that
maximizes the return the agent gets.

▪ Mathematically the objective of RL is:

• Maximise the return we get through a full rollout of the policy π

The goal of RL ￼27

C
O

M
-3

04

▪ We care more about immediate rewards than potential future rewards
▪ And sometimes we have to deal with possibly infinite horizons

▪ Solution: discount future rewards

• Multiply future rewards by a discount factor γ (0 < γ < 1) when
calculating return

The discount factor γ ￼28

￼29

10 minutes of RL training 120 minutes of RL training 240 minutes of RL training

▪ The problem

• Reinforcement learning
▪ The formalization

• Markov decision processes (MDP)

• The MDP optimization target
▪ Solving an MDP

• Policy gradient
• REINFORCE
• TRPO
• PPO

▪ What's missing?

￼30Lecture Outline

How do we teach a robot to solve a rubiks cube?
(Sped up by 5x)

C
O

M
-3

04

▪ In practice, we usually represent the policy π with a neural network

▪ So, we can use deep learning methods to learn the policy

What is our policy? ￼31

C
O

M
-3

04

▪ Follow the negative gradient of a function gradually to a minima

Optimization:
Gradient decent

￼32

C
O

M
-3

04

▪ To optimize a neural network, we need a differentiable target function to
do gradient descent/ascent on

▪ Modifying the objective from earlier can get us this:
• Let the return for some rollout τ be
• Then the utility U for a model parameterized by θ is given by

• Where P(τ | θ) is the probability of seeing rollout τ with parameters θ

Policy optimization ￼33

C
O

M
-3

04

▪ So, our goal is to find θ that maximizes the utility U:

Policy optimization ￼34

C
O

M
-3

04

￼35Policy gradient

Begin with:

C
O

M
-3

04

￼36Policy gradient

Differentiate with respect to θ:

C
O

M
-3

04

￼37Policy gradient

Rearrange:

C
O

M
-3

04

￼38Policy gradient

Add fraction:

C
O

M
-3

04

￼39Policy gradient

Rearrange:

C
O

M
-3

04

￼40Policy gradient

Use properties of log derivative:

C
O

M
-3

04

￼41Policy gradient

Approximate with empirical estimate over m rollouts:

C
O

M
-3

04

▪ The gradient:

• Increases the (log) probability
of paths with positive return

• Decreases the (log) probability
of paths with negative return

▪ The gradient is estimated over a
sample of m rollouts

Policy gradient:
Intuition

￼42

C
O

M
-3

04

▪ So, we end up with the empirical gradient estimate:

▪ If we can compute the probability of a rollout, we could use it to perform
gradient ascent on our model.

Policy gradient ￼43

C
O

M
-3

04

▪ We can't directly compute the trajectory probability, so let's break down
the gradient further:

▪ The rollout probability can be decomposed into:
• Dynamics: the transition probability from one state to the next
• Policy: the probability of this transition happening

▪ The probability of a step occurring is hence Dynamics * Policy
▪ The rollout probability is the product of all steps probabilities

Gradient
decomposition

￼44

C
O

M
-3

04

▪ We can't directly compute the trajectory probability, so let's break down
the gradient further:

▪ Apply the log to the probability

Gradient
decomposition

￼45

C
O

M
-3

04

▪ We can't directly compute the trajectory probability, so let's break down
the gradient further:

▪ Dynamics doesn't depend on θ, so it's gradient is 0!

Gradient
decomposition

￼46

C
O

M
-3

04

▪ We can't directly compute the trajectory probability, so let's break down
the gradient further:

▪ Rearrange:

Gradient
decomposition

￼47

C
O

M
-3

04

▪ Now that we have a gradient, we can do gradient ascent:

▪ Plugging in our gradient estimate:

• α is the learning rate (how much we update our model each step)

Finding the optimal
policy

￼48

C
O

M
-3

04

▪ So, to find the optimal policy we could just run this gradient ascent over
lots of trajectories.

▪ The "vanilla" policy gradient algorithm

• Loop until sufficiently converged:

▪ Collect a set of m rollouts following

▪ Do:

Finding the optimal
policy

￼49

C
O

M
-3

04

▪ The gradient:

• Increases the odds of an action
happening in a state when the
rollout gave positive return

• Decreases the odds of an
action happening in a state
when the rollout gave negative
return

Policy gradient:
Intuition

￼50

C
O

M
-3

04

▪ An alternative to the vanilla policy gradient algorithm is REINFORCE

▪ Estimate gradient and update policy per step instead

▪ Loop until sufficiently converged:
• Do one rollout τ following
• For each step t = 0, 1, ..., H of the episode:

▪ Do:

▪ Faster (updates parameters much more often) but noisier

The REINFORCE
algorithm

￼51

C
O

M
-3

04
Example: robot
walking

￼52

C
O

M
-3

04

▪ So far we assumed the reward function is "nice"
• Need negative reward to push down bad

paths

▪ But what if it isn't?
• Reward is often always positive

▪ Use advantage instead
• How much better is the return than what we

expected?

Advantage vs
return

￼53

C
O

M
-3

04

▪ Advantage A
• How much better is the return than what

we expected?

▪ Subtract a baseline b which estimates the
expected return

▪ We usually use advantage as it is a better
signal for models to learn from

Advantage vs
return

￼54

C
O

M
-3

04

▪ How do we choose the step size alpha?
• A: trial and error

▪ What might happen if the step size is too small?
• A: No learning -> waste of time

▪ What might happen if the step size is too big?
• A: The policy will become bad -> all future

data collection is affected!

Step size ￼55

The mountain of policies
Be careful where you step!

C
O

M
-3

04

▪ But the best step size might not be consistent

• So, it can be very easy to ruin our policy

▪ How do we stop this from happening?

Step size ￼56

A loss landscape

C
O

M
-3

04

▪ What if we could learn by acting according to
our old policy for longer?
• We trust our old policy. So use that trust.

▪ We should also stay close to our old policy
• We don't trust a different policy too much

TRPO: Idea ￼57

C
O

M
-3

04
Surrogate objective ￼58

C
O

M
-3

04
Surrogate objective ￼59

C
O

M
-3

04
Surrogate objective ￼60

C
O

M
-3

04
Surrogate objective ￼61

C
O

M
-3

04

▪ With a similar derivation as earlier, we can start from our surrogate loss

• and drop the dynamics to get a new objective

▪ This gives us a new loss we can optimize

Surrogate objective ￼62

C
O

M
-3

04

▪ Measure the closeness of 2 distributions:

▪ Details aren't super important.

▪ But its a tool we can use to measure the closeness of two policies

KL divergence ￼63

C
O

M
-3

04

▪ Trust region policy optimization (TRPO) optimizes the surrogate loss:

▪ While staying close to the old policy:

▪ Note: the agent acts according to the old policy, which is updated every
so often

TRPO ￼64

C
O

M
-3

04

▪ Act with the trusted policy to find a
good step to a better policy

▪ Stay close to the old policy, or our
estimates might be bad

▪ Update our data collection policy
to the better policy

▪ Keep repeating to gradually
optimize the policy

TRPO Intuition ￼65

C
O

M
-3

04

▪ Hard to implement trust region for complex policies

▪ We can need to estimate the conjugate gradient (complex)

▪ Would be much easier if standard optimizers could be used
• AdamW
• RMSProp
• ...

TRPO issues ￼66

C
O

M
-3

04

▪ In deep learning, we usually treat a constraint as another loss term with
some weight

▪ We can do that with the KL constraint to make this a simpler optimization
problem

PPO v1 ￼67

From

To

C
O

M
-3

04

▪ Lets understand our objective better:

▪ This ratio gives us how likely it is to take an action under the old policy vs
the new one
• If this ratio is greater than 1, we are more likely to take the action

under the new policy
• If this ratio is less than 1, we are less likely to take the action under

the new policy

Improving PPO ￼68

C
O

M
-3

04

▪ Since it's important, we'll name this ratio:

▪ This ratio measures the similarity of the old and new policies.

▪ To keep the policies similar, we just need to keep this ratio close to 1.

Improving PPO ￼69

C
O

M
-3

04

▪ We can form a new objective that uses this ratio to keep the policies
close:

▪ We maintain the trust region by directly clipping the objective if we move
too far away.
• So, if we go out of bounds (outside the clip range), we get a gradient

of 0, and so θ won't be changed.

PPO v2 ￼70

C
O

M
-3

04

▪ Effects of the clipped loss

PPO v2 ￼71

If advantage is positive, only let the rollout be
slightly more likely under the new policy

If advantage is negative, don't try and
decrease the odds of seeing a rollout too far

C
O

M
-3

04

▪ Note that we don't clip the bottom of the objective
• This means that if the new policy can always be pushed towards the

old, trusted policy
• We just limit how far it can be pushed away

PPO v2 ￼72

C
O

M
-3

04

▪ Still the same idea as TRPO
• Take small, cautious steps that

are definitely safe

▪ But, the boundaries are harder and
more pessimistic

▪ And the objective is easier to
optimize

PPO intuition ￼73

▪ The problem

• Reinforcement learning
▪ The formalization

• Markov decision processes (MDP)

• The MDP optimization target
▪ Solving an MDP

• Policy gradient

• REINFORCE

• TRPO

• PPO
▪ What's missing?

￼74Lecture Outline

How do we teach a robot to solve a rubiks cube?
(Sped up by 5x)

C
O

M
-3

04

▪ We covered the basics needed for PPO, but there is much more to RL
• Value/Action-value function
• Value iteration
• Policy iteration
• Bellman equations
• DQN
• Actor-critic
• DDPG
• SAC
• and lots more

What we missed ￼75

RL in
robotics

Kunal Pratap Singh

11/03/2025

C
O

M
-3

04
Embodied AI ￼77

1. Dietke et al., Retrospectives on the Embodied AI workshop, 2022

C
O

M
-3

04
Embodied AI ￼78

Navigation Mobile Manipulation

C
O

M
-3

04
Navigation ￼79

Created by Capativ Design
from Noun Project

“Find a bed”

Goal

Created by Nurul Huda
from Noun Project

GPS

Target

C
O

M
-3

04
Navigation ￼80

PointNav

Created by Melisa Kurnia
from the Noun Project

Created by iconnut
from the Noun Project

RGB Depth

ObjectNav ImageNav

Sensors

GPS

Target “Find me a bed”

RGB Depth

GPS

RGB Depth

C
O

M
-3

04
Navigation ￼81

Reinforcement learning in Navigation

Reward, Rt

?

Action, At

Forward, Backward
RotateLeft, RotateRight

EnvironmentAgent

State, St

DepthRGB

C
O

M
-3

04
Navigation ￼82

Reinforcement learning in Navigation

C
O

M
-3

04
Navigation ￼83

Reinforcement learning in Navigation
Reward, Rt

Agent Environment

Created by LUTFI GANI AL ACHMAD
from Noun Project

Target

Rsuccess = {2.5, if reach goal
0, otherwise

Terminal
Reward

C
O

M
-3

04
Navigation ￼84

Reinforcement learning in Navigation

Rprogress = − distance(post, posgoal)

Rslack = − 0.01

Rsuccess = {2.5, if reach goal
0, otherwise

Terminal
Reward

Reward, Rt

Agent Environment

Created by LUTFI GANI AL ACHMAD
from Noun Project

Target

Reward Shaping

C
O

M
-3

04
Navigation ￼85

Reinforcement learning in Navigation
Reward, Rt

R_t = -5.01, R_progress = -5, R_slack = -0.01, R_sucess=0

R_t = 2.49, R_progress = 0, R_slack = -0.01,

Created by LUTFI GANI AL ACHMAD
from Noun Project

Target : Desk

T=1

Rprogress = − distance(post, posgoal)

Rslack = − 0.01

Rsuccess = {2.5, if reach goal
0, otherwise

RT = Rsuccess + Rslack + Rprogress

Rsuccess = 0 Rslack = − 0.01

Rprogress = − 5

RT=1 = 0 + −0.01 + −5

T = 1

C
O

M
-3

04
Navigation ￼86

Reinforcement learning in Navigation
Reward, Rt

R_t = -5.01, R_progress = -5, R_slack = -0.01, R_sucess=0

R_t = 2.49, R_progress = 0, R_slack = -0.01,

Created by LUTFI GANI AL ACHMAD
from Noun Project

Target : Desk

T=1

Rprogress = − distance(post, posgoal)

Rslack = − 0.01

Rsuccess = {2.5, if reach goal
0, otherwise

RT = Rsuccess + Rslack + Rprogress

Rsuccess = 0 Rslack = − 0.01

Rprogress = − 3

RT=2 = 0 + −0.01 + −3

T = 2 T=2

C
O

M
-3

04
Navigation ￼87

Reinforcement learning in Navigation
Reward, Rt

R_t = -5.01, R_progress = -5, R_slack = -0.01, R_sucess=0

R_t = 2.49, R_progress = 0, R_slack = -0.01,

T=1

Rprogress = − distance(post, posgoal)

Rslack = − 0.01

Rsuccess = {2.5, if reach goal
0, otherwise

RT = Rsuccess + Rslack + Rprogress

Rsuccess = 2.5 Rslack = − 0.01

Rprogress = − 1

RT=3 = 2.5 + −0.01 + −1

T = 3 T=2

T=3
Created by LUTFI GANI AL ACHMAD
from Noun Project

Target : Desk

C
O

M
-3

04
Navigation ￼88

Reinforcement learning in Navigation
Reward, Rt

R_t = -5.01, R_progress = -5, R_slack = -0.01, R_sucess=0

R_t = 2.49, R_progress = 0, R_slack = -0.01,

T=1

T=2

T=3
Created by LUTFI GANI AL ACHMAD
from Noun Project

Target : Desk

In Summary,

RT=1 = − 5.01

RT=2 = − 3.01

RT=3 = 1.49

C
O

M
-3

04
Navigation ￼89

ProcTHORHabitat Gibson

Reinforcement learning in Navigation

C
O

M
-3

04
Navigation ￼90

DD-PPO: Distributed Decentralised PPO

C
O

M
-3

04
Navigation ￼91

DD-PPO: Decentralised Distributed PPO

https://www.youtube.com/watch?v=wNDcvomBRt8

C
O

M
-3

04
Navigation ￼92

Poliformer: Scaling On-policy RL with Transformers

C
O

M
-3

04
Navigation ￼93

Poliformer: Scaling On-policy RL with Transformers

C
O

M
-3

04
Navigation ￼94

Poliformer: Scaling On-policy RL with Transformers

C
O

M
-3

04
Mobile Manipulation ￼95

Agent Goal : Pick and Place

C
O

M
-3

04
Mobile Manipulation ￼96

Agent Action, At

Joint position

Base navigation actions

C
O

M
-3

04
Mobile Manipulation ￼97

Rnav = 0.1 ⋅ ∥gt∥ + 0.1 ⋅ | (vt)g |
Navigation

Reward, Rt

gt

vt

Distance-to-goal reward

Velocity along the goal

Agent Action, At

Joint position

Base navigation actions

C
O

M
-3

04
Mobile Manipulation ￼98

Agent Action, At

Joint position

Base navigation actions
Picking objects

Rpick = 0.5 ⋅ ∥ot − pt∥ + 0.5 ⋅ Rlift

Rlift = (1 − tanh (15 ⋅ ((ot)z)+)) 𝕀 [∑
i

fi > 10]

Rnav = 0.1 ⋅ ∥gt∥ + 0.1 ⋅ | (vt)g |
Navigation

Reward, Rt

C
O

M
-3

04
Mobile Manipulation ￼99

Agent Action, At

Joint position

Base navigation actions
Picking objects

Rpick = 0.5 ⋅ ∥ot − pt∥ + 0.5 ⋅ Rlift

Rlift = (1 − tanh (15 ⋅ ((ot)z)+)) 𝕀 [∑
i

fi > 10]

Rnav = 0.1 ⋅ ∥gt∥ + 0.1 ⋅ | (vt)g |
Navigation

Reward, Rt

Gripper

C
O

M
-3

04
RL is not all you need ￼100

▪ Reward engineering is hard for complex
tasks.

C
O

M
-3

04
RL is not all you need ￼101

▪ RL is sample inefficient.
▪ Millions of interactions for a task.

C
O

M
-3

04
RL is not all you need ￼102

▪ Imitation Learning, explicit mapping
approaches are coming back.

C
O

M
-3

04
RL is not all you need ￼103

▪ Imitation Learning, explicit mapping
approaches are coming back.

C
O

M
 3

04

S
in

gh

Thank you!

Amir Zamir (amir.zamir@epfl.ch)

Jason Toskov (jason.toskov@epfl.ch head TA)

Kunal Pratap Singh (Kunal.singh@epfl.ch)
Roman Bachmann (roman.bachmann@epfl.ch)

https://vilab.epfl.ch/

￼104

