Proximal policy

optimization (PPO)
in 1 hour

A brief introduction to modern RL

Jason Toskov

<
o
@
=
e}
O
]

=PrL

How do we teach a robot to solve a rubiks cube?
(Sped up by 5x)

Lecture Outline
= The problem

« Reinforcement learning
= The formalization
« Markov decision processes (MDP)
« The MDP optimization target
= Solving an MDP
- Policy gradient
- REINFORCE
- TRPO
-« PPO

= What's missing?

=PrL

How do we teach a robot to solve a rubiks cube?
(Sped up by 5x)

Lecture Outline
= The problem

- Reinforcement learning
= The formalization
« Markov decision processes (MDP)
« The MDP optimization target
= Solving an MDP
- Policy gradient
- REINFORCE
- TRPO
-« PPO

= What's missing?

=PrL

=PFL Definition

= Reinforcement learning:

- Learning what to do in a situation to
maximize some reward signal

=PFL Reinforcement
Learning (RL)

= The setup:

state

:[Agent}

- Environment

\

<

action

=PFL Reinforcement
Learning (RL)

= The setup:
- An agent

state

A agont |

reward

S Nk

1%
7

. | Environment]4—

action
A,

=PFL. Reinforcement
Learning (RL)

= Agent: Dog

nd Minds

B CS-503: Visual Intelligence: Machines a

=PFL. Reinforcement

B COM-304

Learning (RL)

= The setup:
- An agent takes an action

state

';l Agent |

reward

)

A

el
X

action
A,

Environment]4—

=PFL. Reinforcement
Learning (RL)

= Agent: Dog

= Action: Moves legs

nd Minds

: Machines a

B CS-503: Visual Intelligence

10

=PFL Reinforcement "
Learning (RL)

= The setup:
- An agent takes an action in the ’J Agent ||

environment.

state reward action
S t R t At

L Rt+l #
< Environmentj}—
\

—

B COM-304

=PFL. Reinforcement "
Learning (RL) ﬁ

= Agent: Dog
= Action: Moves legs

= Environment: The room

nd Minds

: Machines a

B CS-503: Visual Intelligence

=PFL. Reinforcement

B COM-304

Learning (RL)

= The setup:

- An agent takes an action in the
environment.

- The environment gives us a new
state

state
S

'J Agent |

)

Environment]4—

13

action
A,

=PFL. Reinforcement
Learning (RL)

= Agent: Dog
= Action: Moves legs

= Environment; The room

nd Mi

= State: The dogs location in the
room

chines a

: Ma

B CS-503: Visual Intelligence

14

=PFL. Reinforcement

B COM-304

Learning (RL)

= The setup:

- An agent takes an action in the
environment.

- The environment changes to a
new state and gives a reward.

state

';I Agent |

)

Environment]4—

15

action
A,

=PFL. Reinforcement
Learning (RL)

= Agent: Dog
= Action: Moves legs

= Environment; The room

nd Mi

= State: The dogs location in the
room

chines a

: Ma

= Reward: The treat in the bowl

B CS-503: Visual Intelligence

16

=PFL. Reinforcement

B COM-304

Learning (RL)

= The setup:

- An agent takes an action in the
environment.

- The environment changes to a
new state and gives a reward.

- The agent will try to act to
maximize the reward it gets in a
rollout.

state

'J Agent |

)

Environment]4—

action
A,

17

=PFL. Reinforcement
Learning (RL)

= Agent: Dog
= Action: Moves legs

= Environment; The room

nd Mi

= State: The dogs location in the
room

chines a

: Ma

= Reward: The treat in the bowl

= Rollout: One dog's attempt to
get the treat

B CS-503: Visual Intelligence

18

=PFL. Reinforcement

B COM-304

Learning (RL)

= The setup:

- An agent takes an action in the
environment.

- The environment changes to a
new state and gives a reward.

- The agent will try to act to
maximize the reward it gets in a
rollout

= Assumptions:
- The agent can see the state.

- We only care about the current
state.

state

'J Agent ||

Rt+l (

\

Environment]4—

A state S; is Markov if and only if,

19

action
A,

P[Si+1 | St] = P[St41 | S1, 52, , St

=PFL. Reinforcement

B COM-304

Learning (RL)

'J Agent |

)

RI+1 (

\,

Environment]4—

Markov process

A state S; is Markov if and only if,

20

action
A,

P[Si11 | S¢] = P[St41 | S1,82,-++, 5]

=PrL

How do we teach a robot to solve a rubiks cube?
(Sped up by 5x)

Lecture Outline
= The problem

« Reinforcement learning
= The formalization
- Markov decision processes (MDP)
- The MDP optimization target
= Solving an MDP
- Policy gradient
- REINFORCE
« TRPO
- PPO

= What's missing?

21

=L Markov Decision f Agent)
Processes (MDP) su| |

. | Environment]4—

\

= Mathematically, this problem can be
described with a Markov Decision
Process (MDP).

= MDPs are a mathematically idealized
form of the more general reinforcement
learning problem.

- We can make theoretically grounded
statements about MDPs with math R

- Hence, we can actually solve our
problems when described with a MDP

B COM-304

=PFL. Markov Decision f Agent)

B COM-304

Processes (MDP) | oo

S| R

. | Environment]4—

= AMDP is defined by:
- The set of possible states S
« The set of possible actions A
- Atransition function P(s'| s, a)
- Areward function R(s, a, s')
- An initial state s0O
- Adiscount factor y
« Ahorizon H 1

= Note: everything only depends on the current state!

action
A,

23

=PFL. Markov Decision

'J Agent |

Processes (MDP) | oo

s, | IR

R

1+1

)

r

<
<%

S+l

-

= MDPs are a very considerable abstraction.

\,

Environment]4—

action
A,

= We assume everything (sensors, memory, control, objectives) can be
reduced to 3 signals, actions, states and rewards passing between an

agent and the environment.

- And, we assume that only considering the last state is enough for

everything

= But often this is enough, allowing us to make incredibly complex

problems tractable.

B COM-304

24

=L The goal of RL

state

';l Agent |

reward
R,

)

r

\

Environment]4—

action
A,

= To solve an RL problem, we typically cast the problem as an MDP, and

then solve the MDP using standard techniques

= E.g.

« Robotics:
= Walking robot
= Cleaning robot

- Games:
= Blackjack
= Backgammon
= DOTAZ2

B COM-304

25

=L The goal of RL

B COM-304

"| Agent |

state reward
SI R t

)

r

\

Environment]4—

action
A,

= |f the agent does a full rollout (acts until it reaches the horizon H) in the
environment, it will get a sequence of rewards R, .

= The return is some function of these rewards that we can use to measure

the performance of our agent.

= In the simplest case, the return is just the sum of the rewards:

Gy

H
_ Z R,
k=t

R4+ Ryy + ...+ Ry

26

=L The goal of RL

B COM-304

"| Agent |

state reward
SI R t

)

r

= S0, we aim to learn a policy rr(a|s) to control the agent's actions that

maximizes the return the agent gets.

= Mathematically the objective of RL is:

\

Environment]4—

max I [Golﬂ']

T

- Maximise the return we get through a full rollout of the policy T

action
A,

27

"L The discount factor y "

B COM-304

= \We care more about immediate rewards than potential future rewards

= And sometimes we have to deal with possibly infinite horizons

= Solution: discount future rewards

« Multiply future rewards by a discount factor y (0 <y < 1) when
calculating return

H
Gy = R; +YRiy1 + V' Ripo + ... = Z’Yk_tRk
k=t

PI_L

10 minutes of RL training 120 minutes of RL training 240 minutes of RL training

=PrL

How do we teach a robot to solve a rubiks cube?
(Sped up by 5x)

Lecture Outline
= The problem

« Reinforcement learning
= The formalization
« Markov decision processes (MDP)
« The MDP optimization target
= Solving an MDP
- Policy gradient
- REINFORCE
- TRPO
- PPO

= What's missing?

30

=L What is our policy?

B COM-304

31

= In practice, we usually represent the policy 7 with a neural network 7Tg

= S0, we can use deep learning methods to learn the policy

state

T

reward
R,

1+1

v

7

Sr+l

\

Environment]4—

action
A,

=PFL Qptimization:
Gradient decent

= Follow the negative gradient of a function gradually to a minima

0+ 0 — A\Vf(6)

B COM-304

32

=PFL Policy optimization

= To optimize a neural network, we need a differentiable target function to
do gradient descent/ascent on

= Modifying the objective from earlier can get us this:
- Let the return for some rollout 7 be G(7)
- Then the utility U for a model parameterized by 6 is given by

U(0) = E|G(7)|m] = ZPTW G(7)

« Where P(1|) is the probability of seelng rollout r with parameters 6

B COM-304

33

=PFL Policy optimization

= S0, our goal is to find 6 that maximizes the utility U:

max U(0) = mQaXZ P(r]|0)G(T)

0

=L Policy gradient max U (6) = max 3 P(7]6)G(7)

Begin with:

U(0) = > P(r0)G(7)

=L Policy gradient max U (6) = max 3 P(7]6)G(7)

6

U) =) P(rl)G(r)

Differentiate with respect to 6:

VaU(0) = Vs 3 P(7]0)G(7)

=L Policy gradient max U (6) = max 3 P(7]6)G(7)

0

U) =) P(rl)G(r)

VoU(0) = Vo > _ P(r]0)G(T)

Rearrange:

_ Z VoP(1|0)G(T)

=L Policy gradient

max U(f) = max Y P(7|0)G(r)

U9) =Y P(r|0)G(7)

VoU(0) = Vo Y _ P(r]0)G(7)

-y

T

B COM-304

= VyP(r|0)G(r)

Add fraction:
P(r|0)

Pr (o) Vo P(7]0)G(T)

38

=PFL Policy gradient

max U
9

U®) =Y _ P(rl0)G(7)
VoU(0) = Vo Y _ P(r]0)G(7)
= VyP(r|0)G(r)

-y 2 E::Z;vepma)am

Rearrange:

(0) = meaxz P(1]0)G(7)

=3 pirin) Y

P(7]0)

T

B COM-304

39

=PFL Policy gradient

B COM-304

max U
9

U®) =Y _ P(rl0)G(7)
VoU(0) = Vo Y _ P(r]0)G(7)
= VyP(r|0)G(r)

-y E::Z;vepma)am

N pog VPG

(0) = meaxz P(1]0)G(7)

Use properties of log derivative:

=Y P(7]0)Vglog P(7|0)G()

40

=PFL Policy gradient

B COM-304

=) P(7l6)G(7)

VoU(0) = Vo Y _ P(r]0)G(7)

= VyP(r|0)G(r)

-y ET:Z;WP(TW)G(T)

ZP |9 VHP T|)‘9) (7)

= ZP T10)Vglog P(7|0)G(T)

Approximate with empirical estimate over m rollouts:

m

VU (6) ~ = > Vylog P(rl6)G(r)

=1

41

=PFL Policy gradient:
Intuition

m

VaU(0) = 4= 3 Velog P(rlf)G(r)

= The gradient:

« Increases the (log) probability
of paths with positive return

- Decreases the (log) probability
of paths with negative return

= The gradient is estimated over a
sample of m rollouts

B COM-304

42

=PFL Policy gradient

B COM-304

max U(f) = max Y P(7|0)G(r)

= S0, we end up with the empirical gradient estimate:

m

. 1
VoU(0) ~ g = — Zve log P(7;]0)G(;)

1=1

= |f we can compute the probability of a rollout, we could use it to perform
gradient ascent on our model.

43

=7 Gradient :
decomposition

= We can't directly compute the trajectory probability, so let's break down
the gradient further:

Vo log P(7();0) = Vg log (@ 156 DV

(si1lse s us
= The rollout probability can be decomposed into:
- Dynamics: the transition probability from one state to the next
- Policy: the probability of this transition happening
= The probability of a step occurring is hence Dynamics * Policy
= The rollout probability is the product of all steps probabilities

B COM-304

=PFL Gradient
decomposition

= We can't directly compute the trajectory probability, so let's break down
the gradient further:

Vo log P(1%);0) = Vg log

>y

Vv

HPsm st ut) - e<u£”s§’>g]

dynamics model policy

— Vo [Zlogpst |s§“,u;>>+zlogwo ”|s§“>]

= Apply the log to the probability

B COM-304

45

=PFL Gradient
decomposition

= We can't directly compute the trajectory probability, so let's break down
the gradient further:

Vo log P(1%);0) = Vg log

>y

Vv

HPsm st ut) - e<u§”s§”g]

dynamics model policy

H
=V [Z log P(st |s§z),u£1))+ Zlog M(ugz)lsgz))]

t=0

=V Zlog 7o (u)|s(z)

= Dynamics doesn't depend on 6, so it's gradient is 0!

B COM-304

46

=PFL Gradient
decomposition

= We can't directly compute the trajectory probability, so let's break down
the gradient further:

>y

Vo log P(r%;6) = Vg log HPsm 58, ul?) - 7o (uf |5

v

dynamics model policy

H
=V Zlogpst st uf®) + D " logmo(uf”|s;”)
t=0 t=0

H
=V Z log ma(ul? [s{))
t=0

H
= Rearrange: => Vologme(ulsi”)
t=0 e

B COM-304

no dynamics model required!!

47

=PrL 1 I r
gg}iocl:l{,ig the optimal 0~ - PG

= Now that we have a gradient, we can do gradient ascent:

0« 0+ aVU(0)

= Plugging in our gradient estimate:

m H
1 i), (i
0« 6+ a— ZG(TZ') Zve 10g770(a§)\si))

1=1 t=0

 ais the learning rate (how much we update our model each step)

B COM-304

48

=F7L Finding the optimal
policy

= S0, to find the optimal policy we could just run this gradient ascent over
lots of trajectories.

= The "vanilla" policy gradient algorithm

* Loop until sufficiently converged:
= Collect a set of m rollouts 7; following Ty

m H
1 i)y (i
= DO: 6+ 0+ a— ZG(Ti) Zve logm(ag)‘3§))

1=1 t=0

B COM-304

49

=PFL Policy gradient: |
Intuition m

m H
1 IR0
0 0+a—% G(r)Y_ Vologm(a;”|s;")

1=1 t=0
= The gradient:

« Increases the odds of an action
happening in a state when the
rollout gave positive return

- Decreases the odds of an
action happening in a state
when the rollout gave negative
return

B COM-304

=P*L. The REINFORCE
algorithm

= An alternative to the vanilla policy gradient algorithm is REINFORCE

= Estimate gradient and update policy per step instead

= Loop until sufficiently converged:
- Do one rollout t following 7y
- For each step t =0, 1, ..., H of the episode:
= Do: 0+ 0+ aG;Vglogmy(as|s:)

= Faster (updates parameters much more often) but noisier

B COM-304

51

=L Example: robot
walking

=L Advantage vs
return

= So far we assumed the reward function is "nice"

- Need negative reward to push down bad
paths

= But what if it isn't?
- Reward is often always positive

= Use advantage instead

« How much better is the return than what we
expected?

B COM-304

53

=L Advantage vs
return

= Advantage A

« How much better is the return than what
we expected?

40 4

Frequenc

= Subtract a baseline b which estimates the

expected return

10 +

At — Gt — b(St) :

= WWe usually use advantage as it is a better
signal for models to learn from

B COM-304

Return vs Advantage distributions

30 A

Returns

Advantages

-10

-5

T T T
0 5 10
Trajectory Return/Advantage

15

T
20

54

=PFL Step size

= How do we choose the step size alpha?
« A: trial and error

= WWhat might happen if the step size is too small?
- A: No learning -> waste of time

= What might happen if the step size is too big?

- A: The policy will become bad -> all future
data collection is affected!

B COM-304

The mountain of policies
Be careful where you step!

55

=PFL Step size

= But the best step size might not be consistent

- S0, it can be very easy to ruin our policy

= How do we stop this from happening?

B COM-304

A loss landscape

56

=PFL. TRPO: Idea

B COM-304

= What if we could learn by acting according to
our old policy for longer?

« We trust our old policy. So use that trust.

= \WWe should also stay close to our old policy
- We don't trust a different policy too much

57

=PFLSurrogate objective

U(H) = ET~901d [

U(f) =

P(r|6)
P(7|0014)

R(r)

=PFLSurrogate objective

U(H) = E7-~901d _P(T|Hold)

VQU(H) = ET~901d

U(f) =

P(r]6)

(Vo P(7]0)
| P(7]601a)

R(r)

R(r)

=PFLSurrogate objective

U(0) = Ernbo

VoU(0) = Ernbou

VG U(9)|0=90]d —]ETNOOId

U(f) =

P(7|0)
| P(7]601a)

(Vo P(7|0)
| P(7]001a)

R(r)

R(r)

Vo P(7]0)]g...
[P(7|601a)

R()

=PFL_Surrogate objective v =EcH)m) = 2 PrinG(

[P(T]6
U(0) = Ernoo u)

_P<T|eold>R("')]

VoU(0) = Er .., Ziflgf)) R(T)]

Vo P(7]0)],
Vo U(0)|9=901d =]ETNoold [o R(T)

P(7|601a)

= Ernbo14 [Vg log P(T|0)|001d R(T)]

=PFL_Surrogate objective v =EcH)m) = 2 PrinG(

B COM-304

= With a similar derivation as earlier, we can start from our surrogate loss

U©) = v | prorge s R0

- and drop the dynamics to get a new objective

= This gives us a new loss we can optimize

m(als)
7T01d(0,|8)

T

max L(7) = Er_, [ATl (s, a)]

62

=L KL divergence

= Measure the closeness of 2 distributions:

Da(P Q) = 3 Pla) g E;)

reX

= Details aren't super important.

= But its a tool we can use to measure the closeness of two policies

B COM-304

63

. TRPO

= Trust region policy optimization (TRPO) optimizes the surrogate loss:

m(als)

max L(7m) =E,_, A" (s, a)

T 7r01d(a|s)
= While staying close to the old policy:
Eroq [KL(7||mo1a)] < €

= Note: the agent acts according to the old policy, which is updated every
so often

B COM-304

64

=PFL. TRPO Intuition

= Act with the trusted policy to find a
good step to a better policy

= Stay close to the old policy, or our
estimates might be bad

= Update our data collection policy
to the better policy

= Keep repeating to gradually
optimize the policy

B COM-304

65

=PFL. TRPO issues

= Hard to implement trust region for complex policies
= \We can need to estimate the conjugate gradient (complex)
= Would be much easier if standard optimizers could be used

« AdamW
« RMSProp

B COM-304

66

= . PPO v1

= In deep learning, we usually treat a constraint as another loss term with
some weight

= We can do that with the KL constraint to make this a simpler optimization
problem

maximize]]:Zt [—ﬂ-e(at l St) fit]
o TOo1a (at | st)

subject to]Et[KL[Weold(° | 8),ma (- | s¢)]] < 6.

From

mo(ag|sy)

7Tt”old (a’t | St)

To 1n(a}xll::t { At] - B (Et [KL[mg,,, (- | 8¢),ma(- | s1)]] — 5)

B COM-304

67

=PFL Improving PPO

= Lets understand our objective better:

= This ratio gives us how likely it is to take an action under the old policy vs
the new one

« If this ratio is , We are likely to take the action
under the new policy

- If this ratio is less than 1, we are less likely to take the action under
the new policy

B COM-304

68

=PFL Improving PPO

= Since it's important, we'll name this ratio:

re(0) = o2ty 80 r(boa) = 1

= This ratio measures the similarity of the old and new policies.

= To keep the policies similar, we just need to keep this ratio close to 1.

B COM-304

69

EPFL PPO V2 re(0) = mo(at]se) o r(Ood) = 1

B COM-304

Moo (at | 5¢)”

= \We can form a new objective that uses this ratio to keep the policies
close:

A

LOMP(9) = B, [min(r:(6) A, clip(ry(6), 1 — e,1+ ¢ Ay)|

= \We maintain the trust region by directly clipping the objective if we move
too far away.

- So, if we go out of bounds (outside the clip range), we get a gradient
of 0, and so 6 won't be changed.

70

=PFL. PPO v2 LOLIP() = I, |min(ry(6) Ay, clip(re(6), 1 — &, 1+ €) 4y)| 71

= Effects of the clipped loss

A<O
[CLIP A>0
1—€1
| — r
— r |
0 11 + € LCLIP
§ If advantage is positive, only let the rollout be If advantage is negative, don't try and

slightly more likely under the new policy decrease the odds of seeing a rollout too far

=PFL. PPO v2 LOEIP(9) = &, [min(rs(6) Ay, clip(ry(6), 1 — ¢, 1+ ©)A)]

= Note that we don't clip the bottom of the objective

- This means that if the new policy can always be pushed towards the
old, trusted policy

« We just limit how far it can be pushed away

A<O
[,CLIP A>0

1_.61

VAN

0 1 i+e LeLIP

B COM-304

=PFL. PPO intuition

= Still the same idea as TRPO

- Take small, cautious steps that
are definitely safe

= But, the boundaries are harder and
more pessimistic

= And the objective is easier to
optimize

B COM-304

73

=PrL

How do we teach a robot to solve a rubiks cube?
(Sped up by 5x)

Lecture Outline
= The problem

« Reinforcement learning
= The formalization
« Markov decision processes (MDP)
« The MDP optimization target
= Solving an MDP
- Policy gradient
- REINFORCE
- TRPO
-« PPO

= What's missing?

74

=PFL \What we missed

= \We covered the basics needed for PPO, but there is much more to RL
 Value/Action-value function
« Value iteration
« Policy iteration
- Bellman equations
- DQN
« Actor-critic
- DDPG
-« SAC
« and lots more

B COM-304

75

RL in
robotics

Kunal Pratap Singh

= Ecole
polytechnique
fédérale
de Lausanne

11/03/2025

=PFL. Embodied Al

i

THERE ANY
CEREAL LEFT?

mis
=

LT sy HeY U e
» V.' g

4 -

1. Dietke et al., Retrospectives on the Embodied Al workshop, 2022

B COM-304

77

=PFL. Embodied Al

Navigation

B COM-304

Mobile Manipulation

Cook Shrimp

(autonomo

6x speed

us)

78

=L Navigation "
Goal

“Find a bed”

B COM-304

=L Navigation "

PointNav ObjectNav ImageNav

Depth Depth

“Find me a bed”

Target

GPS

B COM-304

=L Navigation

Reinforcement learning in Navigation

state

B COM-304

';l Agent |

reward
R,

)

r

\.

Environment J<—

action
A

Agent

<

Action, At

Forward, Backward
RotatelLeft, RotateRight

Environment

Reward, R:

?

81

=L Navigation

Reinforcement learning in Navigation

B COM-304

82

=L Navigation

Reinforcement learning in Navigation

Reward, Rt
'J Agent .
\) R _ 2.5, if reach goal Terminal
state| |reward action success 0, otherwise Reward

L Rl+l (
< Environment]47

Environment

B COM-304

=L Navigation

Reinforcement learning in Navigation

Reward, R:
R _J 2.5, ifreach goal Terminal
SUCCESS ™ A o otherwise Reward
R, .=—0.01
slack Reward Shaping
Ry, pgress = — distance(pos, posy,,;)

Agent Environment

B COM-304

84

=L Navigation "

Reinforcement learning in Navigation

“ Target : Desk

Reward, Rt
R 25, if reach goal
SUCCeSS ™ 1 0, otherwise
Rslack = - 001
Ry, pgress = — distance(pos,, pos,,,;)
RT - Rsuccess + Rslack + Rprogress
T=1
Rsuccess =0 Rslack = —0.01
Rprogress ==5

Ry, =0+ —0.01 + =5

B COM-304

=L Navigation "

Reinforcement learning in Navigation

_‘ Target : Desk

Reward, R:
R 25, if reach goal
SUCCeSS = 1 o, otherwise
Rslack - - 001
Ry, pgress = — distance(pos,, pos,,,;)
RT - Rsuccess + Rslack + Rprogress
T=2
Rsuccess =0 Rslack = —0.01
Rprogress =-3

Ry =0+ —0.01 + —3

B COM-304

=L Navigation "

Reinforcement learning in Navigation

_‘ Target : Desk

Reward, Rt
R 25, if reach goal
SUCCeSS = 1 o, otherwise
Rslack - - 001
Ry, pgress = — distance(pos,, pos,,,;)
RT - Rsuccess + Rslack + Rprogress
T=3
Rsuccess =2.5 Rslack —0.01
Rprogress =—1

Ry_y=25+-001+—1

B COM-304

=L Navigation "

Reinforcement learning in Navigation
Reward, Rt

_‘ Target : Desk

In Summary,

RT=1 = — 5.01 %
Ry, = —3.01 A ;>I<§

B COM-304

=L Navigation "

Reinforcement learning in Navigation

Habitat ProcTHOR Gibson

F 4

PointeoSINNEVIGEIoN

B COM-304

=L Navigation "
DD-PPO: Distributed Decentralised PPO

Performance on PointGoal Navigation

1.0
3009
g
P 0.8
T 0.7
<
(®)]
£06
1 —— Train
o 05 Val
04 7 T 8 T 9 T 9
10 10 10 2.5x10
Steps (experience; log-scale)
RGB Depth (D) GPS+Compass : r T I
1 10 100 180
E GPU time (days; log-scale)
0.1 10 3.0
Wall clock time (days; log-scale)

B COM-304

=L Navigation
DD-PPO: Decentralised Distributed PPO

B COM-304

91

https://www.youtube.com/watch?v=wNDcvomBRt8

=L Navigation

Poliformer: Scaling On-policy RL with Transformers

B COM-304

Continual Improvement with Scale

Hundreds of Parallel Rollouts

N WA O O N ®
o O O O O

Success Rate (%) on CHORES (val)

o O

10M 100M
Training steps

700M

i

92

=L Navigation

Poliformer: Scaling On-policy RL with Transformers

Transformer-based Policy with Visual Foundation Model

()
Causal Transformer Decoder

m (h

B COM-304

qh, g yau)
» - - 1 rr \
- Vision .| E 8 \
-~ | Transformer | S\ KV-cache S«
pL T >
.| 8% 2 -
Searchfor Lyt Goal Encoder (| F & <
asofa »
J U J U

Hundreds of Millions of Model Parameters

\ v

=L Navigation

Poliformer: Scaling On-policy RL with Transformers

B COM-304

94

=L Mobile Manipulation

Agent Goal : Pick and Place

=P*L Mobile Manipulation

B COM-304

state

"| Agent |

reward

)

action

7

Environment]4—

Action, At

Joint position

Base navigation actions

~andots in

ield-of-view

96

Arm Extend
Wrist roll,
pitch, yaw

Camera
AV pan, tilt

Gripper

v

Arm Lift

Base

=P*L Mobile Manipulation

B COM-304

state

"| Agent |

reward

)

Environment]4—

action

Action, At

Joint position

Base navigation actions

97

Reward, Rt

Navigation
Rnav = 0.1 - [Ig |l +0.1 - [(v,),|

g t Distance-to-goal reward

Vt Velocity along the goal

=P*L Mobile Manipulation "
';| Agent |

state reward action
S, | |R. A
. RH—I (!
< ; Environment]4—
Reward, Rt
Agent Action, At Navigation

Rpnavy = 0.1 - [lg |l + 0.1 - [(v),|

Joint position Picking obiects
Base navigation actions Rpick = 0.5 0.5 - Ryt

R”ft:(l—tanh(((0)), +)> [Zf>10]

B COM-304

=P*L Mobile Manipulation

B COM-304

';| Agent |

)

. | Environment]4—

Agent

99

action
A,

Reward, R¢

Navigation

Rpnavy = 0.1 - [lg |l + 0.1 - [(v),|

Picking objects

Rpick = 05 - llo, = pyll

Gripper R)ift = <1 —tanh< ((0),))> [Zf > 10]

=L RL Is not all you need
'J AgentI

= Reward engineering is hard for complex —

state reward action

tasks. s | |& A,

. Rt+l (
_S.. | Environment J<—

:QW‘V‘

A

t

LS

B COM-304

=L RL is not all you need

B COM-304

= RL is sample inefficient.

= Millions of interactions for a task.

’_| Agent |

state reward
S, R,

)

s

. Rr+1

S!+l
<

\,

N\

Environment

v

Continual Improvement with Scale

Hundreds of Parallel Rollouts

o o

IS
o

Success Rate (%) on CHORES (val)
N W

g O N o
o o

o O

10M 100M
Training steps

700M

2
3 10

101

action
A,

=L RL is not all you need

= Imitation Learning, explicit mapping j Agent l
approaches are coming back. state] | reward o
s, | |R A
R., (
hﬂ ; Environment]47

Q: What should RT-2 Large language model

the robot do to

RT-1
3Hz

FiLM
EfficientNet TokenLearner Transformer

e Al 1L 1
D ON i -

[A: = 132 114 128 5 25 156)—)

De-tokenize

AT =1[0.1 -0.2, 0]
AR = [10°, 25°, -7°]

<
o
@
=
e}
O
=

Robot action

=L RL Is not all you need

B COM-304

= Imitation Learning, explicit mapping

approaches are coming back.

Sensor Pose
Reading (x,)

my
Ve

state

Language Goal Image Goal Category Goal

Brown office chair CHAIR
Bed with white sheets BOOK
Cup on the kitchen counter CUP
|

'_| Agent |

)

s

reward

R,
R
:‘in

Perception

Observation (s,)
(RGB-D)

| s;n;am‘I:Map (m,) | |Oblect Instance Memory(n,)l

GOAT: GO to Any Thing

\

Environment]47

103

action
A,

m
"

E COM 304

Thank you!

Amir Zamir (amir.zamir@epfl.ch)

Jason Toskov (jason.toskov@epfl.ch head TA)

Kunal Pratap Singh (Kunal.singh@epfl.ch)
Roman Bachmann (roman.bachmann@epfl.ch)

https://vilab.epfl.ch/

