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Problem 1. (a)

Pe = P
(
Ĥ 6= ?, Ĥ 6= H

)
= P

(
Ĥ = 1, H = 0

)
+ P

(
Ĥ = 0, H = 1

)
= PH(0) P

(
Ĥ = 1 |H = 0

)
+ PH(1) P

(
Ĥ = 0 |H = 1

)
= PH(0)

∫
R1

fY |H(y|0) dy + PH(1)

∫
R0

fY |H(y|1) dy

=

∫
R1

b0(y) dy +

∫
R0

b1(y) dy.

P? = P
(
Ĥ = ?

)
= P

(
Ĥ = ?, H = 0

)
+ P

(
Ĥ = ?, H = 1

)
= PH(0) P

(
Ĥ = ? |H = 0

)
+ PH(1) P

(
Ĥ = ? |H = 1

)
= PH(0)

∫
R?

fY |H(y|0) dy + PH(1)

∫
R?

fY |H(y|1) dy

=

∫
R?

b?(y)

α
dy.

Hence, Pe + αP? =
∫
R1
b0(y) dy +

∫
R0
b1(y) dy +

∫
R?
b?(y) dy.

(b) Let’s calculate Pe + αP? for this decision rule:

Pe + αP? =

∫
R1

b0(y) dy +

∫
R0

b1(y) dy +

∫
R?

b?(y) dy

=

∫
{y: b0(y)=b(y)}

b0(y) dy +

∫
{y: b1(y)=b(y)}

b1(y) dy +

∫
{y: b?(y)=b(y)}

b?(y) dy

=

∫
{y: b0(y)=b(y)}

b(y) dy +

∫
{y: b1(y)=b(y)}

b(y) dy +

∫
{y: b?(y)=b(y)}

b(y) dy

=

∫
{y: b0(y)=b(y)∨ b1(y)=b(y)∨ b?(y)=b(y)}

b(y) dy

=

∫
y

b(y) dy.

Since this decision rule achieves the lower bound given in the hint, it minimizes Pe+αP?.



(c) Notice that L = b0(y)
b1(y)

. Dividing both sides by b1(y) for each case of the decision rule

Ĥ(y), we get:

Ĥ(y) =


1 L(y) = b′(y),

0 1 = b′(y),

? α(1 + L(y)) = b′(y),

where b′(y) = min (L(y), 1, α(1 + L(y))). Equivalently,

Ĥ(y) =


1 L(y) < 1 ∧ L(y) < α(1 + L(y)),

0 1 < L(y) ∧ 1 < α(1 + L(y)),

? α(1 + L(y)) < L(y) ∧ α(1 + L(y)) < 1.

Further simplifying we obtain,

Ĥ(y) =


1 L(y) < 1 ∧ L(y) < α

1−α ,

0 1 < L(y) ∧ 1−α
α

< L(y),

? α
1−α ≤ L(y) ≤ 1−α

α
,

Given the assumption, L(y) < α
1−α implies L(y) < 1 and L(y) > 1−α

α
implies L(y) > 1,

and these complete the proof.

(d) Let’s calculate L(y) for this setup:

L(y) =

1
σ
√
2π

exp
(
− (y−1)2

2σ2

)
1

σ
√
2π

exp
(
− (y+1)2

2σ2

)
= exp

(
−y2 + 2y − 1 + y2 + 2y + 1

2σ2

)
= exp

(
2y

σ2

)
.

So, applying the result of (c), we get:

Ĥ(y) =


1 y < −σ2

2
log
(
1−α
α

)
,

0 y > σ2

2
log
(
1−α
α

)
,

? otherwise.

y

−σ2

2
log
(
1−α
α

)
0 σ2

2
log
(
1−α
α

)R?R1 R0

2



Problem 2. (a) Using Nyquist’s criterion, the set {ψ(t− kT ), k ∈ Z} forms an orthogo-
nal basis if ∑

k

∣∣∣∣ψF(f − k

T
)

∣∣∣∣2 = c, (1)

for some c ∈ R. From the figure, we see that (1) holds if 1
T

= 2, i.e. T = 1
2
. Moreover

c = 1, hence ψ(t) is not a unit-norm pulse but has energy E = 2.

(b) Let R(t) denote the noisy channel output. Optimal detection of S is provided by the
ML decoder since all signals are equiprobable. The sufficient statistics Y = (Y1, Y2) ∈
R2 are obtained by filtering R(t) by the matched filter of impulse response h(t) =
ψ(−t)/

√
E and sampling its output at t = 0 and t = T , respectively:

R(t) h(t)

t = 0

Y1 ∈ R

t = T

Y2 ∈ R

The decision rule is then Ĥ = arg mini ‖Y − ci‖22, with

c0 = (0, 0), c1 = (
√
E , 0), c2 = (0,

√
E), c3 = (

√
E ,
√
E).

(c) A minimum energy signal set S̃ = {w̃0, w̃1, w̃2, w̃3} is obtained by subtracting m = E[S]
from S:

m(t) =
1

4

3∑
k=0

wk(t) =
1

2
ψ(t) +

1

2
ψ(t− T ).

w̃0(t) = w0(t)−m(t) = −1

2
ψ(t)− 1

2
ψ(t− T ) = −

√
E

2
h(t)−

√
E

2
h(t− T ),

w̃1(t) = w1(t)−m(t) =
1

2
ψ(t)− 1

2
ψ(t− T ) =

√
E

2
h(t)−

√
E

2
h(t− T ),

w̃2(t) = w2(t)−m(t) = −1

2
ψ(t) +

1

2
ψ(t− T ) = −

√
E

2
h(t) +

√
E

2
h(t− T ),

w̃3(t) = w3(t)−m(t) =
1

2
ψ(t) +

1

2
ψ(t− T ) =

√
E

2
h(t) +

√
E

2
h(t− T ).

The codewords {c̃0, c̃1, c̃2, c̃3} associated to S̃ in the {ψ(t), ψ(t− T )} basis are

c̃0 =

(
−1

2
,−1

2

)
, c̃1 =

(
1

2
,−1

2

)
, c̃2 =

(
−1

2
,
1

2

)
, c̃3 =

(
1

2
,
1

2

)
,

and are plotted below:

3



ψ(t)

ψ(t− T )

1
2

1
2

c̃0 c̃1

c̃2 c̃3

(d) Simply replace {c0, c1, c2, c3} with {ĉ0, ĉ1, ĉ2, ĉ3} in (b), where ĉi =
√
E c̃i.

(e) The receiver in (b) corresponds to the ML decoder for a 4-QAM constellation of pa-
rameter d = E and σ2 = N0/2. The error probability of the system is therefore

Pe = 2Q

(
d

2σ

)
−Q2

(
d

2σ

)
= 2Q

(√
E

2N0

)
−Q2

(√
E

2N0

)
.

(f) The decoding regions of receiver (b) are Ri =
{
Y ∈ R2 | ‖Y − ci‖22 ≤

d
2

}
, which leads

to the explicit decoding rule

Ĥ(Y1, Y2) =


0 Y1 ≤ d

2
∩ Y2 ≤ d

2
,

1 Y1 ≥ d
2
∩ Y2 ≤ d

2
,

2 Y1 ≤ d
2
∩ Y2 ≥ d

2
,

3 Y1 ≥ d
2
∩ Y2 ≥ d

2
.

When using S̃ with receiver (b), we have Y|H = i ∼ N (ĉi,
N0

2
I2) such that probability

of error-free transmission is given by Pc = 1
4

∑3
k=0 Pc(i), where1:

1In what follows, we replace N0/2 by σ2 for notational convenience.
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Pc(0) = Pr

{
Ĥ = H

∣∣∣∣H = 0

}
= Pr

{
Y1 ≤

d

2
, Y2 ≤

d

2

∣∣∣∣ H = 0

}
= Pr

{
[ĉ0]1 + σZ1 ≤

d

2

}
Pr

{
[ĉ0]2 + σZ2 ≤

d

2

}
=

[
1−Q

(√
E
σ2

)]2
,

Pc(1) = Pr

{
Ĥ = H

∣∣∣∣H = 1

}
= Pr

{
Y1 ≥

d

2
, Y2 ≤

d

2

∣∣∣∣ H = 1

}
= Pr

{
[ĉ1]1 + σZ1 ≥

d

2

}
Pr

{
[ĉ1]2 + σZ2 ≤

d

2

}
=

1

2

[
1−Q

(√
E
σ2

)]
,

Pc(2) = Pc(1) by symmetry,

Pc(3) = Pr

{
Ĥ = H

∣∣∣∣H = 3

}
= Pr

{
Y1 ≥

d

2
, Y2 ≥

d

2

∣∣∣∣ H = 3

}
= Pr

{
[ĉ3]1 + σZ1 ≥

d

2

}
Pr

{
[ĉ3]2 + σZ2 ≥

d

2

}
=

1

4
.

Therefore the error rate when decoding S̃ with receiver (b) is

Pe = 1− Pc = 1− 1

16

[
9− 12Q

(√
2E
N0

)
+ 4Q2

(√
2E
N0

)]
.
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Problem 3. (a) The fact that ψ(t) is real-valued implies its Fourier transform is conjugate
symmetric. As it also forms an orthogonal collection, the Nyquist criterion must hold:

∑
k∈Z

∣∣∣∣ψF (f − k

T

)∣∣∣∣2 = C,

where T = 1 in our case and C is any constant. (We only require the collection to be
orthogonal and not orthonormal.) Let us denote slices of the power spectrum as

µ1(f) = |ψF (f)|2 10≤f≤ 1
2

µ2(f) =

∣∣∣∣ψF (f +
1

2

)∣∣∣∣2 10≤f≤ 1
2

µ3(f) = |ψF (f + 1)|2 10≤f≤ 1
2

µ4(f) =

∣∣∣∣ψF (f +
3

2

)∣∣∣∣2 10≤f≤ 1
2
,

where µ2(f) and µ4(f) are currently unknown. The Nyquist criterion is fulfilled pro-
vided that:

µ1(f) + µ3(f) + µ2(−f) + µ4(−f) = C10≤f≤ 1
2
.

One possible spectrum that fulfills the criterion is:

|ψF(f)|2

f

1

−2 −1 0 1 2

(b) The autocorrelation function can be written as:

E[XiXi+k] =

{
1 k = 0,

0 otherwise.

The k = 0 case is obvious. For the other case E[XiXi+k] 6= 0 can only happen if they
share random variables. This is only possible for the following cases:

E[X2iX2i−1] = E[b2i bi−2] = E[b2i ]E[bi−2] = 0

E[X2(i+2)X2i−1] = E[b2i bi+2] = E[b2i ]E[bi+2] = 0

E[X2(i+2)X2i] = E[b2i bi+2bi−2] = E[b2i ]E[bi+2]E[bi−2] = 0

As for these cases the correlation is also 0, therefore E[XiXi+k] = 0 if k 6= 0.

(c) From the problem, we see that the encoder will need order 2 memory due to the bi−2
term. Therefore, we will take bi−1bi−2 as the state. At each iteration, the encoder will
take bi, then return X2i−1 and X2i as its output. The encoder can be expressed as the
following state diagram.
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1, 1

−1, 1

−1,−1

1,−1

1/1, 1

−
1/−

1,−
1

1/1, 1

−1
/
−
1,
−1

−1/− 1, 1

1/1,−
1

−1/− 1, 1

1/
1,
−1

(d) The encoder over even-indexed sequences ci is as follows:

ci ∈ {±1} ci−1 × α2i = cici−1

α2i−1 = ci

Its state diagram is given below:

1 −11/1, 1 −1/− 1, 1

−1/− 1,−1

1/1,−1

The circuit and state diagram corresponding to odd-indexed inputs di is identical to
above. If the output of the odd-indexd inputs are β2i−1β2i, then the 4-state base encoder
is obtained by interleaving outputs of the 2-state encoders as such: α1α2β1β2α3α4β3β4 . . ..

(e) As we are working with a AWGN channel, the channel metric is equal to

log(f(Y|X)) = − 1

2σ2
‖Y − aX‖22 −

12

2
log(2πσ2),

where a = E
∫∞
−∞ |ψF(f)|2df as our basis is real-valued and unnormalized. Therefore
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we want to find a solution to the following optimization problem:

arg max
X1,..,X12

12∑
i=1

log(f(Yi|Xi)) = arg min
X1,..,X12

12∑
i=1

(Yi − aXi)
2

= arg min
X1,..,X12

12∑
i=1

Y 2
i + (aXi)

2 − 2aYiXi

= arg max
X1,..,X12

12∑
i=1

YiXi,

where the domain of optimization is taken over all possible sequences X1, ..., X12 gen-
erated by the encoder in (d). Note that the choice of spectrum at (a) and the channel
variance are irrelevant as the final objective function does not depend on a or σ2. To
solve this, consider the following trellis denoting the corresponding objective function
Y2iX2i + Y2i−1X2i−1 for each path.

(1, 1)

(−1, 1)

(1,−1)

(−1,−1)

33 -16 3 -11 0 -4

-3
3 16 -3 11

-1
6 3 -1
1 0

16 -3 11

-7 -23
7 23 -6

7 23 -6 16

-23-7

From the trellis, the channel metric is maximized if we choose input sequence {1,−1, 1, 1}
with the path metric total of 72.
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