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SOLUTION 1.

(a) We have triz(f) = rect:(f) = sinc®(f) because tri(t) = (rect *rect)(t). Now since
W(t) = sinc(t) - tri(t), we have

Vr(f) = (sincg * triz) (f) = (rect * sinc?)(f)
= /+OO rect(f — u) sinc?(u)du = /eré sinc?(u)du = a(f).
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On the other hand, we have E[X;] = 0 and
Kx[k] = E[X;4xX[] = E1{k = 0}.
Thus,
= [0r (NI ZKX e 2 = £a*(f).
Now since h(t) = 0(t) — 26(t — 1/4) + 6(t — 1/2), we have
- . A
he(f)=1-— 2e73% 4 eI = (1 — 6_37f> :

Therefore,

.of 4
2

Sy () = Sx(f) - Ihr( ) = Ea*(f) - [1 = ¢

Since a(f) > 0 for every f € R, we have Sy (f) = 0 if and only if 1 — 1% = 0.
Therefore,

Sy(f)=0 < f=4m for some m € Z.
(b) We have
E[X7] = s* (E[D}] + 20E[D;D;_4] + &E[D;_;]) = s*(1 + 0+ o) = s*(1 + o).

)

Hence,

We still have E[X;] = 0. However,

Kx[k] = E[Xi1 X]]
s° (E[Di+kDi] + aE[Di 11 D;—a] + aE[D;y -4 D;] + 052]E[Di+k:—4Dz'—4])
=5 ((1+o®)1{k = 0} + al{k = -4} + al{k = 4})

:8(1{k:0}+1 - QQQE{k:4}).
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Lk =4} +



Therefore,

Sx(f) = [Wx(HPF Y Kx[kle 3™

k

(0% : « .
=) (e e )

= eat) (14 2 eotsn)).
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1+ a?

and
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S¢(0) = Sx1) - AP = £) (14 o

cos(87rf)) : ‘1 — 3%

We have several cases:

— If || # 1, we have |22%;| < 1 and so 1+ 2% cos(87f) # 0 for every f € R,

1+a? T+
Hence,
Sy(f)=0 & 1-—e3% =0
& f =4m for some m € Z.
— If @« = —1, we have
oy |4
S () = Sx(f) - (1) = Ea(F) (1 — eos(sm)) - [1 - 9%
Hence,

Sy(f)=0 <« 1—e3% =0 or 1 —cos(8rf) =0

< f=4m or f:% for some m € Z

& f:% for some m € Z.

— If o =1, we have

Ik

Sy (f) = Sx(f) - |hr () = Ea®*(f) (1 4 cos(8nf)) - ‘1 _ i

Hence,

Sy(f)=0 < 1—e3% =0 or 1+ cos(8rf) =0
2m +1

< f=4m or f= for some m € Z.

(c) Since D? = D? | =1, we have X; = s(D; + D;_;). Hence
E[X?] = s* (E[D}] + 2E[D;D;_1] + E[D}_|]) = s*(1 + 0 + 1) = 25*.

and



We still have E[X;] = 0. However,

Kx[k] = E [Xie X]]
= $>(E[Di14xDy] + E[Di1.Di-1] + E[Dj1x-1D;] + E[Diy—1D;—1])
S2RUIEk=0} +1{k=-1}+1{k=1})

£ (m 0} + %]l{k — 1+ %Il{k: - 1}) |

Hence,
|77Z)]__ | ZK —J27rkf
=£&-d*(f) (1 + %eﬂ”f + %eﬂ”f>
=& -a*(f) (1 + cos(27f)),
and \
Sy () = Sx(f) - Ihr(NIF = Ea*(f) (1 + cos(2nf)) - [1 = 3%
Therefore,

Sy(f)=0 < 1—e3% =0 or 1+cos(2nf) =0

2 1
m+ for some m € Z.

& f=4dmoor f =

(d) Since 1 ¢ {4m : m € Z} and 1 ¢ {22 : m € Z}, we have Sy(1) # 0 for the
method in (c).

On the other hand, since 1 ¢ {4m : m € Z}, 1 ¢ {¥: meZ} and 1 €
{2 m € Z}, the only value of a in (b) for which we have Sy (1) =01is a = —1.

SOLUTION 2.

(a) Since wg(t) = ZXj sinc(t — j), we have wg #(f) = ZXj rect(f)e %™/, Hence

U)E'J:(f) =0 for f ¢ (—%, %)
Now since wz(f) = \/iin,;(f fe) for f >0, the equality wr(f.— f) = w;(fc—i-f)*

implies that wg 7(—f) = wg #(f)* for f € (—3,3). Butwg #(f) =0for f ¢ ( 1.3
Therefore, wg 7(—f) = wg #(f)* for every f € R, which implies that wg(t) is a real
signal, i.e., X; € {+1,—1} for all j € Z.

(b) Since wr(f) = Lwpr(f — fo) for f > 0, the equality wx(f. — f) = ~wz(f. + )"

implies that wg r(—f) = —wpr(f)* for f € (—=1,3). But wgr(f) = 0 for f ¢
11

(—5,5). Therefore, wg r(—f) = —wp #(f)* for every f € R, which implies that

wg(t) is a pure-imaginary signal, i.e., X; € {+j,—j} for all j € Z.
(c) If =0,

R{Re(t)} = A R{wp(t)} + Na(t),
S{Rp(t)} = A~ S{we(t)} + Ni(t),



where Ng(t) and N;(t) are independent white Gaussian noise processes of power
spectral density %

A sufficient statistic to estimate X; from the received signal is obtained by computing
the (complex-valued) inner products

Y; = (Rg(t),sinc(t — j)),
or equivalently, pairs of real-valued inner products

Yi; = (R{Re(t)},sinc(t — j)) and Ys,; = (S{Rg(t)},sinc(t — j)).

To this end, one in principle has to filter the outputs of the down-converter using
matched filters of impulse response sinc*(—t) and sample the outputs of the filters at
times t = j,j € Z. However, a filter with impulse response sinc*(—t) is nothing but a
low-pass filter with frequency response Il{—% <f< %} which is already included in
the down-converter. Thus, it is sufficient to sample the output of the down-converters
directly to obtain the desired sufficient statistics.

V2cos(2m fot + 0)

|
r ~1{-B< f< B} Rl — Vi

R(t)

L(:)—> 1{-B< f<B} SUE()) — Y5
f
—V2sin(2n ft + 6)

(d) We have the following hypothesis testing problem:
under H =17 : Y =c¢+ 2,
where Z ~ N(0,521,) and ¢; = [4,0], s = [0, A], c3 = [~ A, 0], and ¢4 = [0, —A].

For an AWGN setting, the ML decision rule will be the minimum distance decision
rule with the following decision regions:

This is a 4-PSK constellation and the probability of error of an ML decoder for such

a constellation is )
A A
r=20( )=o)
N, Ny

4



(e) Since the decision regions in (d) do not depend on A, we do not change anything in
the decoder of (d), even if A were unknown to the receiver. The average probability
of error is given by

(i) - (7%) 2
“aleolot) o)) 3 (o) -2 )
~a(aw) 10 (o) o) -1V

(f) Using the trigonometric identity cos(a + b) = cos(a) cos(b) — sin(a) sin(b) we can see
that the output of the top modulator, in presence of the phase difference, is

R(t) cos(8) x V2cos(2mf.t) — R(t)sin(f) x V2sin(27 f.t).
Thus, as the low-pass filter is a linear system, the output of the top low-pass filter is:
R{Rr(t)} = R{wge(t)} cos(0) + S{wg(t)} sin(f) + cos(8) Ng(t) + sin(6) N(t).
Similarly, we can show that the output of the bottom low-pass filter is:

S{Re(t)} = S{wg(t)} cos(0) — R{wg(t)} sin(f) + cos(0) N (t) — sin(0) Ng(t).

P.=E

Therefore, the observable Y = [, Ys] (under H = ) is now equal to
Y = R@Ci + RQZ

where

ro= [l @)

is the rotation matrix, the codewords ¢; are as in part (d), and Z ~ N(0,221,).
Moreover, we know that V' = RyZ has the same statistics as Z. Thus, we can write
the observable Y as

under H =i : Y = Roc; +V

with V ~ N(0, 22 1).




Using the above diagram, we can see that the probability of correct guess of the
receiver, conditioned on a particular value of A, is

_o (A D)) o _AcosO— %)
PC‘Q< e )Q( e )
B B Asin(§ —0) B Acos(§ —0)
(e () 0o ()
1.0 Asin(} —0) 0 Acos(] —0) Lo Asin(§ —0) 0 Acos(§ —0)
VNo/2 VNo/2 VNo/2 No/2 )
Therefore, the average probability of error is given by
Asin(} —0) Acos(7 —0)) 0 Asin(§ —0) 0 Acos(§ —0)
¢ v/ No/2 e vV No/2 No/2 vV No/2
1 sin(§ —0) cos(§ —0) B sin(§ —0) cos(§ —0)
=5 (e (M) e () e (Mun ) e (M)
1 V3sin(Z — 0) V3cos(Z — ) V3sin(Z — ) V3cos(Z — )
le(H) o () o () o (PR

SOLUTION 3.

P.=E

(a) The state diagram and detour flow graph are shown here. The states are labeled as
(bjfl, bjfg) and the transitions with bj/l’g,j, L3541, L35+2-

~1/1,-1,1




1D

(b) The output to (1,—1,—1,1,1)is (1,1,1,—-1,—1,-1,-1,1,1,—-1,1, 1,1, —1,1).

(c) The Bhattacharyya bound is given by

2= Z VByix WPy x(v] = 1)

= \/]Py‘x IDPyx (1] = 1) + /Py x )Py x (7] = 1) + /Py x (= 1[1)Pyx (—1] — 1)

R R

21— —
e e+2

(d) Let us relabel the states in the detour flow graph:

We have:
T, = ID*T, + IDT,,
T, = D*T, + D*T,,
T, = IDT, + IDT,,
and
T, = D*T.
We have

T, +T, = ID*T, + IDT, + T, = ID*T, 4+ (ID* + ID)(T; + T}),
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hence,

I1D?
T,+ T, = T..
R > I §5
Therefore,
ID7
T, = D*T, = DMT, + T,) = .
(M+T)=1—p 15
The generating function of a(i,d) is
T, ID7
T(I,D) === = .
(Z, D) T, 1—1ID—1ID3
We have
8T(I D) - D'(1—1ID— 1D —(—=D - D*ID" D7
or’ (1—1ID —1D3)? (1 —1D —ID3)*

We conclude that the bit error probability is upper bounded as follows:

oT 27

< S —
Fes oI (1,2) (1 —2z— 23)2

(e) Given the observation y = (yo, ..., ysn_1), the ML codeword is given by
arg max p(y|z),

where C represents the set of codewords (i.e., the set of all possible paths on the
trellis). Alternately, the ML codeword is given by

3n—1
1 |2).
arg max Z; og p(yi|x;)

Hence, a branch metric for the Viterbi decoder is

log(1 —€) ify; =,

1 i|Ti) = .
og p(yi|x:) {log (g) £y 4 o

The decoder chooses the path with the largest metric.

(f) The trellis representing the encoder is shown below:

—1,—1e




We display the diagram labeled with edge-metric according to the received sequence
and state-metric of the survivor path. We also indicate the survivor paths and the
decoding path.

—u — 5v —2u — v—5u — 4v
—1,—1e e - ° °

1,—1e °

—1,1e

[ A e N A e

—2u — v —2u — 4v —5u — 4v —6u — 6v —11u — 4v

From the figure we can read the decoded sequence 1, —1,—1,1, 1.



