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Proximal policy 
optimization (PPO) 
in 1 hour
A brief introduction to modern RL 

Jason Toskov
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▪ The problem 

• Reinforcement learning 
▪ The formalization 

• Markov decision processes (MDP) 

• The MDP optimization target 
▪ Solving an MDP 

• Policy gradient 

• REINFORCE 

• TRPO 

• PPO 
▪ What's missing?

￼2Lecture Outline

How do we teach a robot to solve a rubiks cube? 
(Sped up by 5x)
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▪ Reinforcement learning: 

• Learning what to do in a situation to 
maximize some reward signal

Definition ￼5
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▪ The setup:

Reinforcement 
Learning (RL)
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▪ The setup: 
• An agent

Reinforcement 
Learning (RL)
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▪ Agent: Dog

Reinforcement 
Learning (RL)
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▪ The setup: 
• An agent takes an action

Reinforcement 
Learning (RL)
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▪ Agent: Dog 

▪ Action: Moves legs

Reinforcement 
Learning (RL)
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▪ The setup: 
• An agent takes an action in the 

environment.

Reinforcement 
Learning (RL)
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▪ Agent: Dog 

▪ Action: Moves legs 

▪ Environment: The room

Reinforcement 
Learning (RL)
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▪ The setup: 
• An agent takes an action in the 

environment. 
• The environment gives us a new 

state

Reinforcement 
Learning (RL)
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▪ Agent: Dog 

▪ Action: Moves legs 

▪ Environment: The room 

▪ State: The dogs location in the 
room

Reinforcement 
Learning (RL)
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▪ The setup: 
• An agent takes an action in the 

environment. 
• The environment changes to a 

new state and gives a reward.

Reinforcement 
Learning (RL)
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▪ Agent: Dog 

▪ Action: Moves legs 

▪ Environment: The room 

▪ State: The dogs location in the 
room 

▪ Reward: The treat in the bowl

Reinforcement 
Learning (RL)
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▪ The setup: 
• An agent takes an action in the 

environment. 
• The environment changes to a 

new state and gives a reward. 
• The agent will try to act to 

maximize the reward it gets in a 
rollout.

Reinforcement 
Learning (RL)
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▪ Agent: Dog 

▪ Action: Moves legs 

▪ Environment: The room 

▪ State: The dogs location in the 
room 

▪ Reward: The treat in the bowl 

▪ Rollout: One dog's attempt to 
get the treat

Reinforcement 
Learning (RL)
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▪ The setup: 
• An agent takes an action in the 

environment. 
• The environment changes to a 

new state and gives a reward. 
• The agent will try to act to 

maximize the reward it gets in a 
rollout 

▪ Assumptions: 
• The agent can see the state. 
• We only care about the current 

state.

Reinforcement 
Learning (RL)
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Reinforcement 
Learning (RL)
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Markov process



▪ The problem 

• Reinforcement learning 
▪ The formalization 

• Markov decision processes (MDP) 
• The MDP optimization target 

▪ Solving an MDP 

• Policy gradient 

• REINFORCE 

• TRPO 

• PPO 
▪ What's missing?
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How do we teach a robot to solve a rubiks cube? 
(Sped up by 5x)
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▪ Mathematically, this problem can be 
described with a Markov Decision 
Process (MDP). 

▪ MDPs are a mathematically idealized 
form of the more general reinforcement 
learning problem. 
• We can make theoretically grounded 

statements about MDPs with math 
• Hence, we can actually solve our 

problems when described with a MDP

Markov Decision 
Processes (MDP)

￼22
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▪ A MDP is defined by: 
• The set of possible states S 
• The set of possible actions A 
• A transition function P(s' | s, a)  
• A reward function R(s, a, s')  
• An initial state s0 
• A discount factor γ 
• A horizon H 

▪ Note: everything only depends on the current state!

Markov Decision 
Processes (MDP)

￼23
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▪ MDPs are a very considerable abstraction. 

▪ We assume everything (sensors, memory, control, objectives) can be 
reduced to 3 signals, actions, states and rewards passing between an 
agent and the environment. 
• And, we assume that only considering the last state is enough for 

everything 

▪ But often this is enough, allowing us to make incredibly complex 
problems tractable.

Markov Decision 
Processes (MDP)

￼24
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▪ To solve an RL problem, we typically cast the problem as an MDP, and 
then solve the MDP using standard techniques 

▪ E.g. 
• Robotics: 

▪ Walking robot 
▪ Cleaning robot 

• Games: 
▪ Blackjack 
▪ Backgammon 
▪ DOTA2

The goal of RL ￼25
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▪ If the agent does a full rollout (acts until it reaches the horizon H) in the 
environment, it will get a sequence of rewards r  . 

▪ The return is some function of these rewards that we can use to measure 
the performance of our agent. 

▪ In the simplest case, the return is just the sum of the rewards:

The goal of RL ￼26
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▪ So, we aim to learn a policy π(a|s) to control the agent's actions that 
maximizes the return the agent gets. 

▪ Mathematically the objective of RL is: 

• Maximise the return we get through a full rollout of the policy π

The goal of RL ￼27
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▪ We care more about immediate rewards than potential future rewards 
▪ And sometimes we have to deal with possibly infinite horizons 

▪ Solution: discount future rewards 

• Multiply future rewards by a discount factor γ (0 < γ < 1) when 
calculating return

The discount factor γ ￼28
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10 minutes of RL training 120 minutes of RL training 240 minutes of RL training



▪ The problem 

• Reinforcement learning 
▪ The formalization 

• Markov decision processes (MDP) 

• The MDP optimization target 
▪ Solving an MDP 

• Policy gradient 
• REINFORCE 
• TRPO 
• PPO 

▪ What's missing?

￼30Lecture Outline

How do we teach a robot to solve a rubiks cube? 
(Sped up by 5x)
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▪ In practice, we usually represent the policy π with a neural network 

▪ So, we can use deep learning methods to learn the policy

What is our policy? ￼31
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▪ Follow the negative gradient of a function gradually to a minima

Optimization: 
Gradient decent

￼32
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▪ To optimize a neural network, we need a differentiable target function to 
do gradient descent/ascent on 

▪ Modifying the objective from earlier can get us this: 
• Let the return for some rollout τ be  
• Then the utility U for a model parameterized by θ is given by 

• Where P(τ | θ) is the probability of seeing rollout τ with parameters θ

Policy optimization ￼33
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▪ So, our goal is to find θ that maximizes the utility U:

Policy optimization ￼34
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￼35Policy gradient

Begin with:



C
O

M
-3

04

￼36Policy gradient

Differentiate with respect to θ:
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￼37Policy gradient

Rearrange:
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￼38Policy gradient

Add fraction:
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￼39Policy gradient

Rearrange:
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￼40Policy gradient

Use properties of log derivative:
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￼41Policy gradient

Approximate with empirical estimate over m rollouts:
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▪ The gradient: 

• Increases the (log) probability 
of paths with positive return 

• Decreases the (log) probability 
of paths with negative return 

▪ The gradient is estimated over a 
sample of m rollouts

Policy gradient: 
Intuition

￼42
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▪ So, we end up with the empirical gradient estimate:  

▪ If we can compute the probability of a rollout, we could use it to perform 
gradient ascent on our model.

Policy gradient ￼43
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▪ We can't directly compute the trajectory probability, so let's break down 
the gradient further: 

▪ The rollout probability can be decomposed into: 
• Dynamics: the transition probability from one state to the next 
• Policy: the probability of this transition happening 

▪ The probability of a step occurring is hence Dynamics * Policy 
▪ The rollout probability is the product of all steps probabilities

Gradient 
decomposition

￼44
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▪ We can't directly compute the trajectory probability, so let's break down 
the gradient further: 

▪ Apply the log to the probability 

Gradient 
decomposition

￼45
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▪ We can't directly compute the trajectory probability, so let's break down 
the gradient further: 

▪ Dynamics doesn't depend on θ, so it's gradient is 0!

Gradient 
decomposition

￼46
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▪ We can't directly compute the trajectory probability, so let's break down 
the gradient further: 

▪ Rearrange:

Gradient 
decomposition

￼47
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▪ Now that we have a gradient, we can do gradient ascent: 

▪ Plugging in our gradient estimate: 

• α is the learning rate (how much we update our model each step)

Finding the optimal 
policy

￼48
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▪ So, to find the optimal policy we could just run this gradient ascent over 
lots of trajectories. 

▪ The "vanilla" policy gradient algorithm 

• Loop until sufficiently converged:

▪ Collect a set of m rollouts   following 

▪ Do: 

Finding the optimal 
policy

￼49
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▪ The gradient: 

• Increases the odds of an action 
happening in a state when the 
rollout gave positive return 

• Decreases the odds of an 
action happening in a state 
when the rollout gave negative 
return

Policy gradient: 
Intuition

￼50
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▪ An alternative to the vanilla policy gradient algorithm is REINFORCE 

▪ Estimate gradient and update policy per step instead 

▪ Loop until sufficiently converged:
• Do one rollout τ following 
• For each step t = 0, 1, ..., H of the episode:

▪ Do:

▪ Faster (updates parameters much more often) but noisier

The REINFORCE 
algorithm

￼51
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Example: robot 
walking

￼52
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▪ So far we assumed the reward function is "nice"  
• Need negative reward to push down bad 

paths 

▪ But what if it isn't? 
• Reward is often always positive 

▪ Use advantage instead 
• How much better is the return than what we 

expected?

Advantage vs 
return

￼53



C
O

M
-3

04

▪ Advantage A 
• How much better is the return than what 

we expected? 

▪ Subtract a baseline b which estimates the 
expected return 

▪ We usually use advantage as it is a better 
signal for models to learn from

Advantage vs 
return

￼54
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▪ How do we choose the step size alpha? 
• A: trial and error 

▪ What might happen if the step size is too small? 
• A: No learning -> waste of time 

▪ What might happen if the step size is too big? 
• A: The policy will become bad -> all future 

data collection is affected!

Step size ￼55

The mountain of policies 
Be careful where you step!
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▪ But the best step size might not be consistent  

• So, it can be very easy to ruin our policy 

▪ How do we stop this from happening?

Step size ￼56

A loss landscape
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▪ What if we could learn by acting according to 
our old policy for longer? 
• We trust our old policy. So use that trust. 

▪ We should also stay close to our old policy 
• We don't trust a different policy too much

TRPO: Idea ￼57
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▪ With a similar derivation as earlier, we can start from our surrogate loss  

• and drop the dynamics to get a new objective 

▪ This gives us a new loss we can optimize

Surrogate objective ￼62
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▪ Measure the closeness of 2 distributions: 

▪ Details aren't super important. 

▪ But its a tool we can use to measure the closeness of two policies

KL divergence ￼63



C
O

M
-3

04

▪ Trust region policy optimization (TRPO) optimizes the surrogate loss: 

▪ While staying close to the old policy: 

▪ Note: the agent acts according to the old policy, which is updated every 
so often

TRPO ￼64
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▪ Act with the trusted policy to find a 
good step to a better  policy 

▪ Stay close to the old policy, or our 
estimates might be bad 

▪ Update our data collection policy 
to the better policy 

▪ Keep repeating to gradually 
optimize the policy

TRPO Intuition ￼65
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▪ Hard to implement trust region for complex policies 

▪ We can need to estimate the conjugate gradient (complex) 

▪ Would be much easier if standard optimizers could be used 
• AdamW 
• RMSProp 
• ...

TRPO issues ￼66
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▪ In deep learning, we usually treat a constraint as another loss term with 
some weight 

▪ We can do that with the KL constraint to make this a simpler optimization 
problem

PPO v1 ￼67

From

To
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▪ Lets understand our objective better: 

▪ This ratio gives us how likely it is to take an action under the old policy vs 
the new one 
• If this ratio is greater than 1, we are more likely to take the action 

under the new policy 
• If this ratio is less than 1, we are less likely to take the action under 

the new policy

Improving PPO ￼68
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▪ Since it's important, we'll name this ratio: 

▪ This ratio measures the similarity of the old and new policies. 

▪ To keep the policies similar, we just need to keep this ratio close to 1.

Improving PPO ￼69
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▪ We can form a new objective that uses this ratio to keep the policies 
close: 

▪ We maintain the trust region by directly clipping the objective if we move 
too far away. 
• So, if we go out of bounds (outside the clip range), we get a gradient 

of 0, and so θ won't be changed.

PPO v2 ￼70
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▪ Effects of the clipped loss

PPO v2 ￼71

If advantage is positive, only let the rollout be 
slightly more likely under the new policy 

If advantage is negative, don't try and 
decrease the odds of seeing a rollout too far
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▪ Note that we don't clip the bottom of the objective 
• This means that if the new policy can always be pushed towards the 

old, trusted policy 
• We just limit how far it can be pushed away

PPO v2 ￼72
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▪ Still the same idea as TRPO 
• Take small, cautious steps that 

are definitely safe 

▪ But, the boundaries are harder and 
more pessimistic 

▪ And the objective is easier to 
optimize 

PPO intuition ￼73



▪ The problem 

• Reinforcement learning 
▪ The formalization 

• Markov decision processes (MDP) 

• The MDP optimization target 
▪ Solving an MDP 

• Policy gradient 

• REINFORCE 

• TRPO 

• PPO 
▪ What's missing?
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How do we teach a robot to solve a rubiks cube? 
(Sped up by 5x)
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▪ We covered the basics needed for PPO, but there is much more to RL 
• Value/Action-value function 
• Value iteration 
• Policy iteration 
• Bellman equations 
• DQN 
• Actor-critic 
• DDPG 
• SAC 
• and lots more

What we missed ￼75



RL in 
robotics

Kunal Pratap Singh

11/03/2025
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Embodied AI ￼77

1. Dietke et al., Retrospectives on the Embodied AI workshop, 2022 
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Embodied AI ￼78

Navigation Mobile Manipulation
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Navigation ￼79

Created by Capativ Design
from Noun Project

“Find a bed”

Goal

Created by Nurul Huda
from Noun Project

GPS

Target
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Navigation ￼80

PointNav

Created by Melisa Kurnia
from the Noun Project

Created by iconnut
from the Noun Project

RGB Depth

ObjectNav ImageNav

Sensors

GPS

Target “Find me a bed”

RGB Depth

GPS

RGB Depth
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Navigation ￼81

Reinforcement learning in Navigation

Reward, Rt

?

Action, At

Forward, Backward  
RotateLeft, RotateRight 

EnvironmentAgent

State, St

DepthRGB
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Navigation ￼82

Reinforcement learning in Navigation
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Navigation ￼83

Reinforcement learning in Navigation
Reward, Rt

Agent Environment

Created by LUTFI GANI AL ACHMAD
from Noun Project

Target

Rsuccess = {2.5, if reach goal
0, otherwise

Terminal 
Reward
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Navigation ￼84

Reinforcement learning in Navigation

Rprogress = − distance(post, posgoal)

Rslack = − 0.01

Rsuccess = {2.5, if reach goal
0, otherwise

Terminal 
Reward

Reward, Rt

Agent Environment

Created by LUTFI GANI AL ACHMAD
from Noun Project

Target

Reward Shaping
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Navigation ￼85

Reinforcement learning in Navigation
Reward, Rt

R_t = -5.01, R_progress = -5, R_slack = -0.01, R_sucess=0

R_t = 2.49, R_progress = 0, R_slack = -0.01,  

Created by LUTFI GANI AL ACHMAD
from Noun Project

Target : Desk

T=1

Rprogress = − distance(post, posgoal)

Rslack = − 0.01

Rsuccess = {2.5, if reach goal
0, otherwise

RT = Rsuccess + Rslack + Rprogress

Rsuccess = 0 Rslack = − 0.01

Rprogress = − 5

RT=1 = 0 + −0.01 + −5

T = 1
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Navigation ￼86

Reinforcement learning in Navigation
Reward, Rt

R_t = -5.01, R_progress = -5, R_slack = -0.01, R_sucess=0

R_t = 2.49, R_progress = 0, R_slack = -0.01,  

Created by LUTFI GANI AL ACHMAD
from Noun Project

Target : Desk

T=1

Rprogress = − distance(post, posgoal)

Rslack = − 0.01

Rsuccess = {2.5, if reach goal
0, otherwise

RT = Rsuccess + Rslack + Rprogress

Rsuccess = 0 Rslack = − 0.01

Rprogress = − 3

RT=2 = 0 + −0.01 + −3

T = 2 T=2
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Navigation ￼87

Reinforcement learning in Navigation
Reward, Rt

R_t = -5.01, R_progress = -5, R_slack = -0.01, R_sucess=0

R_t = 2.49, R_progress = 0, R_slack = -0.01,  

T=1

Rprogress = − distance(post, posgoal)

Rslack = − 0.01

Rsuccess = {2.5, if reach goal
0, otherwise

RT = Rsuccess + Rslack + Rprogress

Rsuccess = 2.5 Rslack = − 0.01

Rprogress = − 1

RT=3 = 2.5 + −0.01 + −1

T = 3 T=2

T=3
Created by LUTFI GANI AL ACHMAD
from Noun Project

Target : Desk
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Navigation ￼88

Reinforcement learning in Navigation
Reward, Rt

R_t = -5.01, R_progress = -5, R_slack = -0.01, R_sucess=0

R_t = 2.49, R_progress = 0, R_slack = -0.01,  

T=1

T=2

T=3
Created by LUTFI GANI AL ACHMAD
from Noun Project

Target : Desk

In Summary,

RT=1 = − 5.01

RT=2 = − 3.01

RT=3 = 1.49
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Navigation ￼89

ProcTHORHabitat Gibson

Reinforcement learning in Navigation
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Navigation ￼90

DD-PPO: Distributed Decentralised PPO
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Navigation ￼91

DD-PPO: Decentralised Distributed PPO

https://www.youtube.com/watch?v=wNDcvomBRt8
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Navigation ￼92

Poliformer: Scaling On-policy RL with Transformers
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Navigation ￼93

Poliformer: Scaling On-policy RL with Transformers
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Navigation ￼94

Poliformer: Scaling On-policy RL with Transformers
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Mobile Manipulation ￼95

Agent Goal : Pick and Place
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Mobile Manipulation ￼96

Agent Action, At

Joint position

Base navigation actions
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Mobile Manipulation ￼97

Rnav = 0.1 ⋅ ∥gt∥ + 0.1 ⋅ | (vt)g |
Navigation

Reward, Rt

gt

vt

Distance-to-goal reward

Velocity along the goal

Agent Action, At

Joint position

Base navigation actions
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Mobile Manipulation ￼98

Agent Action, At

Joint position

Base navigation actions
Picking objects

Rpick = 0.5 ⋅ ∥ot − pt∥ + 0.5 ⋅ Rlift

Rlift = (1 − tanh (15 ⋅ ((ot)z)+)) 𝕀 [∑
i

fi > 10]

Rnav = 0.1 ⋅ ∥gt∥ + 0.1 ⋅ | (vt)g |
Navigation

Reward, Rt
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Mobile Manipulation ￼99

Agent Action, At

Joint position

Base navigation actions
Picking objects

Rpick = 0.5 ⋅ ∥ot − pt∥ + 0.5 ⋅ Rlift

Rlift = (1 − tanh (15 ⋅ ((ot)z)+)) 𝕀 [∑
i

fi > 10]

Rnav = 0.1 ⋅ ∥gt∥ + 0.1 ⋅ | (vt)g |
Navigation

Reward, Rt

Gripper
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RL is not all you need ￼100

▪ Reward engineering is hard for complex 
tasks. 
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RL is not all you need ￼101

▪ RL is sample inefficient. 
▪ Millions of interactions for a task.
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RL is not all you need ￼102

▪ Imitation Learning, explicit mapping 
approaches are coming back.
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RL is not all you need ￼103

▪ Imitation Learning, explicit mapping 
approaches are coming back.
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Thank you!

Amir Zamir (amir.zamir@epfl.ch) 

Jason Toskov (jason.toskov@epfl.ch head TA) 

Kunal Pratap Singh (Kunal.singh@epfl.ch) 
Roman Bachmann (roman.bachmann@epfl.ch) 

https://vilab.epfl.ch/  

￼104


