

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 35

Final exam

Principles of Digital Communications

June 21, 2022

4 problems, 18 sub-problems each worth 4 points.

180 minutes

2 sheet (4 pages) of notes allowed.

Good Luck!

PLEASE WRITE YOUR NAME ON EACH SHEET OF YOUR ANSWERS.

PLEASE WRITE THE SOLUTION OF EACH PROBLEM ON A SEPARATE SHEET.

PROBLEM 1. Answer to the following question by true or false with a justification

- (a) In a binary hypothesis testing setup with equally likely hypotheses we have designed decision regions R_0 and R_1 using the MAP rule. We find that $P(R_0|H_1) = P(R_1|H_0)$. Suppose now the hypotheses are not equally likely. Is the error probability of the new MAP rule higher than the equally likely case?
- (b) In a m -ary hypothesis testing setup let $p_i(y)$ denote the distribution of the observation Y under hypothesis i ($i \in \{0, 1, \dots, m-1\}$). Let $L_i(y) = \frac{p_i(y)}{p_{i-1}(y)}$ for $i \in \{1, \dots, m-1\}$. Is $[L_1(Y), L_2(Y), \dots, L_{m-1}(Y)]^T$ a sufficient statistic?
- (c) Suppose a communication system designed for m equally likely messages, with waveform set w_0, \dots, w_{m-1} , and used over an AWGN channel of power spectral density $N_0/2$. The receiver uses the MAP rule. We are given the value of N_0 , and the $m \times m$ matrix A with entries $A_{ij} = \langle w_i, w_j \rangle$. Is this information sufficient to compute the error probability?
- (d) Suppose $\psi(t)$ is a Nyquist pulse with parameter T , i.e., with ψ_F denoting the Fourier Transform of ψ , $\sum_n |\psi_F(f - \frac{n}{T})|^2 = T$. Is ψ a Nyquist pulse with parameter $2T$?

PROBLEM 2. Consider a communication system designed for an AWGN of power spectral density $N_0/2$, with two codewords c_0, c_1 , both in \mathbb{R}^n , with $c_0 = -c_1 = [A, \dots, A]^T$ for some $A > 0$.

(a) Assuming equally likely messages, what is the error probability P_e (in terms of A , n , N_0)?

We now use the communication system on a new AWGN of power spectral density is $N'_0/2$, where $N'_0 = 4N_0$.

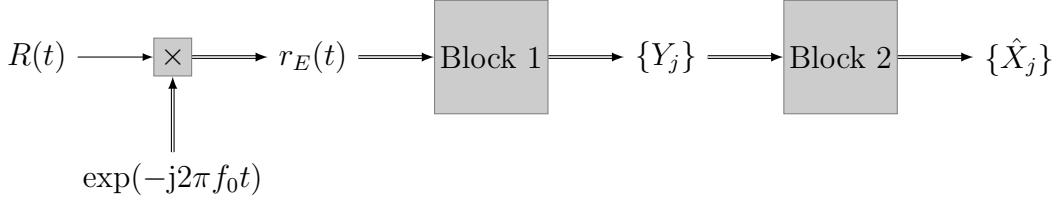
(b) We are allowed to change A to a new value A' but not allowed to change n . How should we choose A' to ensure that the error probability is not changed?

(c) Same as (b), but this time we are allowed to change n to a new value n' but not allowed to change A . How should we choose n' to ensure that the error probability is not changed.

(d) Suppose that the P_e found in (a) is very small. Suppose N_0 has been changed to $\tilde{N}_0 = N_0/4$. (n and A are not changed). Give a simple good estimate of the new error probability \tilde{P}_e in terms of P_e .

[Hint: $Q(x) \approx \exp(-x^2/2)$ for large $x > 0$]

PROBLEM 3. Consider a 4-PSK passband communication system designed with the ‘standard method’: the transmitter accepts a sequence of i.i.d. and equally likely data symbols $\{X_j\}$ with X_j in $\{+\sqrt{\mathcal{E}_s}, -\sqrt{\mathcal{E}_s}, j\sqrt{\mathcal{E}_s}, -j\sqrt{\mathcal{E}_s}\}$ and produces a complex baseband waveform $w_E(t) = \sum_j X_j \psi(t - j)$, where ψ is a unit norm pulse orthogonal to its integer shifts, and has bandwidth B , (that is, $\psi_F(f) = 0$ for $|f| > B$). $w_E(t)$ is converted to a passband signal $w(t) = \sqrt{2} \operatorname{Re}\{w_E(t) \exp(j2\pi f_0 t)\}$ with $f_0 > B$, which is transmitted over an AWGN of power spectral density $N_0/2$.



(a) How does the receiver form $\{Y_j\}$ from the down-converted waveform $r_E(t)$? I.e., explain what should happen in Block 1, and what should happen in Block 2. Sketch or describe the MAP decision regions that estimate \hat{X}_j from Y_j .

[Hint: consider using a matched filter]

Unfortunately there is a phase shift of θ in $[-\pi, \pi]$ in receiver’s oscillator so it forms $r_E(t) = \sqrt{2}R(t) \exp(-j(2\pi f_0 t + \theta))$, instead of the $\sqrt{2}R(t) \exp(-j2\pi f_0 t)$. The receiver is unaware of this phase shift and Block 1 and Block 2 do not take θ into account

(b) What is the error probability of the system (as designed in (a)) if $|\theta| \leq \frac{\pi}{4}$.
 (c) How would you expect the system to perform if $|\theta| > \pi/4$?
 (d) What is the minimum possible value of B ? What is the corresponding pulse shape ψ with $\psi(0) = 1$?

PROBLEM 4. Consider a communication system where the message i in $\{0, \dots, m-1\}$ is transmitted as a vector c_i in $\{+1, -1\}^n$. The transmitted vector c is received as $Y = c + Z$ where Z in \mathbb{R}^n has *i.i.d.* components Z_1, \dots, Z_n with pdf $f_{Z_1}(z_1) = \exp(-|z_1|/\sigma)/(2\sigma)$, this is known as a Lapacian random variable.

- (a) Assuming equally likely messages, find the optimal decision rule to be employed at the receiver.
- (b) Noting that $|u - v| = |u| + |v| - 2 \min(|u|, |v|) \mathbb{1}(uv > 0)$ show that the rule in (a) can be implemented as

$$\operatorname{argmax}_i \sum_j \min(1, |y_j|) \mathbb{1}(c_{ij} y_j > 0).$$

- (c) Noting that $\frac{1}{2\sigma} \int_{-\infty}^{\infty} \exp\left(-\frac{|y-1|+|y+1|}{2\sigma}\right) dy = \left(1 + \frac{1}{\sigma}\right) \exp\left(-\frac{1}{\sigma}\right) =: g(\sigma)$, use the Union-Bhattacharyya bound to show that the error probability is upper bounded by

$$\Pr(\text{error}|i) \leq \sum_{\ell: i \neq \ell} g(\sigma)^{d_H(c_i, c_\ell)}$$

where $d_H(a, b)$ is the number of places the vectors a and b differ.

- (d) Consider now the rate 1/2 convolutional code with $x_{2j} = b_j$, $x_{2j-1} = b_j b_{j-1}$ for input bits b_i in $\{-1, 1\}$. Draw the detour graph of this code, making sure to label each branch with $D^\alpha I^\beta$.
- (e) What is the branch metric $d(x_j, y_j)$ that should be used by Viterbi decoder that implements the MAP decoder?
- (f) Find the transfer function $T(D, I)$ of the detour flow graph of the convolutional encoder described in (d). Using this find an upper bound to the bit error probability of this code.

[Hint: your answer should include the function $g(\sigma)$ of part (c).]