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3 problems, 60 points
165 minutes
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Good Luck!

Please write your name on each sheet of your answers.

Please write the solution of each problem on a separate sheet.



Problem 1. (20 points) Consider the following additive noise channel,

Y [i] = X[i] + Z̃[i]

where X[i] ∈ R is the transmitted signal and Y [i] ∈ R is the received signal. The noise
Z̃[i] is a colored gaussian noise, that can also be written as,

Z̃[i] =
∞∑
j=0

Z[i− 2j]

2j
= Z[i] +

1

2
· Z[i− 2] +

1

4
· Z[i− 4] + . . .

where Z[i] are i.i.d. N (0, 1) random variables. The transmitter uses antipodal signalling
without any coding, i.e., an n bit message b0, . . . , bn−1 in {+1,−1}n is sent asX[0], . . . , X[n−
1] with X[i] = bi, with X[i] = 0 if i < 0. We also assume that all messages are equiprobable.

(a) (4 pts) Assume that we are only given the value of Y [0], determine the error proba-
bility of estimating X[0] under the MAP rule.

As Z̃[i]’s is a linear combination of Gaussians, hence it is also Gaussian. It is easy
to see that E

[
Z̃[0]

]
= 0. For the variance, we have

Var
(
Z̃[0]

)
= Var

(
∞∑
j=0

Z[i− 2j]

2j

)

=
∞∑
j=0

Var

(
Z[i− 2j]

2j

)

=
∞∑
j=0

1

4j
Var (Z[i− 2j])

=
4

3
.

It is easy to see by symmetry that the decision region boundary for estimating X[0] ∈
{+1,−1} is at Y [0] = 0. Hence the error probability is equal to Q

(√
3
4

)
.

(b) (4 pts) Determine the whitening filter for this noise, i.e., find cj’s such that, for all i

∞∑
j=0

cjZ̃[i− j] = Z[i].

Notice that

Z̃[i] = Z[i] +

(
1

2
· Z[i− 2] +

1

4
· Z[i− 4] + . . .

)
= Z[i] +

1

2
Z̃[i− 2].

This implies that Z[i] = Z̃[i]− 1
2
Z̃[i− 2]. Hence

cj =


1 j = 0

−1
2

j = 2

0 otherwise.
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For the rest of the problem, define

Ỹ [i] ,
∞∑
j=0

cjY [i− j].

(c) (4 pts) If we are only given the values of Ỹ [0], Ỹ [1], and Ỹ [2], determine the MAP
rule for estimating X[2].

From the cj’s that we found in (b), we have

Ỹ [2] = X[2]− 1

2
X[0] + Z[2]

Ỹ [1] = X[1] + Z[1]

Ỹ [0] = X[0] + Z[0].

As the noises are independent, Ỹ [2], Ỹ [0] is a sufficient statistics for estimating X[0].
As we assumes that the messages are equiprobable, ML rule is equal to the MAP rule.
Let f(x) be the PDF of N(0, 1), the ML rule is equal to

X̂[2] = arg max
x′2∈{+1,−1}

max
x′0∈{+1,−1}

log f

(
Ỹ [2]− x′2 +

1

2
x′0

)
+ log f

(
Ỹ [0]− x′0

)
= arg min

x′2∈{+1,−1}
min

x0∈{+1,−1}

(
Ỹ [2]− x′2 +

1

2
x′0

)2

+
(
Ỹ [0]− x′0

)2
(d) (4 pts) Explain how to use the Viterbi decoder to implement the MAP decoding of the

sequence X[0], X[1], . . . from the observation Ỹ [0], Ỹ [1], . . . . I.e., you should find the
constraint length d and a function f(y, x0, x−1, . . . , x−d) such that performing MAP
decoding is the same as finding {X[i]}n−1i=0 which minimizes

∑n−1
i=0 f(Ỹ [i], X[i], . . . , X[i−

d]).

By the same argument as in (c), we have the MAP rule given as follows,

arg min
x0,x1,...,xn−1∈{+1,−1}n

n−1∑
j=0

(
Ỹ [j]− xj −

1

2
xj−2

)2

with x−1, x−2 = 0 as the initial state. Hence, we have d = 2 and f(Y [j], xj, xj−1, xj−2) =(
Ỹ [j]− xj − 1

2
xj−2

)2
.

(e) (4 pts) Given whitening filter output

Ỹ [0] Ỹ [1] Ỹ [2] Ỹ [3] Ỹ [4] Ỹ [5]
0.4 −1 0.8 0.7 0.3 0.1,

draw the trellis diagram and find the MAP sequence X[0], . . . , X[5].

3



The trellis labeled by its output,
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and the trellis labeled by the decoding metric,

1,1

1,0

-1,0

0,0

−1,1

1,−1

−1,−1

0.3
6

1.
96

4

0
0

4

0.09
5.2

9

5.
29

0.0
9

1.690.49

1.69

0.49

0.04
4.8

4

4.
84

0.0
4

1.440.64

1.44

0.64

0.04
3.2

4

3.
24

0.0
4

0.641.44

0.64

1.44

0.16
2.5

6

2.
56

0.1
6

0.361.96

0.36

1.96

Hence the optimal sequence is equal to X[0] = 1, X[1] = −1, X[2] = 1, X[3] =
1, X[4] = 1, X[5] = 1.
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Problem 2. (12 points) Suppose we have a binary hypothesis testing problem where the
observable Y may take k distinct values y1, . . . , yk distributed according to a conditional
probability law pY |H . Suppose we process Y to form a new observable

Z =

{
Y if Y ∈ {y1, . . . , yk−1},
yk−1 if Y = yk.

In other words the processing removes the distinction between yk−1 and yk.
Let BY denote the Bhattacharrya bound on the error probabililty when the observation

is Y and BZ denote the Bhattacharrya bound when the observation is Z.

(a) (4 pts) Show that BZ ≥ BY .

Hint: You may first want to show
√

(a + b)(c + d) ≥
√
ac +

√
bd for non-negative a, b, c, d.

Let us first shows the hint, both sides of the inequality are guaranteed to be nonneg-
ative so we have

(
√

(a+ b)(c+ d))2 ≥ (
√
ac+

√
bd)2

ac+ bd+ bc+ ad ≥ ac+ bd+ 2
√
abcd

bc+ ad

2
≥
√
abcd

The last line is true by the AM-GM inequality.

Now we have

BZ −BY =
∑

y∈{y1,...,yk−1}

√
PZ|H(y|0)PZ|H(y|1)−

∑
y∈{y1,...,yk}

√
PY |H(y|0)PY |H(y|1)

=
√
PZ|H(yk−1|0)PZ|H(yk−1|1)−

√
PY |H(yk−1|0)PY |H(yk−1|1)−

√
PY |H(yk|0)PY |H(yk|1)

Take a = PY |H(yk−1|0), b = PY |H(yk|0), c = PY |H(yk−1|1) and d = PY |H(yk|1), we
have

BZ −BY =
√

(a+ b)(c+ d)−
√
ac−

√
bd

≥ 0

where the last inequality is from the hint.

(b) (4 pts) Find the condition for equality in (a), express the condition in terms of Λ(yk−1)
and Λ(yk) where Λ(y) = pY |H(y|0)/pY |H(y|1) is the likelihood ratio.

The AM-GM Inequaly is an equality if and only if both terms are equivalent, i.e.,
p+q
2

=
√
pq iff p = q. In our case, this translates to

PY |H(yk−1|0)PY |H(yk|0) = PY |H(yk−1|1)PY |H(yk|1)

PY |H(yk−1|0)

PY |H(yk−1|1)
=
PY |H(yk|0)

PY |H(yk|1)

Λ(yk−1) = Λ(yk).
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(c) (4 pts) Show that when the observation Y is replaced with Λ(Y ) the Bhattacharrya
bound is not changed.

The Bhattacharrya bound is not changed because the Bhattacarya value of this hy-
pothesis testing problem is not changed. Notice that from (b) we know that combining
two observations symbols with similar LLR does not change the Bhattacharrya value.
Hence, by the applying the result inductively, we can group the observations symbols,
such that all observation symbols with the same LLR is mapped to the same symbol.
If we label each of this groups by its LLR value, then we can assert that replacing Y
by Λ(Y ) does not change the Bhattacharrya value.
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Problem 3. (28 points) Consider the following waveforms.

w0(t)

t

2

4

w1(t)

t

2

4

w2(t)

t

2

4

w3(t)

t

2

4

w4(t)

t

2

4

w5(t)

t

2

4

w6(t)

t

2

4

w7(t)

t

2

4

(a) (4 pts) Find an orthonormal basis for these waveforms such that the waveform ele-
ments are time shifts of a single basis function ψ(t).

We can use ψ(t) = 1(t ∈ [0, 1)), then the basis is for i = 0, . . . , 3 the function
ψi(t) = ψ(t− i).

(b) (4 pts) Assuming equally likely messages, translate the above waveforms to form a
minimum energy signal set W̃ = {w̃i : i = 0, . . . , 7}. What are codewords c0, . . . , c7
that describe W̃ in the orthonormal basis you found in (a). What is the energy per
bit of W̃ ?

We need to remove the mean of the codewords which is exactly 1(t ∈ [0, 4)) so that the
codewords are respectively (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (−1, 0, 0, 0),
(0,−1, 0, 0), (0, 0,−1, 0) and (0, 0, 0,−1). The energy per bit is 1/3.

(c) (4 pts) What can you say about the magnitude squared Fourier transforms of the
waveforms |w̃i,F (f)|2 and |ψF (f)|2 ?

The |w̃i,F (f)|2 are all equal since they corespond to a time shift and scaling by ±1
and in the fourier domain this corespond to changing the phase but not the amplitude.
They are actually are all equal to |ψF (f)|2 for the same reason. By Nyquist’s criterion
we have

∑
i∈Z |ψF (f − i)|2 = 1.

(d) (4 pts) W̃ is used to communicate over an AGWN channel with noise spectral density
N0/2. At the receiver, the received signal is first passed through a filter h(t) = 1{t ∈
[0, 1/3]}. How should the output of the filter be processed to ensure MAP detection?

Hint: The receiver can sample the output of filter h multiple times.

In order to fall back on the case where we would have filtered with h̃(t) = 1(t ∈ [0, 1))
we observe the following f ∗ h̃(T ) = f ∗ h(T ) + f ∗ h(T + 1/3) + f ∗ h(T + 2/3). We
can now do as usual, form the statistic Yi = f ∗ h̃(i) for i = 0, . . . , 3 and it will be,
under hypothesis H = j, be distributed as N (cj,i, N0/2). To make the decision it is
enough to get i = arg maxj |Yj| and sgn(Yi) such that the decision is i if the sign is 1
and i+ 4 otherwise.

(e) (4 pts) Suppose the communication channel multiplies the transmitted waveform with
either +1 or −1 with equal probability. We want to use the transmitter and receiver
in (b) and (c) to communicate. You will notice that because of the “multiplicative”
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defect in the channel, certain waveforms cannot be distinguished. Describe a four
element subset of W̃ that can be distinguished despite this imperfection and how to
interpret the decisions of the receiver in (c) to yield a MAP decoder.

We can take w̃i for i = 1, . . . , 4, those can be distinguished. For the MAP decoder, it
is easy to see that the procedure in (d) will work except that the sign is random with
probability 1/2, the decoder of (d) is still optimal since we cannot dinstinguish between
ci and ci+4, it is as if the random permutation forced ci+4 = ci for i = 0, . . . , 3.

(f) (4 pts) Find the error probability of the system in (e).

The probability of being correct is the probability of having H ≡ arg maxi |Yi| [mod 4]
multiplied by 1/2, the probability of the random shift. That is the probability of error
is

1− 1/2 · P[|Y0| ≥ |Yi| for i = 1, . . . , 3|H = 0]

=1− 1/2 · P

[
3⋂

i=1

{|Zi| ≤ |Z0 + 1|}

∣∣∣∣∣H = 0

]

=1− 1/2

∫ ∞
−∞

(1− 2 ·Q(2|z + 1|/N0))
3 1√

πN0

exp

(
− z

2

N0

)
dz

(g) (4 pts) We would like to keep the codewords as in (b) but change the function ψ(t) so
that the transmitted signals occupy a smaller region in the frequency domain. The
partial figure below plot the magnitude squared Fourier transform of a candidate
function ψ̃(t) to replace ψ(t). Complete the figure such that the time shifts {ψ̃(t− i) :
i ∈ Z} forms an orthogonal basis.

|ψ̃F (t)|2

f
1
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