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Problem 1. In a hypothesis testing problem with hypothesis H ∈ {0, 1, 2}, observation
Y ∈ Y , decision Ĥ ∈ {0, 1, 2}, the penalty for deciding j when the true hypothesis is i is
pen(i, j) = |i− j|.

(a) (3 pts) Suppose D0, D1 and D2 are the decision regions for a decision rule Ĥ : Y →
{0, 1, 2}. Find b0(y), b1(y) and b2(y) — expressed in terms of pY |H(y|i) and pH(i) —
so that the expected penalty of the rule is given by

E[pen(H, Ĥ(Y ))] =
∑
y∈D0

b0(y) +
∑
y∈D1

b1(y) +
∑
y∈D2

b2(y).

Solution: The decision region Dj, j = 0, 1, 2 is given by the set of points y ∈ Y such

that Ĥ(y) = j. Thus we can write E[pen(H, Ĥ(Y ))]

=
∑
y∈Y

∑
i∈{0,1,2}

pH(i)pY |H(y|i) pen(i, Ĥ(y))

=
∑

j∈{0,1,2}

∑
y∈Dj

∑
i∈{0,1,2}

pH(i)pY |H(y|i) pen(i, j) [∵ Dj form a partition of Y ]

=
∑

j∈{0,1,2}

∑
y∈Dj

∑
i∈{0,1,2}

pH(i)pY |H(y|i)|i− j|,

hence we have the required relation, with bj(y) =
∑

i∈{0,1,2}

pH(i)pY |H(y|i)|i− j| , or ex-

plicitly, b0(y) = pY |H(y|1)pH(1)+2pY |H(y|2)pH(2), b1(y) = pY |H(y|0)pH(0)+pY |H(y|2)pH(2),
and b2(y) = 2pY |H(y|0)pH(0) + pY |H(y|1)pH(1).

(b) (2 pts) Show that for any decision rule, E[pen(H, Ĥ)] ≥
∑

y∈Y b(y), where

b(y) = min
{
pY |H(y|1)pH(1) + 2pY |H(y|2)pH(2),
pY |H(y|0)pH(0) + pY |H(y|2)pH(2),
2pY |H(y|0)pH(0) + pY |H(y|1)pH(1)

}
.

Solution: From part (a), we have that E[pen(H, Ĥ(Y ))] =
∑

y∈D0
b0(y)+

∑
y∈D1

b1(y)+∑
y∈D2

b2(y). On each of the disjoint sets Dj, j = 0, 1, 2, we can lower bound the
summand by min{b0(y), b1(y), b2(y)}, which is exactly b(y) as stated in the question.
Hence we have that

E[pen(H, Ĥ(Y ))] =
∑
y∈D0

b0(y) +
∑
y∈D1

b1(y) +
∑
y∈D2

b2(y)

≥
∑
y∈D0

b(y) +
∑
y∈D1

b(y) +
∑
y∈D2

b(y)

=
∑
y∈Y

b(y).



(c) (2 pts) What is the decision rule that minimizes the expected penalty (in terms of
b(y) and/or bi(y))?

Solution: From (b), the expected penalty can never be lesser than
∑

y∈Y b(y), and

this minimum is attained by choosing Ĥ(y) = i for i such that b(y) = bi(y), i.e.,

Ĥ(y) = argmin
i∈{0,1,2}

bi(y) .

(d) (3 pts) Suppose all hypotheses are equally likely, Y = {0, 1, 2}, and

pY |H(y|i) =

{
0.4 y = i,

0.3 else.

Then, what is the decision rule Ĥ(y) as an explicit function from Y to {0, 1, 2} that
minimizes the expected penalty? What is the MAP rule for this case?

Solution: Computing the above expression by substituting these values, we have that

Ĥ(y) = 1 for all y is the rule that minimizes the expected penalty. The MAP rule

is given by ĤMAP(y) = argmax
i∈{0,1,2}

pY |H(y|i) = y .

Remark: The MAP rule is commonly said to be “optimal”, but it is important to remember
in which sense — the MAP rule minimizes the average error probability. If we instead
look to minimize some other notion of being “wrong” (such as the penalty defined in this
problem), MAP is no longer optimal.
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Problem 2. Let wi(t), i = 1, . . . ,m be the waveforms of a communication system designed
for an AWGN channel with noise power spectral density N0/2, suppose that wi(t) = 0
whenever t /∈ [0, T ]. Let π(N0) denote the error probability of this system (with its optimal
receiver).
Consider now two new systems:

1. The first has waveforms w̃i(t) = αwi(t), i = 1, . . . ,m for a (real) scalar α ̸= 0.

2. The second has waveforms w′
i(t) =

∑r−1
j=0 wi(t − jT ), i = 1, . . . ,m; i.e., wi repeated r

times, once every T units of time. (Here r is a positive integer.)

(a) (2 pts) How can we re-use the optimal receiver for the original system to design an
optimal receiver for system 1?
Hint: Think of some pre-processing of the received signal R̃(t) of system 1 before giving it as input

to the optimal receiver of the original system.

Solution: Simply give
R̃(t)

α
as input to the original receiver, since R̃(t)

α
= w̃i(t)+N(t)

α
=

wi(t) +
N(t)
α

= wi(t) + Ñ(t), where Ñ(t) is white Gaussian noise of power spectral
density N0

2α2 .

(b) (2 pts) Express the error probability π̃(N0) of system 1 (with its optimal receiver),
in terms of π(N0).

Solution: Since R̃(t)
α

= wi(t) + Ñ(t), where Ñ(t) is white Gaussian noise of power
spectral density N0

2α2 , we have that the error probability of this system is the same
as that of the old system, except that the power spectral density of the noise is N0

2α2

instead of N0

2
, i.e., π

(
N0

α2

)
.

(c) (3 pts) How can we re-use the optimal receiver for the original system to design an
optimal receiver for system 2?
Hint: Think of some pre-processing of the received signal R′(t) of system 2 before giving it as input

to the optimal receiver of the original system.

Solution: This is essentially a repetition code, and the optimum decision rule is to

take the arithmetic mean: simply give
1

r

r−1∑
j=0

R′(t+ jT ) as input to the original

receiver. This works because of the following: 1
r

∑r−1
j=0R

′(t+ jT )

=
1

r

r−1∑
j=0

[w′
i(t+ jT ) +N(t+ jT )]

=
1

r

r−1∑
j=0

[
r−1∑
l=0

wi(t+ jT − lT ) +N(t+ jT )

]
.

The optimal receiver of the original system computes the inner product of R(t) with
wi(t), which is nonzero only in t ∈ [0, T ]. Hence, we only have to look at the com-
ponents of 1

r

∑r−1
j=0R

′(t+ jT ) in t ∈ [0, T ], which is from the terms with l = j, given
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by

1

r

r−1∑
j=0

[wi(t) +N(t+ jT )] = wi(t) +N ′(t),

where N ′(t) is white Gaussian noise of power spectral density N0

2r
.

(d) (2 pts) Express the error probability π′(N0) of system 2 (with its optimal receiver),
in terms of π(N0).

Solution: Since R′(t)
α

= wi(t) + N ′(t), where Ñ(t) is white Gaussian noise of power
spectral density N0

2r
, we have that the error probability of this system is the same

as that of the old system, except that the power spectral density of the noise is N0

2r

instead of N0

2
, i.e., π

(
N0

r

)
.

Remark: As far as the error probability is concerned, repeating an input signal r times
(i.e., increasing the energy by a factor of r) has the same effect as scaling the signal by

√
r

(leading to the energy scaling by r again).
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Problem 3. A bandpass transmitter for four equally likely messages is designed for an
AWGN channel as follows:

· The waveform ψ(t) = sinc(t) is chosen as the Nyquist pulse, upon observing that
ψ(t), ψ(t− 1), ψ(t− 2), . . . form an orthonormal collection. (Note also that the Fourier
transform of ψ is rect(f) = 1{|f | < 1

2
}).

· Four codewords c1 = (1, 0), c2 = (0, 1), c3 = −c1, c4 = −c2 are chosen as vectors in R2.
(Note: they are real, not complex.)

· At the transmitter, the message i ∈ {1, 2, 3, 4} is first mapped to ci, then to the baseband
waveform wi,E(t) =

∑2
j=1 cijψ(t− j), and finally to the transmitted waveform as

wi(t) =
√
2ℜ{wi,E(t) exp(j2πfct)}

=
√
2wi,E(t) cos(2πfct) with fc >

1
2
.

At the receiver, the received signal R(t) is multiplied by
√
2 cos(2πfct), to form RE(t).

RE is passed through a filter with impulse response sinc(t), and the output of the filter is
sampled at times t1 = 1 and t2 = 2. With Y1 and Y2 denoting the samples respectively, the
vector Y = (Y1, Y2) is formed. The i for which ci is closest to Y (in the Euclidean norm) is
the receiver’s guess of the transmitted message.

(a) (3 pts) Is the receiver described in the above paragraph optimal? (Note: the pro-
cedure in the book would have formed the complex waveform R(t)

√
2 exp(−j2πfct)

instead of the above RE. If you claim optimality, you should explain why RE above
leads to the same decision.)

Solution: It is optimal . The book version of RE(t) is R(t)
√
2 exp(−j2πfct) =√

2R(t) cos(2πfct) + j
√
2R(t) sin(2πfct), and here, R(t) =

√
2wi,E(t) cos(2πfct) +

N(t), with wi,E(t) real. Hence, the imaginary part of the book version of RE(t) =√
2R(t) sin(2πfct) = (

√
2wi,E(t) cos(2πfct)+N(t))

√
2 sin(2πfct) = wi,E(t) sin(4πfct)+√

2N(t) sin(2πfct). When passed through the low pass filter, the first term vanishes,
and we are left with just noise. Hence, the real part of the book version of RE(t) is
a sufficient statistic, and this real part is exactly the RE(t) in this problem — this
implies that this choice of RE(t) still leads to an optimal decision.

(b) (2 pts) What is the probability of error (in terms of N0)?

Solution: This is simply a 4-QAM constellation through an AWGN channel, which

has an error probability 2Q

(
d√
2N0

)
−Q

(
d√
2N0

)2

with the minimum distance

between constellation points d =
√
2 .

Due to an inaccuracy in circuit design, the frequency of the cosine at the receiver is not
fc but f

′
c instead, i.e., R(t) is multiplied by

√
2 cos(2πf ′

ct) to form RE(t). The rest of the
receiver is unchanged.

(c) (3 pts) For x(t) = sinc(t) cos(2πf0t) and y(t) = sinc(t − t0), show that their inner
product satisfies

⟨x, y⟩ =

{
0 |f0| ≥ 1,
1
2
[sinc(t0) + (1− 2|f0|) sinc((2|f0| − 1)t0)] else.
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Hint: Use Parseval’s relationship.

Solution: By Parseval’s relationship, we have that ⟨x, y⟩ = ⟨xF , yF⟩, where xF(f) =
rect(f−f0)+rect(f+f0)

2
and yF(f) = rect(f) exp(−j2πt0f), and hence,

⟨x, y⟩ = ⟨xF , yF⟩

=

∫ ∞

−∞

rect(f − f0) + rect(f + f0)

2
rect(f) exp(−j2πt0f) df

=

∫ 1/2

−1/2

rect(f − f0) + rect(f + f0)

2
exp(−j2πt0f) df.

If |f0| ≥ 1, clearly the above integral is zero. If |f0| < 1, we can continue as

=
1

2

∫ 1/2

−1/2+|f0|
exp(−j2πt0f) df +

1

2

∫ 1/2−|f0|

−1/2

exp(−j2πt0f) df

=
1

2

∫ 1/2

−1/2+|f0|
cos(2πt0f)− j sin(2πt0f) df

+
1

2

∫ 1/2−|f0|

−1/2

cos(2πt0f)− j sin(2πt0f) df

=
1

2

[
sin(2πft0)

2πt0
+ j

cos(2πft0)

2πt0

]1/2
−1/2+|f0|

+
1

2

[
sin(2πft0)

2πt0
+ j

cos(2πft0)

2πt0

]1/2−|f0|

−1/2

=
1

2
[sinc(t0) + (1− 2|f0|) sinc((2|f0| − 1)t0)],

and we are done.

(d) (2 pts) Suppose |f ′
c − fc| > 1. What is the error probability?

Hint: Use (c) to show that Y is independent of the transmitted message.

Solution: With the mismatched frequency at the receiver, we have that RE(t) is

=
√
2R(t) cos(2πf ′

ct)

= 2wi,E(t) cos(2πfct) cos(2πf
′
ct) +

√
2N(t) cos(2πf ′

ct)

= wi,E(t) cos(2π(fc − f ′
c)t) + wi,E(t) cos(2π(fc + f ′

c)t) +
√
2N(t) cos(2πf ′

ct).

Since the matched filter is a low pass filter, the term of frequency fc+ f
′
c vanishes. In

addition, the only terms that remain are those with frequency in (−1/2, 1/2). Since
wi,E lies in (−1/2, 1/2), its product with cos(2π(fc−f ′

c)t) is centered at ±|f ′
c−fc| and

has a width of 1. Hence, if |f ′
c − fc| > 1, RE(t) will have no footprint in (−1/2, 1/2),

and hence, Y is independent of the transmitted message. The error probability is

then that of a random guess between 4 choices, i.e., 3/4 .

(e) (2 pts) Suppose f ′
c = fc +

1
2
. What is the error probability?

Solution: From the calculation in (d), we have that RE(t) = wi,E(t) cos(πt) +
wi,E(t) cos(2π(fc + f ′

c)t) +
√
2N(t) cos(2πf ′

ct). Since the matched filter is a low pass
filter, again, the term of frequency fc + f ′

c vanishes. The output of the matched filter
is then ⟨wi,E(t) cos(πt) +

√
2N(t) cos(2πf ′

ct), sinc(t − j)⟩ = Yj = dij + Zj, j = 1, 2.
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The dij can be computed as

⟨wi,E(t) cos(πt), sinc(t− j)⟩ =

〈
2∑

l=1

cilψ(t− l) cos(πt), sinc(t− j)

〉

=
2∑

l=1

cil⟨ψ(t) cos(π(t+ l)), sinc(t− j + l)⟩

=
2∑

l=1

cil(−1)l⟨sinc(t) cos(πt), sinc(t− j + l)⟩

=
2∑

l=1

cil(−1)l
1

2
sinc(j − l) =

(−1)j

2
cij,

which is still equivalent to a 4-QAM, but with distance halved. Zj are Gaussian
random variables with cov(Zk, Zl)

=
N0

2
2⟨cos(2πf ′

ct) sinc(t− k), cos(2πf ′
ct) sinc(t− l)⟩

=
N0

2

∫ ∞

−∞
2 cos2(2πf ′

ct) sinc(t− k) sinc(t− l) dt

=
N0

2

∫ ∞

−∞
(1 + cos(4πf ′

ct)) sinc(t− k) sinc(t− l) dt

=
N0

2
δkl +

N0

2

∫ ∞

−∞
cos(4πf ′

ct) sinc(t− k) sinc(t− l) dt

=
N0

2
δkl +

N0

2
⟨cos(4πf ′

ct) sinc(t− k), sinc(t− l)⟩ ,

but the second term is zero, since it is the inner product of a term with frequency
components centered at |2f ′

c| > 2, and hence has no overlap with that of sinc(t− l).
Hence the Zj are independent Gaussian random variables with variance N0

2
. Hence

the error probability of this case is the same as in (b), 2Q

(
d√
2N0

)
−Q

(
d√
2N0

)2

,

except with the distance of constellation points halved, i.e., d =
1√
2
.

Remark: Modulating and demodulating correctly relies heavily on the carrier frequencies
at the transmitter and receiver being matched. If the mismatch in frequency is more than
1 (as in part (d); 1 is the bandwidth of the waveform chosen), we can do no better than a
random guess, which is concerning. However, in part (e), we see that even with a reasonably
large mismatch of 1

2
, all is not lost — we get the same error probability as if the signal had

been attenuated by a factor of 2, which is not terrible.
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Problem 4. Consider a 3-state encoding device (with states 0, 1, 2) that accepts a sequence
of data bits b1, b2, . . . , with bi ∈ {+1,−1}, and produces encoded bits x1, x2, . . . as follows:

Current state Input bit bi Next state Output x2i−1, x2i

0 +1 0 +1,+1
0 −1 1 −1,−1
1 +1 1 −1,+1
1 −1 2 +1,−1
2 +1 1 +1,−1
2 −1 0 −1,+1

The machine initially starts at state 0.

(a) (2 pts) After encoding k data bits b1, . . . , bk, we would like to ensure that the machine
returns to the initial state 0 by appending L termination bits bk+1, . . . bk+L to the data
sequence. What is the value of L needed to ensure this? (Note that (bk+1, . . . , bk+L)
can depend on (b1, . . . , bk), but L can not.)

Solution: Let sk denote the state after reading bk. The state sk = 1 requires a
sequence of 2 termination bits −,− to drive the state to 0. Thus we can choose
L = 2 , and set the termination bits to (+,+), (−,−), or (−,+) depending on sk =
0, 1, or 2.

This encoding device, with the termination scheme in (a), is used as a transmitter for
an AWGN channel. The channel output y1, y2, . . . is given by yi =

√
Esxi + Zi, where

Z1, Z2, . . . are i.i.d. N (0, σ2).

(b) (2 pts) Draw a trellis diagram and explain how the receiver can implement the ML
rule to produce b̂1, . . . , b̂k from y1, . . . , yn.

Solution: To transmit k bits b1, . . . , bk, the receiver has to append the L = 2 termi-
nation bits and send a total of k + L bits, each of which produces two encoded bits.
Hence the total number of yi’s needed to recover k bits is k + L. Having obtained
y1, . . . , yn, with n = 2(k + L), the receiver simply finds the path which maximizes

⟨x, y⟩ =
∑2(k+L)

i=1 xiyi. This corresponds to a branch metric of x2i−1y2i−1 + x2iy2i for
each branch corresponding to bit i, 1 ≤ i ≤ k + L.

The trellis diagram is shown below for k = 3.

0

1

2

+/++

−/
−−

+/++

−/
−−

+/−+

−/
+−

+/++

−/
−−

+/−+

−/
+−

+/−+−
/+

−

+/++

−
/−

+

−/
+−

+/++

−
/−

+

(c) (3 pts) For k = 3, and y1, y2, . . . given by

+0.3,−1.1,+0.6,+0.9,−0.7,+1.0,+1.2,−1.1,−0.6,+0.7,+0.4,−1.2,+0.5,−0.5, . . .

determine the maximally likely (b̂1, b̂2, b̂3). (You may not need the last few yi’s to do
this.)
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Solution: Since k = 3 and L = 2, we send a total of k + L = 5 bits, and hence,
we need y1, . . . , y10. The trellis diagram with the branch metrics evaluated is shown
below. The non-surviving paths are shown with dashed lines, and the maximizing
path is found by tracing back the surviving paths from the last bit.

0

1

2

0

−0.8

0.8
−0.8

1.5

−1
.5

0.8

0.3

−0
.3

0.7

0.3

−0
.3

1.1

1.7

−1
.7

0.5 −1.7

1.7

2.2

0.1

−0.6

−
2.3

2.8
2.3

2.3

0.1

5.1

1.3

6.4

Hence, the bit sequence that is maximally likely is (b̂1, b̂2, b̂3) = (−1,+1,+1) , with

(−1,−1) appended to terminate at state 0.

(d) (3 pts) For the all +1 reference path sketch the detour flow graph labeled with I iDd’s.
Construct a system of equations of the form

A1(I,D) = ?? + ??A1(I,D) + ??A2(I,D)

A2(I,D) = ?? + ??A1(I,D) + ??A2(I,D)

A(I,D) = ??A2(I,D),

where A1 and A2 denote the transfer functions until states 1 and 2, and verify that
A(I,D) = I3D4/(1−D − ID2).

Solution: The detour flow graph is shown below.

0 1 2 0
ID2

D
ID

D

ID

We have A = (ID)A2, A2 = (ID)A1, A1 = (ID2) + (D)A1 + (D)A2. This yields
A(I,D) = I3D4/(1−D − ID2).

(e) (2 pts) Differentiate A(I,D) with respect to I, and use it to find an upper bound to
the bit error probability on sending the all +1 sequence, as a function of Es/σ2.

Solution: The error probability is upper bounded by, with z = e−
Es
2σ2

∂A(I,D)

∂I

∣∣∣∣
I=1,D=z

=
3I2D4(1−D − ID2) + I3D6

(1−D − ID2)2

∣∣∣∣
I=1,D=z

=
3I2D4 − 3I2D5 − 2I3D6

(1−D − ID2)2

∣∣∣∣
I=1,D=z

=
z4(3− 3z − 2z2)

(1− z − z2)2
.
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Remark: This is not a convolutional encoder as seen in the course, but it is still a finite-
state encoder. Thus, we can still draw trellis diagrams and use them to efficiently carry
out ML decoding. One difference, however, is that it does not have the symmetry of a
convolutional code. The upper bound computed in part (e) is only an upper bound to
the error probability on sending the all +1 sequence, and not the average error probability
(as is the case for convolutional codes). An interesting exercise would be to repeat parts
(d) and (e) taking some other path as the reference — the transfer function (and hence
the upper bound derived from it) will depend on the reference path (unlike convolutional
codes, which have more structure).
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