
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
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Solution 1.

(a) We have triF(f) = rect2F(f) = sinc2(f) because tri(t) = (rect ∗ rect)(t). Now since
ψ(t) = sinc(t) · tri(t), we have

ψF(f) = (sincF ∗ triF)(f) = (rect ∗ sinc2)(f)

=

∫ +∞

−∞
rect(f − u) sinc2(u)du =

∫ f+ 1
2

f− 1
2

sinc2(u)du = a(f).

On the other hand, we have E[Xi] = 0 and

KX [k] = E[Xi+kX
∗
i ] = E1{k = 0}.

Thus,

SX(f) = |ψF(f)|2
∑
k

KX [k]e−j2πkf = Ea2(f).

Now since h(t) = δ(t)− 2δ(t− 1/4) + δ(t− 1/2), we have

hF(f) = 1− 2e−j
πf
2 + e−jπf =

(
1− e−j

πf
2

)2
.

Therefore,

SY (f) = SX(f) · |hF(f)|2 = Ea2(f) ·
∣∣∣1− e−jπf2 ∣∣∣4 .

Since a(f) > 0 for every f ∈ R, we have SY (f) = 0 if and only if 1 − e−j
πf
2 = 0.

Therefore,
SY (f) = 0 ⇔ f = 4m for some m ∈ Z.

(b) We have

E[X2
i ] = s2

(
E[D2

i ] + 2αE[DiDi−4] + α2E[D2
i−4]
)

= s2(1 + 0 + α2) = s2(1 + α2).

Hence,

s = ±
√

E
1 + α2

.

We still have E[Xi] = 0. However,

KX [k] = E [Xi+kX
∗
i ]

= s2
(
E[Di+kDi] + αE[Di+kDi−4] + αE[Di+k−4Di] + α2E[Di+k−4Di−4]

)
= s2

(
(1 + α2)1{k = 0}+ α1{k = −4}+ α1{k = 4}

)
= E

(
1{k = 0}+

α

1 + α2
1{k = −4}+

α

1 + α2
1{k = 4}

)
.



Therefore,

SX(f) = |ψF(f)|2
∑
k

KX [k]e−j2πkf

= E · a2(f)

(
1 +

α

1 + α2
ej8πf +

α

1 + α2
e−j8πf

)
= E · a2(f)

(
1 +

2α

1 + α2
cos(8πf)

)
,

and

SY (f) = SX(f) · |hF(f)|2 = Ea2(f)

(
1 +

2α

1 + α2
cos(8πf)

)
·
∣∣∣1− e−jπf2 ∣∣∣4 .

We have several cases:

– If |α| 6= 1, we have
∣∣ 2α
1+α2

∣∣ < 1 and so 1 + 2α
1+α2 cos(8πf) 6= 0 for every f ∈ R.

Hence,

SY (f) = 0 ⇔ 1− e−j
πf
2 = 0

⇔ f = 4m for some m ∈ Z.

– If α = −1, we have

SY (f) = SX(f) · |hF(f)|2 = Ea2(f) (1− cos(8πf)) ·
∣∣∣1− e−jπf2 ∣∣∣4 .

Hence,

SY (f) = 0 ⇔ 1− e−j
πf
2 = 0 or 1− cos(8πf) = 0

⇔ f = 4m or f =
m

4
for some m ∈ Z

⇔ f =
m

4
for some m ∈ Z.

– If α = 1, we have

SY (f) = SX(f) · |hF(f)|2 = Ea2(f) (1 + cos(8πf)) ·
∣∣∣1− e−jπf2 ∣∣∣4 .

Hence,

SY (f) = 0 ⇔ 1− e−j
πf
2 = 0 or 1 + cos(8πf) = 0

⇔ f = 4m or f =
2m+ 1

8
for some m ∈ Z.

(c) Since D2
i = D2

i−1 = 1, we have Xi = s(Di +Di−1). Hence

E[X2
i ] = s2

(
E[D2

i ] + 2E[DiDi−1] + E[D2
i−1]
)

= s2(1 + 0 + 1) = 2s2.

and

s = ±
√
E
2
.
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We still have E[Xi] = 0. However,

KX [k] = E [Xi+kX
∗
i ]

= s2 (E[Di+kDi] + E[Di+kDi−1] + E[Di+k−1Di] + E[Di+k−1Di−1])

= s2 (21{k = 0}+ 1{k = −1}+ 1{k = 1})

= E
(
1{k = 0}+

1

2
1{k = −1}+

1

2
1{k = 1}

)
.

Hence,

SX(f) = |ψF(f)|2
∑
k

KX [k]e−j2πkf

= E · a2(f)

(
1 +

1

2
ej2πf +

1

2
e−j2πf

)
= E · a2(f) (1 + cos(2πf)) ,

and

SY (f) = SX(f) · |hF(f)|2 = Ea2(f) (1 + cos(2πf)) ·
∣∣∣1− e−jπf2 ∣∣∣4 .

Therefore,

SY (f) = 0 ⇔ 1− e−j
πf
2 = 0 or 1 + cos(2πf) = 0

⇔ f = 4m or f =
2m+ 1

2
for some m ∈ Z.

(d) Since 1 /∈ {4m : m ∈ Z} and 1 /∈
{

2m+1
2

: m ∈ Z
}

, we have SY (1) 6= 0 for the
method in (c).

On the other hand, since 1 /∈ {4m : m ∈ Z}, 1 /∈
{

2m+1
8

: m ∈ Z
}

and 1 ∈{
m
4

: m ∈ Z
}

, the only value of α in (b) for which we have SY (1) = 0 is α = −1.

Solution 2.

(a) Since wE(t) =
∑
j

Xj sinc(t − j), we have wE,F(f) =
∑
j

Xj rect(f)e−j2πjf . Hence

wE,F(f) = 0 for f /∈
(
−1

2
, 1
2

)
.

Now since wF(f) = 1√
2
wE,F(f − fc) for f > 0, the equality wF(fc− f) = wF(fc + f)∗

implies that wE,F(−f) = wE,F(f)∗ for f ∈
(
−1

2
, 1
2

)
. But wE,F(f) = 0 for f /∈

(
−1

2
, 1
2

)
.

Therefore, wE,F(−f) = wE,F(f)∗ for every f ∈ R, which implies that wE(t) is a real
signal, i.e., Xj ∈ {+1,−1} for all j ∈ Z.

(b) Since wF(f) = 1√
2
wE,F(f − fc) for f > 0, the equality wF(fc − f) = −wF(fc + f)∗

implies that wE,F(−f) = −wE,F(f)∗ for f ∈
(
−1

2
, 1
2

)
. But wE,F(f) = 0 for f /∈(

−1
2
, 1
2

)
. Therefore, wE,F(−f) = −wE,F(f)∗ for every f ∈ R, which implies that

wE(t) is a pure-imaginary signal, i.e., Xj ∈ {+j,−j} for all j ∈ Z.

(c) If θ = 0,

<{RE(t)} = A · <{wE(t)}+NR(t),

={RE(t)} = A · ={wE(t)}+NI(t),
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where NR(t) and NI(t) are independent white Gaussian noise processes of power
spectral density N0

2
.

A sufficient statistic to estimate Xj from the received signal is obtained by computing
the (complex-valued) inner products

Yj = 〈RE(t), sinc(t− j)〉,

or equivalently, pairs of real-valued inner products

Y1,j = 〈<{RE(t)}, sinc(t− j)〉 and Y2,j = 〈={RE(t)}, sinc(t− j)〉.

To this end, one in principle has to filter the outputs of the down-converter using
matched filters of impulse response sinc∗(−t) and sample the outputs of the filters at
times t = j, j ∈ Z. However, a filter with impulse response sinc∗(−t) is nothing but a
low-pass filter with frequency response 1{−1

2
≤ f ≤ 1

2
} which is already included in

the down-converter. Thus, it is sufficient to sample the output of the down-converters
directly to obtain the desired sufficient statistics.

R(t)

×

×

1{−B ≤ f ≤ B}

1{−B ≤ f ≤ B}

√
2 cos(2πfct+ θ)

−
√
2 sin(2πfct+ θ)

Y1,j

Y2,j

<{RE(t)}
t = j

={RE(t)}
t = j

(d) We have the following hypothesis testing problem:

under H = i : Y = ci + Z,

where Z ∼ N (0, N0

2
I2) and c1 = [A, 0], c2 = [0, A], c3 = [−A, 0], and c4 = [0,−A].

For an AWGN setting, the ML decision rule will be the minimum distance decision
rule with the following decision regions:

Y1

Y2

c1
c3

c2

c4

R1

R2

R3

R4

This is a 4-PSK constellation and the probability of error of an ML decoder for such
a constellation is

Pe = 2Q

(
A√
N0

)
−Q

(
A√
N0

)2

.
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(e) Since the decision regions in (d) do not depend on A, we do not change anything in
the decoder of (d), even if A were unknown to the receiver. The average probability
of error is given by

Pe = E

[
2Q

(
A√
N0

)
−Q

(
A√
N0

)2
]

=
1

2

(
2Q

(
1√
2N0

)
−Q

(
1√
2N0

)2
)

+
1

2

(
2Q

(√
3

2N0

)
−Q

(√
3

2N0

)2
)

= Q

(
1√
2N0

)
− 1

2
Q

(
1√
2N0

)2

+Q

(√
3

2N0

)
− 1

2
Q

(√
3

2N0

)2

.

(f) Using the trigonometric identity cos(a+ b) = cos(a) cos(b)− sin(a) sin(b) we can see
that the output of the top modulator, in presence of the phase difference, is

R(t) cos(θ)×
√

2 cos(2πfct)−R(t) sin(θ)×
√

2 sin(2πfct).

Thus, as the low-pass filter is a linear system, the output of the top low-pass filter is:

<{RE(t)} = <{wE(t)} cos(θ) + ={wE(t)} sin(θ) + cos(θ)NR(t) + sin(θ)NI(t).

Similarly, we can show that the output of the bottom low-pass filter is:

={RE(t)} = ={wE(t)} cos(θ)−<{wE(t)} sin(θ) + cos(θ)NI(t)− sin(θ)NR(t).

Therefore, the observable Y = [Y1, Y2] (under H = i) is now equal to

Y = Rθci +RθZ

where

Rθ =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
is the rotation matrix, the codewords ci are as in part (d), and Z ∼ N (0, N0

2
I2).

Moreover, we know that V = RθZ has the same statistics as Z. Thus, we can write
the observable Y as

under H = i : Y = Rθci + V

with V ∼ N (0, N0

2
I2).

Y1

Y2

c1

c2

c3

c4

A
sin
(θ
−
π
4
)

A
cos(θ −

π
4 )

θ

R1

R2

R3

R4
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Using the above diagram, we can see that the probability of correct guess of the
receiver, conditioned on a particular value of A, is

Pc = Q

(
A sin(θ − π

4
)√

N0/2

)
Q

(
−
A cos(θ − π

4
)√

N0/2

)

=

(
1−Q

(
A sin(π

4
− θ)√

N0/2

))(
1−Q

(
A cos(π

4
− θ)√

N0/2

))

= 1−Q

(
A sin(π

4
− θ)√

N0/2

)
−Q

(
A cos(π

4
− θ)√

N0/2

)
+Q

(
A sin(π

4
− θ)√

N0/2

)
Q

(
A cos(π

4
− θ)√

N0/2

)
.

Therefore, the average probability of error is given by

Pe = E

[
Q

(
A sin(π

4
− θ)√

N0/2

)
+Q

(
A cos(π

4
− θ)√

N0/2

)
−Q

(
A sin(π

4
− θ)√

N0/2

)
Q

(
A cos(π

4
− θ)√

N0/2

)]

=
1

2

(
Q

(
sin(π

4
− θ)

√
N0

)
+Q

(
cos(π

4
− θ)

√
N0

)
−Q

(
sin(π

4
− θ)

√
N0

)
Q

(
cos(π

4
− θ)

√
N0

))
+

1

2

(
Q

(√
3 sin(π

4
− θ)

√
N0

)
+Q

(√
3 cos(π

4
− θ)

√
N0

)
−Q

(√
3 sin(π

4
− θ)

√
N0

)
Q

(√
3 cos(π

4
− θ)

√
N0

))
.

Solution 3.

(a) The state diagram and detour flow graph are shown here. The states are labeled as
(bj−1, bj−2) and the transitions with bj/x3j, x3j+1, x3j+2.

1, 1

−1, 1

−1,−1

1,−1

1/1, 1, 1

−
1/−

1,−
1,−

1

1/1,−1,−1−1
/
−
1,
1,
1

−1/1,−1, 1

1/−
1, 1,−

1

−1/1, 1,−1

1/
−
1,
−1
, 1
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1, 1 −1, 1

−1,−1

1,−1 1, 1
ID3

ID

D2

ID

D
2

ID

D2

(b) The output to (1,−1,−1, 1, 1) is (1, 1, 1,−1,−1,−1,−1, 1, 1,−1, 1,−1,−1,−1, 1).

(c) The Bhattacharyya bound is given by

z =
∑
y

√
PY |X(y|1)PY |X(y| − 1)

=
√
PY |X(1|1)PY |X(1| − 1) +

√
PY |X(?|1)PY |X(?| − 1) +

√
PY |X(−1|1)PY |X(−1| − 1)

=

√
(1− ε) ε

2
+

√( ε
2

)2
+

√
ε

2
(1− ε)

=
√

2ε(1− ε) +
ε

2
.

(d) Let us relabel the states in the detour flow graph:

s l

t

r e
ID3

ID

D2

ID

D 2

ID

D2

We have:
Tl = ID3Ts + IDTr,

Tr = D2Tl +D2Tt,

Tt = IDTl + IDTt,

and
Te = D2Tr.

We have

Tl + Tt = ID3Ts + IDTr + Tt = ID3Ts + (ID3 + ID)(Tl + Tt),
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hence,

Tl + Tt =
ID3

1− ID − ID3
Ts.

Therefore,

Te = D2Tr = D4(Tl + Tr) =
ID7

1− ID − ID3
.

The generating function of a(i, d) is

T (I,D) =
Te
Ts

=
ID7

1− ID − ID3
.

We have

∂T

∂I
(I,D) =

D7(1− ID − ID3)− (−D −D3)ID7

(1− ID − ID3)2
=

D7

(1− ID − ID3)2
.

We conclude that the bit error probability is upper bounded as follows:

Pe ≤
∂T

∂I
(1, z) =

z7

(1− z − z3)2
.

(e) Given the observation y = (y0, . . . , y3n−1), the ML codeword is given by

arg max
x∈C

p(y|x),

where C represents the set of codewords (i.e., the set of all possible paths on the
trellis). Alternately, the ML codeword is given by

arg max
x∈C

3n−1∑
i=0

log p(yi|xi).

Hence, a branch metric for the Viterbi decoder is

log p(yi|xi) =

{
log(1− ε) if yi = xi,

log
( ε

2

)
if yi 6= xi.

The decoder chooses the path with the largest metric.

(f) The trellis representing the encoder is shown below:

1,1

−1,1

1,−1

−1,−1

1,1,1
−1

,−1
,−1

1,1,1
−1

,−1
,−1

−
1,
1,
1

1,−
1,−

1

1,1,1−1
,−1

,−1

−
1,
1,
1

1,−
1,−

1

1,1,−1−
1,−

1,1

1,−1,1
−1,1,−1

1,1,1

1,−
1,−

1

−
1,−

1,1

−1,1,−1

1,1,1

−
1,−

1,1
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We display the diagram labeled with edge-metric according to the received sequence
and state-metric of the survivor path. We also indicate the survivor paths and the
decoding path.

1,1

−1,1

1,−1

−1,−1

−2u− v

−u− 2v

−2u− 4v

−4u− 2v

−3u− 3v

−u− 5v

−5u− 4v

−3u− 6v

−5u− 4v

−5u− 4v

−6u− 6v

−8u− 4v

−11u− 4v

−2u− v

−u
−
2v

−3v

−2u
−
v

−
3
v

−2u
−
v

−u− 2v−u
−
2v

−
u
−

2
v

−u
−
2v

−
3v−

2
u
−
v

−2u− v

−
3v

−u− 2v

−u
−
2v

−
u
−

2
v

−
3u

−u− 2v

−
3
u

From the figure we can read the decoded sequence 1,−1,−1, 1, 1.
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