

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 18

Midterm exam

Principles of Digital Communications

Apr. 12, 2019

4 problems, each sub-problem worth 4 points.

165 minutes.

1 sheet (2 pages) of notes allowed.

Good Luck!

PLEASE WRITE YOUR NAME ON EACH SHEET OF YOUR ANSWERS.

PLEASE WRITE THE SOLUTION OF EACH PROBLEM ON A SEPARATE SHEET.

PROBLEM 1. Consider a binary hypothesis testing problem. When the hypothesis H is i , ($i = 0$ or 1), the observations $Y = (Y_1, \dots, Y_n)$ are given by

$$Y_j = s_i a_j Z_j, \quad j = 1, \dots, n$$

where $s_0, s_1, a_1, a_2, \dots, a_n$ are known real constants, and Z_1, \dots, Z_n are independent exponentially-distributed random variables with unit mean, i.e., each has density $f_{Z_i}(z) = \exp(-z) \mathbb{1}_{z \geq 0}(z)$.

For such a random variable $\mathbb{E}[Z] = \text{Var}[Z] = 1$.

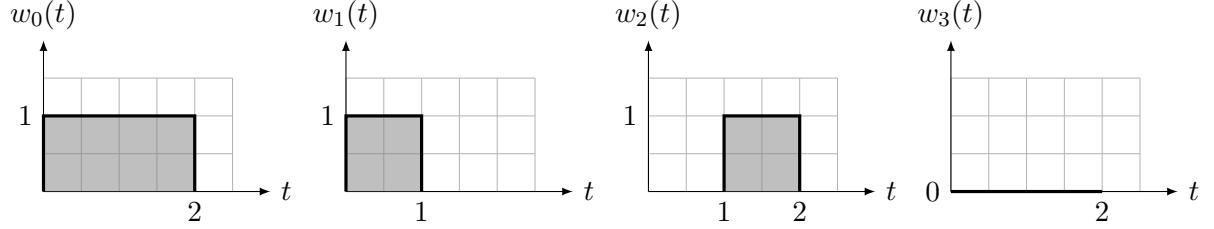
Let T be a statistic computed from observations Y_1, \dots, Y_n as $T = \sum_j b_j Y_j$. Let m_i and v_i be the expectation and variance of T when $H = i$.

(a) Consider $q = (m_0 - m_1)^2/(v_0 + v_1)$ as a measure of the quality of the estimator T . (To have high quality, T should have a large difference in its means compared to its variances). Show that

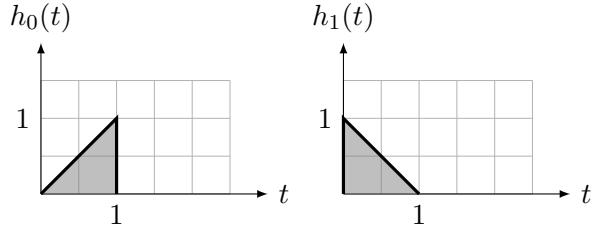
$$q = \frac{(s_0 - s_1)^2}{s_0^2 + s_1^2} \frac{\left(\sum_j a_j b_j\right)^2}{\sum_j (a_j b_j)^2}.$$

(b) Show that $(\sum_j a_j b_j)^2 \leq n \sum_j (a_j b_j)^2$, so that $q \leq n(s_0 - s_1)^2/(s_0^2 + s_1^2)$.
(c) Find a choice of (b_1, \dots, b_n) such that the quality of the statistic is maximized.
(d) Show that for the choice in (c), T is a sufficient statistic.

PROBLEM 2. Consider a signal set with the following four signals.



Each signal is equally likely to be chosen for transmission over the AWGN channel with spectral density $N_0/2$. At the receiver, we are restricted to process the received signal $R(t)$ with the following filters:



We can thus base our decision only on samples obtained at the output of the two filters $Y_{0i} = (R * h_0)(t_{0i})$ and $Y_{1i} = (R * h_1)(t_{1i})$.

- (a) Show that we can implement the MAP optimal decision rule inspite of the above restriction by appropriately choosing $\{t_{0i} : i = 1, \dots, n_0\}$ and $\{t_{1i} : i = 1, \dots, n_1\}$.
- (b) Find a translation of the signal set to minimize the average energy. Sketch the new signal set.
- (c) Suppose the signal set in (b) is used for communication with the MAP decoder. What is the error probability?
- (d) What is the error probability of the implementation in (a)?

PROBLEM 3. Suppose signals $w_0(t), w_1(t), w_2(t)$ are designed for a communication system such that

$$\langle w_i, w_j \rangle = \begin{cases} 1, & i = j \\ \beta, & i \neq j \end{cases}.$$

We assume all signals are equiprobable.

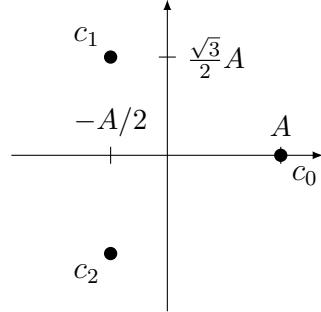
(a) Show that $\beta \leq 1$.

(b) Show that $\beta \geq -1/2$.

Hint: Consider $\|w_0 + w_1 + w_2\|^2$.

(c) Translate the signal set to form a minimum average energy constellation with new signals $\tilde{w}_0(t), \tilde{w}_1(t), \tilde{w}_2(t)$. Show that each $\tilde{w}_i(t)$ has energy $E = 2(1 - \beta)/3$ and $\langle \tilde{w}_i, \tilde{w}_j \rangle = -E/2$ for $i \neq j$.

(d) Let $e_3(A)$ denote the error probability of the 3-PSK constellation below, where the noise (Z_1, Z_2) has i.i.d. $N(0, 1)$ components. (Observe that $\|c_i\|_2 = A$ and c_0, c_1, c_2 are 120° apart.)



Express the error probability of a communication system where the signals $w_0(t), w_1(t), w_2(t)$ are used over an AWGN channel with spectral density $N_0/2$ in terms of β and $e_3(\cdot)$.

PROBLEM 4. Suppose waveforms $w_0(t) = \mathbb{1}_{|t|<\frac{1}{2}}(t)$ and $w_1(t) = -w_0(t)$ are used over the AWGN channel with spectral density $N_0/2$ to transmit 1 bit. As we know, the optimal receiver is a matched filter that forms $Y = (R * h)(t_0)$ with $h(t) = \mathbb{1}_{|t|<\frac{1}{2}}(t)$, $t_0 = 0$, and decides 0 if $Y > 0$ and 1 else. Unfortunately, a faulty clock sets the value of t_0 not to 0 but to 0.5 or -0.5 with equal probability.

- (a) What is the error probability of the faulty system?
- (b) Suppose that instead of using the matched filter we use a different filter, namely $h(t) = \mathbb{1}_{|t|<1}(t)$. What is the error probability now (assuming the same faulty clock)?

Assume now, that the receiver is aware of the actual sampling time, i.e., whether the sample value Y was taken at $t_0 = -0.5$ or $+0.5$. Let us analyze the error probability of a generic filter $h(t)$. For that purpose, let

$$\begin{aligned} A_- &= \int_{-1}^0 h(t) dt, & E_- &= \int_{-\infty}^0 h(t)^2 dt, \\ A_+ &= \int_0^1 h(t) dt, & E_+ &= \int_0^{\infty} h(t)^2 dt. \end{aligned}$$

- (c) Show that the error probability can be expressed as

$$P_e = \frac{1}{2}Q\left(\sqrt{\frac{A_+^2}{\sigma^2(E_- + E_+)}}\right) + \frac{1}{2}Q\left(\sqrt{\frac{A_-^2}{\sigma^2(E_- + E_+)}}\right),$$

with $\sigma^2 = \frac{N_0}{2}$.

- (d) Show that $A_+^2 \leq E_+$, and $A_-^2 \leq E_-$.
- (e) Use (c), (d) and the fact that $\frac{1}{2}Q(\sqrt{x}) + \frac{1}{2}Q(\sqrt{y}) \geq Q\left(\sqrt{\frac{x+y}{2}}\right)$ to conclude that the filter in (b) has the smallest possible error probability.