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Problem 1. Consider the following conditional probability distribution,

PY |H(y | − 1) =


0.2 y = 2

0.2 y = 1

0.3 y = −1

0.3 y = −2

PY |H(y | 1) =


0.3 y = 2

0.3 y = 1

0.21 y = −1

0.19 y = −2

Assume that PH(−1) = PH(1) = 1/2. We consider a hypothesis problem of estimating
H after observing Y . Determine whether the following statistics are sufficient statistics or
not. Provide a justification for your answer.

a) (2 points) T1(Y ) = argmaxhPY |H(Y |h).

It is not a sufficient statistic. For example, T1(−1) = −1 = T1(−2) = −1, however,

PH|Y (−1| − 1)

PH|Y (1| − 1)
6=
PH|Y (−1| − 2)

PH|Y (1| − 2)
.

If T1(.) is a sufficient statistic, then likelihood of y’s with similar sufficient statistic
should have been equal.

b) (2 points) T2(Y ) =

(
T1(Y ), PY |H

(
Y |T1(Y )

))
, i.e. a tuple composed of T1(Y ) and

the likelihood of observing Y conditioned on H = T1(Y ).

It is still not a sufficient statistic. Note that T2(−1) = T2(−2) = (−1, 0.3). However,
as we have saw in (a), the likelihood ratio of these two y’s are not equal.

c) (4 points) T3(Y ) = PY |H
(
Y |T1(Y )

)
/PY |H

(
Y | − T1(Y )

)
.

Interestingly enough, this is a sufficient statistic. We can see that there are three
possible value of T3(y), namely {30/19, 3/2, 30/21}. Each of these possible values
corresponds to unique likelihood ratio.

Now, we introduce another hypothesis with conditional probability distribution,

PY |H(y | 0) =


0.27 y = 2

0.26 y = 1

0.24 y = −1

0.23 y = −2

with PH(0) = PH(−1) = PH(1) = 1/3.

d) (4 points) Is T3(Y ) a sufficient statistic? Provide a justification for your answer.

The addition of this hypothesis renders the statistics to be insufficient. We have
T3(1) = T3(2). However,(

PH|Y (1|1), PH|Y (0|1), PH|Y (−1|1)
)
6=
(
PH|Y (1|2), PH|Y (0|2), PH|Y (−1|2)

)
.
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Problem 2. Consider the following waveforms,

g1(t)

t

2

2

g2(t)

t

2

2

g3(t)

t

2

2

g4(t)

t

2

2

a) (2 points) Find an orthonormal basis ψ1(t) and ψ2(t) for these waveforms such that
the support of these two basis waveforms are disjoint.

An orthonormal basis function is given by,

ψ1(t) = 1{t ∈ [0, 1]} ψ2(t) = 1{t ∈ (1, 2]}.

One can parametrize the waveforms as

g1(t) = 2ψ1(t) + 2ψ2(t) g2(t) = 2ψ1(t)

g3(t) = 0 g4(t) = 2ψ2(t).

b) (2 points) Do these waveforms form a minimal energy signal set? If it is not, give a
minimal energy set by applying a translation.

One can take the averages of these waveforms

ḡ(t) =
1

4

4∑
i=1

gi(t) = ψ1(t) + ψ2(t).

Observe that the average is not a zero function. Hence these waveforms are not
energy minimal. We can subtract the average waveform from the original waveforms
to obtain the minimal energy set,

g̃1(t) = ψ1(t) + ψ2(t) g̃2(t) = ψ1(t)− ψ2(t)

g̃3(t) = −ψ1(t)− ψ2(t) g̃4(t) = −ψ1(t) + ψ2(t).

We will denote the waveforms corresponding to the minimal energy signal set as g̃i(t).
Let us assume that the received waveform R(t) is given by R(t) = g̃i(t) + N(t), where i
is the transmitted message and N(t) is white Gaussian noise of intensity N0/2 = 1. Let
Y1 = 〈R(t), ψ1(t)〉 and Y2 = 〈R(t), ψ2(t)〉. Let us assume that all messages are equiprobable.

c) (4 points) Conditioned on i-th message is being sent, what is the distribution of
(Y1, Y2).

We have,

Y1 = 〈R(t), ψ1(t)〉 = 〈g̃i(t), ψ1(t)〉+ 〈N(t), ψ1(t)〉 ∼ N(〈g̃i(t), ψ1(t)〉 , 1)

Y2 = 〈R(t), ψ2(t)〉 = 〈g̃i(t), ψ2(t)〉+ 〈N(t), ψ2(t)〉 ∼ N(〈g̃i(t), ψ2(t)〉 , 1).

3



d) (4 points) What is the MAP decision region and the corresponding error probability
of this transmission scheme?

Let us write

Y1 = X1 + Z1

Y2 = X2 + Z2

where X1 = 〈g̃H(t)ψ1(t)〉 and X2 = 〈g̃H(t)ψ2(t)〉 with H is the true message. We
have V ar(Z1) = N0 〈ψ1(t), ψ1(t)〉 /2 = 1.

We note that this is the case of 4QAM , the optimal decision region corresponds to
each quadrant, i.e., D1 = {(y1, y2) : y1 > 0, y2 > 0},D2 = {(y1, y2) : y1 > 0, y2 <
0},D3 = {(y1, y2) : y1 < 0, y2 < 0} and D4 = {(y1, y2) : y1 < 0, y2 > 0}.
Due to symmetry, it is enough to study the error probability for one waveforms. We
take the case where H = 1. Here, the error event is given by

Pr(Error) = Pr(Z1 < −1 ∪ Z2 < −1) = 2Q(1)−Q(1)2.

Now, we will assume that the noise process N(t) is Gaussian but not white, and, for all t,

E
[
N(t)N(t− τ)

]
=

{
1− |τ | |τ | < 1

0 otherwise.
.

The receiver does not know of this new noise model, hence it still computes (Y1, Y2) and
forms its decision based on the decision region that you have developed in d).

e) (4 points) Is (Y1, Y2) a sufficient statistic?

It is not a sufficient statistic. Let us consider another statistics Y0 = 〈R(t),1{t ∈ [−1, 0)}〉.
We can see that the correlation E[Y0(Y1 − E[Y1])] 6= 0, while E[Y0(Y2 − E[Y2])] = 0.
Hence, Y0 contains information about the noise component of Y1 which is not con-
tained in Y2. This imply that we can reduce the noise of Y1 by using Y0. Let us
define

Ỹ1 = Y1 −
1

2
Y0

The covariance matrix of (Ỹ1, Y2) is given by[
1
4

1
6

1
6

1
3

]
This covariance matrix is better than the covariance matrix given in the next point.
The fact that we can reduce the noise by adding another statistic imply that Y1, Y2 are
not sufficient statistics.

f) (4 points) What is the error probability of the receiver under this new noise model?
It is sufficient to give express the error probability as an integral with an explicit
integration region.

The receiver uses the same decision region as in (d). But now, Z1 and Z2 are not
independent. In this case [

Z1

Z2

]
∼ N

([
0
0

]
,Σ

)
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with

Σ =

[
α ρ
ρ α

]
where

α = E[Z1Z1]

= E

[∫∫
N(τ1)N(τ2)ψ1(τ1)ψ1(τ2)dτ1dτ2

]
=

∫ 1

0

∫ 1−τ1

−τ1
E[N(τ1)N(τ1 + s)]dτ1ds

=

∫ 1

0

τ1(2− τ1)
2

+
(1− τ1)(1 + τ1)

2
dτ1

=
1

2
− 1

6
+

1

2
− 1

6

=
2

3

and ρ,

ρ = E

[∫∫
N(τ1)N(τ2)ψ1(τ1)ψ2(τ2)dτ1dτ2

]
=

∫ 1

0

∫ 1

1−τ1
E[N(τ1)N(τ1 + s)]dτ1ds

=

∫ 1

0

τ 21
2
dτ1

=
1

6
.

Due to the noise not being white, we have to consider two classes of waveform, {g̃1, g̃3}
and {g̃2, g̃4}. Hence the probability of error is given by,

P (Error) = 1− 1

2

∫ ∞
−1

∫ ∞
−1

1

2π
√
|Σ|

exp

(
−1

2

[
y1, y2

]
Σ−1

[
y1
y2

])
dy1dy2

− 1

2

∫ 1

−∞

∫ ∞
−1

1

2π
√
|Σ|

exp

(
−1

2

[
y1, y2

]
Σ−1

[
y1
y2

])
dy1dy2
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Problem 3. Consider a binary hypothesis testing problem with the hypothesis H ∈ {0, 1}
and the observation Y ∈ Y . Unlike the standard decision problem where the decoder has
to produce and estimate Ĥ ∈ {0, 1}, in this problem decoder can produce an estimate
Ĥ ∈ {0, 1, ?}. The symbol ? gives the decoder the option to say “I don’t know”. Let
D0, D1, and D? denote the subsets of observation space Y for which the decoder declares
0, 1 and ? respectively.

a) (4 points) We say the decoder makes an error if Ĥ 6= ? and Ĥ 6= H. Show that the
probability of error, Pe, equals

Pe =
∑
y∈D1

pH(0)pY |H(y|0) +
∑
y∈D0

pH(1)pY |H(y|1).

We have

Pe = Pr(Y ∈ D0, H = 1) + Pr(Y ∈ D1, H = 0)

= Pr(Y ∈ D0|H = 1)pH(1) + Pr(Y ∈ D1|H = 0)pH(0)

=
∑
y∈D0

pY |H(y|1)pH(1) +
∑
y∈D1

pY |H(y|0)pH(0).

b) (4 points) Show that the probability that Ĥ = ? equals

P? =
∑
y∈D?

pH(0)pY |H(y|0) + pH(1)pY |H(y|1).

We have,

P? = Pr(Y ∈ D?)

= Pr(Y ∈ D?, H = 1) + Pr(Y ∈ D?, H = 0)

= Pr(Y ∈ D?|H = 1)pH(1) + Pr(Y ∈ D?|H = 0)pH(0)

=
∑
y∈D?

pY |H(y|1)pH(1) + pY |H(y|0)pH(0).

c) (4 points) Suppose there is a unit cost for making an error (in the sense of (a)) and a
cost of c? ≥ 0 for declaring “I don’t know”. Find the decision rule that minimizes the
expected cost (i.e., Pe + c?P?) and express it in terms of the a posteriori probabilities
of the hypotheses.

To make the dependence on Y explicit, let us denote the decision rule as Ĥ(y). We
have

Pe + c?P?

=
∑
y

pY (y)

[
1{Ĥ(y) = 0}pH|Y (1|y) + 1{Ĥ(y) = 1}pH|Y (0|y)

+ 1{Ĥ(y) =?}c?
[
PH|Y (1|y) + PH|Y (0|y)

]]
.

Therefore, to minimize the expected cost, we need to choose H(y) to minimize the
terms in the inner bracket. This leads to the following conditions
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– H(y) = 0 if pH|Y (1|Y ) < pH|Y (0|Y ) and pH|Y (1|Y ) < c?[pH|Y (0|Y ) +pH|Y (1|Y )].

Given that c? > 0, this condition is equivalent to
pH|Y (1|Y )

pH|Y (0|Y )
< min{1, c?/(1− c?)}.

– H(y) = 1 if pH|Y (0|Y ) < pH|Y (1|Y ) and pH|Y (0|Y ) < c?[pH|Y (0|Y ) +pH|Y (1|Y )].

Given that c? > 0, this condition is equivalent to
pH|Y (1|Y )

pH|Y (0|Y )
> max{1, (1−c?)/c?}.

– H(y) =? otherwise.

To summarize,

H(y) =


0

pH|Y (1|Y )

pH|Y (0|Y )
≤ min{1, c?/(1− c?)}

1 max{1, (1− c?)/c?} ≥
pH|Y (1|Y )

pH|Y (0|Y )

? otherwise.

Note that this is equivalent to

H(y) =

{
?

pH|Y (1|Y )

pH|Y (0|Y )
∈
[

c?
1−c?

, 1−c?
c?

]
HMAP (y) otherwise.

d) (4 points) Consider now the the m-ary case, with costs as in (c). Show that the rule
that that minimizes the expected cost is of the form

Ĥ(y) =

{
? (condition)

ĤMAP (y) otherwise

and determine the appropriate expression for (condition).

We only need to reconsider the case where H(y) =?. We need the following condition
to hold for all possible hypothesis i

c?

m∑
j=1

pH|Y (j|y) <
m∑
j=1
j 6=i

pH|Y (i|y).

By the fact that
∑m

i=1 pH|Y (i|y) = 1, this can also be written as,

c?pH|Y (i|y) ≤ (1− c?)(1− pH|Y (i|y)).

So we have that the required condition is equal to,

pH|Y (i|y)

1− pH|Y (i|y)
≤ 1− c?

c?

for all i.
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Problem 4. Consider a binary hypothesis testing problem where the observation Y has
conditional distribution pY |H . Suppose that we use the MAP rule to decide on Ĥ.

a) (4 points) Show that

Pr(error) =
∑
y

min{pH(0)p(y|0), pH(1)p(y|1)}.

We have,

Pr(Error) =
∑
y

pY (y)

[
1{Ĥ(y) = 0}pH|Y (1|y) + 1{Ĥ(y) = 1}pH|Y (0|y)

]
.

We recall that the MAP rule is such that

Ĥ(y) =

{
0 pH|Y (1|y) ≤ pH|Y (0|y)

1 pH|Y (1|y) > pH|Y (0|y)

such that

Pr(Error) =
∑
y

min{pHY (1, y), pHY (0, y)}

=
∑
y

min{pY |H(y|1)PH(1), pY |H(y|0)PH(0)}.

For s ∈ [0, 1] define µ(s) :=
∑

y pY |H(y|0)1−spY |H(y|1)s.

b) (4 points) Show that for any s ∈ [0, 1]

Pr(error) ≤ PH(0)1−sPH(1)sµ(s).

Hint: for non-negative a, b, and any s ∈ [0, 1],min{a, b} ≤ a1−sbs.

Utilizing the hint, we have

Pr(Error) =
∑
y

min{pY |H(y|0)PH(0), pY |H(y|1)PH(1)}

≤
∑
y

(
pY |H(y|0)PH(0)

)1−s(
pY |H(y|1)PH(1)

)s
= PH(0)1−sPH(1)sµ(s).

c) (4 points) Show that dµ(s)
ds

=
∑

y pY |H(y|0)1−spY |H(y|1)sΛ(y)

where Λ(y) = ln[pY |H(y|1)/pY |H(y|0)], and d2µ(s)
ds2
≥ 0.

Notice that we can write,

µ(s) =
∑
y

pY |H(y|0)

(
pY |H(y|1)

pY |H(y|0)

)s
=
∑
y

pY |H(y|0) exp(sΛ(y)).
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Hence, the first derivative is given by

dµ(s)

ds
=
∑
y

pY |H(y|0)
d exp(sΛ(y))

ds

=
∑
y

pY |H(y|0) exp(sΛ(y))Λ(y)

=
∑
y

pY |H(y|0)1−spY |H(y|1)sΛ(y)

We also have

d2µ(s)

ds2
=
∑
y

pY |H(y|0)Λ(y)
d exp(sΛ(y))

ds

=
∑
y

pY |H(y|0)Λ(y)2 exp(sΛ(y)).

This function is always non-negative as Λ(y)2 is non-negative, pY |H(y|0) is non-
negative and exp(sΛ(y)) is positive.

d) (4 points) Show that when PH(0) = PH(1) = 1/2, and µ(s) = µ(1 − s) for every
s ∈ [0, 1], the upperbound in (b) is minimized when s = 1/2.

Let us recall the upper bound,i.e.,PH(0)1−sPH(1)sµ(s). It is easy to see that PH(0)1−sPH(1)s

is constant for all s if PH(0) = PH(1). So we only need to show that s = 1/2 mini-
mizes µ(s)

Let us define µ′(s) = dµ(s)/ds. The hypothesis imply that µ(s)− µ(1− s) = 0, hence

dµ(s)

ds
− dµ(1− s)

ds
= µ′(s) + µ′(1− s) = 0.

Hence we have,µ′(s) = −µ′(1−s). If we take s = 1/2, this leads to µ′(1/2) = −µ′(1/2)
which can only be true if µ′(1/2) = 0. From (c), we have the second derivative is
always non-negative, hence µ(s) is minimum in s = 1/2

e) (4 points) Suppose µ(s) = µ(1 − s) for every s ∈ [0, 1] but PH(0) > PH(1). Show
that the s ∈ [0, 1] that minimizes the upper bound in (b) satisfies s > 1/2.

Let us define ρ = log(PH(1)/PH(0)). We have ρ < 0. The upper that we want to
minimize is equivalent to PH(1) exp(sρ)µ(s). Taking the first derivative gives us,

ρPH(0) exp(sρ)µ(s) + PH(0) exp(sρ)µ′(s)

If we take s = 1/2, the second terms is equal to 0 due to our result in (d). If
µ(1/2) = 0, it implies that the support of pY |H(y|0) and pY |H(y|1) are disjoint, in this
case the minimum is achieved even at s > 1/2. If µ(1/2) > 0, then the derivative of
the upper bound at 1/2 is negative, this implies that there is s′ > 1/2 such that the
upper bound is smaller at s = s′ compared to s = 1/2.
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