Principles of Digital Communication

This comprehensive and accessible text teaches the fundamentals of digital
communication via a top-down-reversed approach, specifically formulated for
a one-semester course. It offers students a smooth and exciting journey through
the three sub-layers of the physical layer and is the result of many years of teaching
digital communication.

The unique approach begins with the decision problem faced by the receiver of
the first sub-layer (the decoder), hence cutting straight to the heart of digital com-
munication, and enabling students to learn quickly, intuitively, and with minimal
background knowledge.

A swift and elegant extension to the second sub-layer leaves students with an
understanding of how a receiver works. Signal design is addressed in a seamless
sequence of steps, and finally the third sub-layer emerges as a refinement that
decreases implementation costs and increases flexibility.

The focus is on system-level design, with connections to physical reality,
hardware constraints, engineering practice, and applications made throughout.
Numerous worked examples, homework problems, and MATLAB simulation exercises
make this text a solid basis for students to specialize in the field of digital
communication and it is suitable for both traditional and flipped classroom
teaching.

Bixio Rimoldi is a Professor at the Ecole Polytechnique Fédérale de Lausanne
(EPFL), Switzerland, where he developed an introductory course on digital com-
munication. Previously he was Associate Professor at Washington University and
took visiting positions at Stanford, MIT, and Berkeley. He is an IEEE fellow, a
past president of the IEEE Information Theory Society, and a past director of the
communication system program at EPFL.



“This is an excellent introductory book on digital communications theory that is
suitable for advanced undergraduate students and/or first-year graduate students,
or alternatively for self-study. It achieves a nice degree of rigor in a clear, gentle
and student-friendly manner. The exercises alone are worth the price of the book.”
Dave Forney

MIT

“Principles of Digital Communication: A Top-Down Approach, 2015, Cambridge
University Press, is a special and most attractive text to be used in an introductory
(first) course on “Digital Communications”. It is special in that it addresses the
most basic features of digital communications in an attractive and simple way,
thereby facilitating the teaching of these fundamental aspects within a single
semester. This is done without compromising the required mathematical and
statistical framework. This remarkable achievement is the outcome of many years
of excellent teaching of undergraduate and graduate digital communication courses
by the author.

The book is built as appears in the title in a top-down manner. It starts with
only basic knowledge on decision theory and, through a natural progression, it
develops the full receiver structure and the signal design principles. The final part
addresses aspects of practical importance and implementation issues. The text
also covers in a clear and simple way more advanced aspects of coding and the
associated maximum likelihood (Viterbi) decoder. Hence it may be used also as an
introductory text for a more advanced (graduate) digital communication course.

All in all, this extremely well-structured text is an excellent book for a first
course on Digital Communications. It covers exactly what is needed and it does so
in a simple and rigorous manner that the students and the tutor will appreciate.
The achieved balance between theoretical and practical aspects makes this text
well suited for students with inclinations to either an industrial or an academic
career.”

Shlomo Shamai
Technion, Israel Institute of Technology

“The Rimoldi text is perfect for a beginning mezzanine-level course in digital
communications. The logical three layer — discrete-time, continuous-time, pass-
band — approach to the problem of communication system design greatly enhances
understanding. Numerous examples, problems, and MATLAB exercises make the
book both student and instructor friendly. My discussions with the author about
the book’s development have convinced me that it’s been a labor of love. The
completed manuscript clearly bears this out.”
Dan Costello
University of Notre Dame
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Preface

This text is intended for a one-semester course on the foundations of digital
communication. It assumes that the reader has basic knowledge of linear algebra,
probability theory, and signal processing, and has the mathematical maturity that
is expected from a third-year engineering student.

The text has evolved out of lecture notes that I have written for EPFL students.
The first version of my notes greatly profited from three excellent sources, namely
the book Principles of Communication Engineering by Wozencraft and Jacobs [1],
the lecture notes written by Professor Massey for his ETHZ course Applied Digital
Information Theory, and the lecture notes written by Professors Gallager and
Lapidoth for their MIT course Introduction to Digital Communication. Through
the years the notes have evolved and although the influence of these sources is still
recognizable, the text has now its own “personality” in terms of content, style, and
organization.

The content is what I can cover in a one-semester course at EPFL.! The focus
is the transmission problem. By staying focused on the transmission problem
(rather than also covering the source digitization and compression problems),
I have just the right content and amount of material for the goals that I deem
most important, specifically: (1) cover to a reasonable depth the most central
topic of digital communication; (2) have enough material to do justice to the
beautiful and exciting area of digital communication; and (3) provide evidence
that linear algebra, probability theory, calculus, and Fourier analysis are in the
curriculum of our students for good reasons. Regarding this last point, the area
of digital communication is an ideal showcase for the power of mathematics in
solving engineering problems.

The digitization and compression problems, omitted in this text, are also
important, but covering the former requires a digression into signal processing to
acquire the necessary technical background, and the results are less surprising than
those related to the transmission problem (which can be tackled right away, see
Chapter 2). The latter is covered in all information theory courses and rightfully
so. A more detailed account of the content is given below, where I discuss the text
organization.

1 'We have six periods of 45 minutes per week, part of which we have devoted to exercises,
for a total of 14 weeks.

Xi
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In terms of style, I have paid due attention to proofs. The value of a rigorous
proof goes beyond the scientific need of proving that a statement is indeed true.
From a proof we can gain much insight. Once we see the proof of a theorem, we
should be able to tell why the conditions (if any) imposed in the statement are
necessary and what can happen if they are violated. Proofs are also important
because the statements we find in theorems and the like are often not in the exact
form needed for a particular application. Therefore, we might have to adapt the
statement and the proof as needed.

An instructor should not miss the opportunity to share useful tricks. One of
my favorites is the trick I learned from Professor Donald Snyder (Washington
University) on how to label the Fourier transform of a rectangle. (Most students
remember that the Fourier transform of a rectangle is a sinc but tend to forget
how to determine its height and width. See Appendix 5.10.)

The remainder of this preface is about the text organization. We follow a top-
down approach, but a more precise name for the approach is top-down-reversed
with successive refinements. It is top-down in the sense of Figure 1.7 of Chapter
1, which gives a system-level view of the focus of this book. (It is also top-down
in the sense of the OSI model depicted in Figure 1.1.) It is reversed in the sense
that the receiver is treated before the transmitter. The logic behind this reversed
order is that we can make sensible choices about the transmitter only once we are
able to appreciate their impact on the receiver performance (error probability,
implementation costs, algorithmic complexity). Once we have proved that the
receiver and the transmitter decompose into blocks of well-defined tasks (Chapters
2 and 3), we refine our design, changing the focus from “what to do” to “how to
do it effectively” (Chapters 5 and 6). In Chapter 7, we refine the design of the
second layer to take into account the specificity of passband communication. As a
result, the second layer splits into the second and the third layer of Figure 1.7.

In Chapter 2 we acquaint ourselves with the receiver-design problem for channels
that have a discrete output alphabet. In doing so, we hide all but the most
essential aspect of a channel, specifically that the input and the output are related
stochastically. Starting this way takes us very quickly to the heart of digital
communication, namely the decision rule implemented by a decoder that mini-
mizes the error probability. The decision problem is an excellent place to begin
as the problem is new to students, it has a clean-cut formulation in terms of
minimizing an objective function (the error probability), the derivations rely only
on basic probability theory, the solution is elegant and intuitive (the maximum
a posteriori probability decision rule), and the topic is at the heart of digital
communication. After a general start, the receiver design is specialized for the
discrete-time AWGN (additive white Gaussian noise) channel that plays a key
role in subsequent chapters. In Chapter 2, we also learn how to determine (or
upper bound) the probability of error and we develop the notion of a sufficient
statistic, needed in the following chapter. The appendices provide a review of
relevant background material on matrices, on how to obtain the probability density
function of a variable defined in terms of another, on Gaussian random vectors,
and on inner product spaces. The chapter contains a large collection of exercises.

In Chapter 3 we make an important transition concerning the channel used to
communicate, specifically from the rather abstract discrete-time channel to the
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more realistic continuous-time AWGN channel. The objective remains the same,
i.e. develop the receiver structure that minimizes the error probability. The theory
of inner product spaces, as well as the notion of sufficient statistic developed in
the previous chapter, give us the tools needed to make the transition elegantly and
swiftly. We discover that the decomposition of the transmitter and the receiver, as
done in the top two layers of Figure 1.7, is general and natural for the continuous-
time AWGN channel. This constitutes the end of the first pass over the top two
layers of Figure 1.7.

Up until Chapter 4, we assume that the transmitter has been given to us.
In Chapter 4, we prepare the ground for the signal-design. We introduce the
design parameters that we care about, namely transmission rate, delay, bandwidth,
average transmitted energy, and error probability, and we discuss how they relate
to one another. We introduce the notion of isometry in order to change the
signal constellation without affecting the error probability. It can be applied to
the encoder to minimize the average energy without affecting the other system
parameters such as transmission rate, delay, bandwidth, error probability; alterna-
tively, it can be applied to the waveform former to vary the signal’s time/frequency
features. The chapter ends with three case studies for developing intuition. In each
case, we fix a signaling family, parameterized by the number of bits conveyed by
a signal, and we determine the probability of error as the number of bits grows to
infinity. For one family, the dimensionality of the signal space stays fixed, and the
conclusion is that the error probability grows to 1 as the number of bits increases.
For another family, we let the signal space dimensionality grow exponentially and,
in so doing, we can make the error probability become exponentially small. Both
of these cases are instructive but have drawbacks that make them unworkable
solutions as the number of bits becomes large. The reasonable choice seems to
be the “middle-ground” solution that consists in letting the dimensionality grow
linearly with the number of bits. We demonstrate this approach by means of what
is commonly called pulse amplitude modulation (PAM). We prefer, however, to
call it symbol-by-symbol on a pulse train because PAM does not convey the idea
that the pulse is used more than once and people tend to associate PAM to a
certain family of symbol alphabets. We find symbol-by-symbol on a pulse train
to be more descriptive and more general. It encompasses, for instance, phase-shift
keying (PSK) and quadrature amplitude modulation (QAM).

Chapter 5 discusses how to choose the orthonormal basis that characterizes the
waveform former (Figure 1.7). We discover the Nyquist criterion as a means to
construct an orthonormal basis that consists of the T-spaced time translates of a
single pulse, where T is the symbol interval. Hence we refine the n-tuple former that
can be implemented with a single matched filter. In this chapter we also learn how
to do symbol synchronization (to know when to sample the matched filter output)
and introduce the eye diagram (to appreciate the importance of a correct symbol
synchronization). Because of its connection to the Nyquist criterion, we also derive
the expression for the power spectral density of the communication signal.

In Chapter 6, we design the encoder and refine the decoder. The goal is to expose
the reader to a widely used way of encoding and decoding. Because there are
several coding techniques — numerous enough to justify a graduate-level course —
we approach the subject by means of a case study based on convolutional coding.
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The minimum error probability decoder incorporates the Viterbi algorithm. The
content of this chapter was selected as an introduction to coding and to introduce
the reader to elegant and powerful tools, such as the previously mentioned Viterbi
algorithm and the tools to assess the resulting bit-error probability, notably detour
flow graphs and generating functions.

The material in Chapter 6 could be covered after Chapter 2, but there are some
drawbacks in doing so. First, it unduly delays the transition from the discrete-time
channel model of Chapter 2 to the more realistic continuous-time channel model
of Chapter 3. Second, it makes more sense to organize the teaching into a first
pass where we discover what to do (Chapters 2 and 3), and a refinement where
we focus on how to do it effectively (Chapters 5, 6, and 7). Finally, at the end of
Chapter 2, it is harder to motivate the students to invest time and energy into
coding for the discrete-time AWGN channel, because there is no evidence yet that
the channel plays a key role in practical systems. Such evidence is provided in
Chapter 3. Chapters 5 and 6 could be done in the reverse order, but the chosen
order is preferable for continuity reasons with respect to Chapter 4.

The final chapter, Chapter 7, is where the third layer emerges as a refinement
of the second layer to facilitate passband communication.

The following diagram summarizes the main thread throughout the text.

The channel is discrete-time.

The signaling method is generic.

The focus is on the receiver.

We specialize to the discrete-time AWGN channel.

Chapter 2

We step up to the continuous-time AWGN channel.
Chapter 3 The focus is still on the receiver: a second layer emerges.
We decompose the transmitter to mirror the receiver.

We derive the receiver that
minimizes the error probability

We prepare to address the signal design.
Chapter 4 Constraints, figures of merit, and goals are introduced.
We develop the intuition through case studies.

The second layer is revisited.

We pursue symbol-by-symbol on a pulse train.

We refine the n-tuple former accordingly (matched-filter
and symbol synchronization).

Chapter 5

The first layer is revisited.
Chapter 6 We do a case study based on convolutional coding.
We refine the decoder accordingly (Viterbi algorithm).

and refine the receiver

We address the signal design

The third layer emerges from a refinement aimed at

Chapter 7 facilitating passband communication.
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Each chapter contains one or more appendices, with either background or com-
plementary material.

I should mention that I have made an important concession to mathematical
rigor. This text is written for people with the mathematical background of an
engineer. To be mathematically rigorous, the integrals that come up in dealing
with Fourier analysis should be interpreted in the Lebesgue sense.? In most under-
graduate curricula, engineers are not taught Lebesgue integration theory. Hence
some compromise has to be made, and here is one that I find very satisfactory. In
Appendix 5.9, I introduce the difference between the Riemann and the Lebesgue
integrals in an informal way. I also introduce the space of Lo functions and the
notion of Lo equivalence. The ideas are natural and can be understood with-
out technical details. This gives us the language needed to rigorously state the
sampling theorem and Nyquist criterion, and the insight to understand why the
technical conditions that appear in those statements are necessary. The appendix
also reminds us that two signals that have the same Fourier transform are L,
equivalent but not necessarily point-wise equal. Because we introduce the Lebesgue
integral in an informal way, we are not in the position to prove, say, that we
can swap an integral and an infinite sum. In some way, having a good reason
for skipping such details is a blessing, because dealing with all technicalities can
quickly become a major distraction. These technicalities are important at some
level and unimportant at another level. They are important for ensuring that the
theory is consistent and a serious graduate-level student should be exposed to
them. However, I am not aware of a single case where they make a difference in
dealing with finite-support functions that are continuous and have finite-energy,
especially with the kind of signals we encounter in engineering. Details pertaining
to integration theory that are skipped in this text can be found in Gallager’s book
[2], which contains an excellent summary of integration theory for communication
engineers. Lapidoth [3] contains many details that are not found elsewhere. It is
an invaluable text for scholars in the field of digital communication.

The last part of this preface is addressed to instructors. Instructors might
consider taking a bottom-up approach with respect to Figure 1.7. Specifically, one
could start with the passband AWGN channel model and, as the first step in the
development, reduce it to the baseband model by means of the up/down converter.
In this case the natural second step is to reduce the baseband channel to the
discrete-time channel and only then address the communication problem across the
discrete-time channel. I find such an approach to be pedagogically less appealing
as it puts the communication problem last rather than first. As formulated by
Claude Shannon, the father of modern digital communication, “The fundamental
problem of communication is that of reproducing at one point either exactly or
approximately a message selected at another point”. This is indeed the problem
that we address in Chapter 2. Furthermore, randomness is the most important
aspect of a channel. Without randomness, there is no communication problem.
The channels considered in Chapter 2 are good examples to start with, because
they model randomness without additional distractions. However, the choice of

2 The same can be said for the integrals involving the noise, but our approach avoids
such integrals. See Section 3.2.
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such abstract channels needs to be motivated. I motivate in two ways: (i) by
asking the students to trust that the theory we develop for that abstract channel
will turn out to be exactly what we need for more realistic channel models and
(ii) by reminding them of the (too often overlooked) problem-solving technique
that consists in addressing a difficult problem by first considering a simplified “toy
version” of the same.

A couple of years ago, I flipped the classroom in the following sense. Rather
than developing the theory in class via standard ex-cathedra lectures and letting
the students work on problems at home, I have the students go over the theory
at their own pace at home, and I devote the class time to exercises, to detecting
difficulties, to filling the gaps, and to motivating the students. Almost the entire
content of the book (appendices apart) is covered in the reading assignments.

In my case, flipping the classroom is the result of a process that began with
the conviction that the time spent in class was not well spent for many students.
There is a fair amount of math in the course Principles of Digital Communication
and because it is mandatory at EPFL, there is quite a bit of disparity in terms of
the rate at which a student can follow the math. Hence, no single pace of teaching
is satisfactory, but the real issue has deeper roots. Learning is not about making
one step after the other on a straight line at a constant pace, which is essentially
what we do in a typical ex-cathedra lecture.

There are a number of things that can improve our effectiveness when we study
and cannot be done in an ex-cathedra lecture. Ideally, we should be able to choose
suitable periods of time and to decide when a break is needed. More importantly,
we should be able to control the information flow, in the sense of being able to
“pause” it, e.g. in order to think whether or not what we are learning makes sense
to us, to make connections with what we know already, to work out examples, etc.
We should also be able to “rewind”, and to “fast forward”. None of this can be
done in an ex-cathedra lecture; however, all of this can be done when we study from
a book.? Pausing to think, to make connections, and to work out examples is a
particularly useful process that is not sufficiently ingrained in many undergraduate
students, perhaps precisely because the ex-cathedra format does not permit it. The
book has to be suitable (self-contained and sufficiently clear), the students should
be sufficiently motivated to read, and they should be able to ask questions as
needed.

Motivation is typically not a problem for the students when the reading is an
essential ingredient for passing the class. In my course, the students quickly realize
that they will not be able to solve the exercises if they do not read the theory, and
there is little chance for them to pass the class without theory and exercises.

But what makes the flipped classroom today more interesting than in the past,
is the availability of Web-based tools for posting and answering questions. For
my class, I have been using Nota Bene.* Designed at MIT, this is a website on

3 .. or when we watch a video. But a book can be more useful as a reference, because it
is easier to find what you are looking for in a book than on a video, and a book can be
annotated (personalized) more easily.

4 http://nb.mit.edu.
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which I post the reading assignments (essentially all sections). When students
have a question, they go to the site, highlight the relevant part, and type a
question in a pop-up window. The questions are summarized on a list that can be
sorted according to various criteria. Students can “vote” on a question to increase
its importance. Most questions are answered by students, and as an incentive
to interact on Nota Bene, I give a small bonus for posting pertinent questions
and/or for providing reasonable answers.” The teaching assistants (TAs) and
myself monitor the site and we intervene as needed. Before I go to class, I take a
look at the questions, ordered by importance; then in class I “fill the gaps” as I
see fit.

Most of the class time is spent doing exercises. I encourage the students to help
each other by working in groups. The TAs and myself are there to help. This way,
I see who can do what and where the difficulties lie. Assessing the progress this
way is more reliable than by grading exercises done at home. (We do not grade
the exercises, but we do hand out solutions.) During an exercise session, I often
go to the board to clarify, to help, or to complement, as necessary.

In terms of my own satisfaction, I find it more interesting to interact with the
students in this way, rather than to give ex-cathedra lectures that change little from
year to year. The vast majority of the students also prefer the flipped classroom:
They say so and I can tell that it is the case from their involvement. The exercises
are meant to be completed during the class time,® so that at home the students
can focus on the reading. By the end of the semester” we have covered almost all
sections of the book. (Appendices are left to the student’s discretion.) Before a new
reading assignment, I motivate the students to read by telling them why the topic
is important and how it fits into the big picture. If there is something unusual,
e.g. a particularly technical passage, I tell them what to expect and/or I give a
few hints. Another advantage of the flipped classroom is never falling behind the
schedule. At the beginning of the semester, I know which sections will be assigned
which week, and prepare the exercises accordingly. After the midterm, I assign a
MATLAB project to be completed in groups of two and to be presented during the
last day of class. The students like this very much.®

5 A pertinent intervention is worth half a percent of the total number of points that can
be acquired over the semester and, for each student, I count at most one intervention
per week. This limits the maximum amount of bonus points to 7% of the total.

6 Six periods of 45 minutes at EPFL.

" Fourteen weeks at EPFL.

8 The idea of a project was introduced with great success by my colleague, Riidiger
Urbanke, who taught the course during my sabbatical.
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1.1

Introduction and objectives

This book focuses on the system-level engineering aspects of digital point-to-point
communication. In a way, digital point-to-point communication is the building
block we use to construct complex communication systems including the Inter-
net, cellular networks, satellite communication systems, etc. The purpose of this
chapter is to provide contextual information. Specifically, we do the following.

(i) Place digital point-to-point communication into the bigger picture. We do
so in Section 1.1 where we discuss the Open System Interconnection (OSI)
layering model.

(ii) Provide some historical context (Section 1.2).

(iii) Give a preview for the rest of the book (Section 1.3).
(iv) Clarify the difference between analog and digital communication (Section
1.4).

(v) Justify some of the choices we make about notation (Section 1.5).

(vi) Mention a few amusing and instructive anecdotes related to the history of
communication (Section 1.6).
(vil) Suggest supplementary reading material (Section 1.7).

The reader eager to get started can skip this chapter without losing anything
essential to understand the rest of the text.

The big picture through the OSI layering model

When we communicate using electronic devices, we produce streams of bits that
typically go through various networks and are processed by devices from a variety
of manufacturers. The system is very complex and there are a number of things that
can go wrong. It is amazing that we can communicate as easily and reliably as we
do. This could hardly be possible without layering and standardization. The Open
System Interconnection (OSI) layering model of Figure 1.1 describes a framework
for the definition of data-flow protocols. In this section we use the OSI model to
convey the basic idea of how modern communication networks deal with the key
challenges, notably routing, flow control, reliability, privacy, and authenticity. For
the sake of concreteness, let us take e-mailing as a sample activity. Computers use
bytes (8 bits) or multiples thereof to represent letters. So the content of an e-mail
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Figure 1.1. OSI layering model.

is represented by a stream of bytes. Received e-mails usually sit on a remote server.
When we launch a program to read e-mail — hereafter referred to as the client —
it checks into the server to see if there are new e-mails. It depends on the client’s
setting whether a new e-mail is automatically downloaded to the client or just
a snippet is automatically downloaded until the rest is explicitly requested. The
client tells the server what to do. For this to work, the server and the client not
only need to be able to communicate the content of the mail message but they also
need to talk to each other for the sake of coordination. This requires a protocol.
If we use a dedicated program to do e-mail (as opposed to using a Web browser),
the common protocols used for retrieving e-mail are the IMAP (Internet Message
Access Protocol) and the POP (Post Office Protocol), whereas for sending e-mail
it is common to use the SMTP (Simple Mail Transfer Protocol).

The idea of a protocol is not specific to e-mail. Every application that uses the
Internet needs a protocol to interact with a peer application. The OSI model
reserves the application layer for programs (also called processes) that imple-
ment application-related protocols. In terms of data traffic, the protocol places a
so-called application header (AH) in front of the bits produced by the application.
The top arrow in Figure 1.1 indicates that the two application layers talk to each
other as if they had a direct link.
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Typically, there is no direct physical link between the two application layers.
Instead, the communication between application layers goes through a shared
network, which creates a number of challenges. To begin with, there is no guarantee
of privacy for anything that goes through a shared network. Furthermore, networks
carry data from many users and can get congested. Hence, if possible, the data
should be compressed to reduce the traffic. Finally, there is no guarantee that the
sending and the receiving computers represent letters the same way. Hence, the
application header and the data need to be communicated by using a universal
language. The presentation layer handles the encryption, the compression, and
the translation to/from a universal language. The presentation layer also needs a
protocol to talk to the peer presentation layer at the destination. The protocol is
implemented by means of the presentation header (PH).

For the presentation layers to talk to each other, we need to make sure that
the two hosting computers are connected. Establishing, maintaining, and ending
communication between physical devices is the job of the session layer. The session
layer also manages access rights. Like the other layers, the session layer uses a
protocol to interact with the peer session layer. The protocol is implemented by
means of the session header (SH).

The layers we have discussed so far would suffice if all the machines of interest
were connected by a direct and reliable link. In reality, links are not always reliable.
Making sure that from an end-to-end point of view the link appears reliable
is one of the tasks of the transport layer. By means of parity check bits, the
transport layer verifies that the communication is error-free and if not, it requests
retransmission. The transport layer has a number of other functions, not all of
which are necessarily required in any given network. The transport layer can break
long sequences into shorter ones or it can multiplex several sessions between the
same two machines into a single one. It also provides flow control by queueing up
data if the network is congested or if the receiving end cannot absorb it sufficiently
fast. The transport layer uses the transport header (TH) to communicate with the
peer layer. The transport header followed by the data handed down by the session
layer is called a segment.

Now assume that there are intermediate nodes between the peer processes of
the transport layer. In this case, the network layer provides the routing service.
Unlike the above layers, which operate on an end-to-end basis, the network layer
and the layers below have a process also at intermediate nodes. The protocol
of the network layer is implemented in the network header (NH). The network
header contains, among other things, the source and the destination address.
The network header followed by the segment (of the transport layer) is called a
packet.

The next layer is the data link (DL) layer. Unlike the other layers, the DL puts
a header at the beginning and a trailer at the end of each packet handed down
by the network layer. The result is called a frame. Some of the overhead bits are
parity-check bits meant to determine if errors have occurred in the link between
nodes. If the DL detects errors, it might ask to retransmit or drop the frame
altogether. If it drops the frame, it is up to the transport layer, which operates on
an end-to-end basis, to request retransmission.



4 1. Introduction and objectives

The physical layer — the subject of this text — is the bottom layer of the OSI
stack. The physical layer creates a more-or-less reliable “bit pipe” out of the
physical channel between two nodes. It does so by means of a transmitter /receiver
pair, called modem,' on each side of the physical channel. We will learn that the
physical-layer designer can trade reliability for complexity and delay.

In summary, the OSI model has the following characteristics. Although the
actual data transmission is vertical, each layer is programmed as if the transmission
were horizontal. For a process, whatever is not part of its own header is considered
as being actual data. In particular, a process makes no distinction between the
headers of the higher layers and the actual data segment. For instance, the pre-
sentation layer translates, compresses, and encrypts whatever it receives from the
application layer, attaches the PH, and sends the result to its peer presentation
layer. The peer in turn reads and removes the PH and decrypts, decompresses,
and translates the data which is then passed to the application layer. What the
application layer receives is identical to what the peer application layer has sent
up to a possible language translation. The DL inserts a trailer in addition to
a header. All layers, except the transport and the DL layer, assume that the
communication to the peer layer is error-free. If it can, the DL layer provides
reliability between successive nodes. Even if the reliability between successive
nodes is guaranteed, nodes might drop packets due to queueing overflow. The
transport layer, which operates at the end-to-end level, detects missing segments
and requests retransmission.

It should be clear that a layering approach drastically simplifies the tasks of
designing and deploying communication infrastructures. For instance, a program-
mer can test the application layer protocol with both applications running on the
same computer — thus bypassing all networking problems. Likewise, a physical-
layer specialist can test a modem on point-to-point links, also disregarding net-
working issues. Each of the tasks of compressing, providing reliability, privacy,
authenticity, routing, flow control, and physical-layer communication requires spe-
cific knowledge. Thanks to the layering approach, each task can be accomplished by
people specialized in their respective domain. Similarly, equipment from different
manufacturers work together, as long as they respect the protocols.

The OSI architecture is a generic model that does not prescribe a specific
protocol. The Internet uses the TCP/IP protocol stack, which is essentially com-
patible with the OSI architecture but uses five instead of seven layers [4]. The
reduction is mainly obtained by combining the OSI application, presentation, and
session layers into a single layer called the application layer. The transport layer

L Modem is the result of contracting the terms modulator and demodulator. In analog
modulation, such as frequency modulation (FM) and amplitude modulation (AM), the
source signal modulates a parameter of a high-frequency oscillation, called the carrier
signal. In AM it modulates the carrier’s amplitude and in FM it modulates the carrier’s
frequency. The modulated signal can be transmitted over the air and in the absence of
noise (which is never the case) the demodulator at the receiver reconstructs an exact
copy of the source signal. In practice, due to noise, the reconstruction only approximates
the source signal. Although modulation and demodulation are misnomers in digital
communication, the term modem has remained in use.
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is implemented either by the Transmission Control Protocol (TCP) or by the
User Datagram Protocol (UDP). The network layer implements addressing and
routing via the Internet Protocol (IP). The DL and the physical layers complete
the stack.

The topic of this text and some historical perspective

This text is about the theory that governs the physical-layer design (bottom layer
in Figure 1.1), referred to as communication theory. Of course, other layers are
about communication as well, and the reader might wonder why communication
theory is not about all the layers. The terminology became established in the early
days, prior to the OSI model, when communication was mainly point-to-point.
Rather than including the other layers as they became part of the big picture,
communication theory remained “faithful” to its original domain. The reason is
most likely due to the dissimilarity between the body of knowledge needed to
reason about the objectives of different layers. To gain some historical perspective,
we summarize the key developments that have led to communication theory.

Electromagnetism was discovered in the 1820s by Orsted and Ampere. The
wireline telegraph was demonstrated by Henry and Morse in the 1830s. Maxwell’s
theory of electromagnetic fields, published in 1865, predicted that electromagnetic
fields travel through space as waves, moving at the speed of light. In 1876, Bell
invented the telephone. Around 1887, Hertz demonstrated the transmission and
reception of the electromagnetic waves predicted by Maxwell. In 1895, Marconi
built a wireless system capable of transmitting signals over more than 2 km. The
invention of the vacuum-tube diode by Fleming in 1904 and of the vacuum-tube
triode amplifier by Forest in 1906 enabled long-distance communication by wire
and wireless. The push for sending many phone conversations over the same line
led, in 1917, to the invention of the wave filter by Campbell.

The beginning of digital communication theory is associated with the work of
Nyquist (1924) and Hartley (1928), both at Bell Laboratories. Quite generally,
we communicate over a channel by choosing the value of one or more parameters
of a carrier signal. Intuitively, the more parameters we can choose independently,
the more information we can send with one signal, provided that the receiver is
capable of determining the value of those parameters.

A good analogy to understand the relationship between a signal and its param-
eters is obtained by comparing a signal with a point in a three-dimensional (3D)
space. A point in 3D space is completely specified by the three coordinates of the
point with respect to a Cartesian coordinate system. Similarly, a signal can be
described by a number n of parameters with respect to an appropriately chosen
reference system called the orthonormal basis. If we choose each coordinate as a
function of a certain number of bits, the more coordinates n we have the more bits
we can convey with one signal.

Nyquist realized that if the signal has to be confined to a specified time interval
of duration T seconds (e.g. the duration of the communication) and frequency
interval of width B Hz (e.g. the channel bandwidth), then the integer n can be
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Figure 1.2. Information-carrying pulse train. It is the scaling factor
of each pulse, called symbol, that carries information. In this example,
the symbols take value in {ao, a1, as,as, a4, as}.

chosen to be close to n BT, where 1 is some positive number that depends on the
definition of duration and bandwidth. A good value is n = 2.

As an example, consider Figure 1.2. On the left of the figure is a pulse p(t)
that we use as a building block for the communication signal.? On the right is an
example of a pulse train of the form w(t) = Z?:o s;p(t—1iTp), obtained from shifted
and scaled replicas of p(t). We communicate by scaling the pulse replica p(t —iTp)
by the information-carrying symbol s;. If we could substitute p(t) with a narrower
pulse, we could fit more such pulses in a given time interval and therefore we
could send more information-carrying symbols. But a narrower pulse uses more
bandwidth. Hence there is a limit to the pulse width. For a given pulse width,
there is a limit to the number of pulses that we can pack in a given time interval if
we want the receiver to be able to retrieve the symbol sequence from the received
pulse train. Nyquist’s result implies that we can fit essentially 2 BT non-interfering
pulses in a time interval of T seconds if the bandwidth is not to exceed B Hz.

In trying to determine the maximum number of bits that can be conveyed with
one signal, Hartley introduced two constraints that make good engineering sense.
First, in a practical realization, the symbols cannot take arbitrarily large values in
R (the set of real numbers). Second, the receiver cannot estimate a symbol with
infinite precision. This suggests that, to avoid errors, symbols should take values
in a discrete subset of some interval [—A, A]. If £A is the receiver’s precision in
determining the amplitude of a pulse, then symbols should take a value in some
alphabet {ag,a1,...,am-1} C [-A, A] such that |a; — a;| > 2A when i # j. This
implies that the alphabet size can be at most m =1+ % (see Figure 1.3).

There are m™ distinct n-length sequences that can be formed with symbols taken
from an alphabet of size m. Now suppose that we want to communicate a sequence

2 A pulse is not necessarily rectangular. In fact, we do not communicate via rectangular
pulses because they use too much bandwidth.
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of k bits. There are 2% distinct such sequences and each such sequence should be
mapped into a distinct symbol sequence (see Figure 1.4). This implies

2k < mn. (1.1)

EXAMPLE 1.1  There are 2* = 16 distinct binary sequences of length k = 4 and
there are 42 = 16 distinct symbol sequences of length n = 2 with symbols taking
value in an alphabet of size m = 4. Hence we can associate a distinct length-2
symbol sequence to each length-4 bit sequence. The following is an example with
symbols taken from the alphabet {ag, a1, az2,as}.

bit sequence  symbol sequence

0000 apao
0001 apai
0010 apa2
0011 apas
0100 ai1ao
1111 azas
O
Inserting m =1+ % and n = 2BT in (1.1) and solving for % yields
k A
= < 2Blog, (1 + Z) (1.2)

as the highest possible rate in bits per second that can be achieved reliably with
bandwidth B, symbol amplitudes within +A, and receiver accuracy £A.

Unfortunately, (1.2) does not provide a fundamental limit to the bit rate, because
there is no fundamental limit to how small A can be made.

The missing ingredient in Hartley’s calculation was the noise. In 1926 Johnson,
also at Bell Labs, realized that every conductor is affected by thermal noise. The
idea that the received signal should be modeled as the sum of the transmitted signal
plus noise became prevalent through the work of Wiener (1942). Clearly the noise
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prevents the receiver from retrieving the symbols’ values with infinite precision,
which is the effect that Hartley wanted to capture with the introduction of A, but
unfortunately there is no way to choose A as a function of the noise. In fact, in
the presence of thermal noise, error-free communication becomes impossible. (But
we can make the error probability as small as desired.)

Prior to the publication of Shannon’s revolutionary 1948 paper, the common
belief was that the error probability induced by the noise could be reduced
only by increasing the signal’s power (e.g. by increasing A in the example of
Figure 1.3) or by reducing the bit rate (e.g. by transmitting the same bit multiple
times). Shannon proved that the noise can set a limit to the number of bits per
second that can be transmitted reliably, but as long as we communicate below that
limit, the error probability can be made as small as desired without modifying the
signal’s power and bandwidth. The limit to the bit rate is called channel capacity.
For the setup of interest to us it is the right-hand side of

k
= < Blog, (1 (1.3)

P

+ NOB)7
where P is the transmitted signal’s power and Ny /2 is the power spectral density
of the noise (assumed to be white and Gaussian). If the bit rate of a system is
above channel capacity then, no matter how clever the design, the error probability
is above a certain value. The theory that leads to (1.3) is far more subtle and far
more beautiful than the arguments leading to (1.2); yet, the two expressions are
strikingly similar.

What we mentioned here is only a special case of a general formula derived
by Shannon to compute the capacity of a broad class of channels. As he did for
channels, Shannon also posed and answered fundamental questions about sources.
For the purpose of this text, there are two lessons that we should retain about
sources. (1) The essence of a source is its randomness. If a listener knew exactly
what a speaker is about to say, there would be no need to listen. Hence a source
should be modeled by a random variable (or a sequence thereof). In line with
the topic of this text, we assume that the source is digital, meaning that the
random variable takes values in a discrete set. (See Appendix 1.8 for a brief
summary of various kind of sources.) (2) For every such source, there exists a
source encoder that converts the source output into the shortest (in average)
binary string and a source decoder that reconstructs the source output from the
encoder output. The encoder output, for which no further compression is possible,
has the same statistic as a sequence of unbiased coin flips, i.e. it is a sequence of
independent and uniformly distributed bits. Clearly, we can minimize the storage
and/or communicate more efficiently if we compress the source into the shortest
binary string. In this text, we are not concerned with source coding but, for the
above-mentioned reasons, we model the source as a generator of independent and
uniformly distributed bits.

Like many of the inventors mentioned above, Shannon worked at Bell Labs.
His work appeared one year after the invention of the solid-state transistor, by
Bardeen, Brattain, and Shockley, also at Bell Labs. Figure 1.5 summarizes the
various milestones.
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Figure 1.5. Technical milestones leading up to information theory.

Information theory, which is mainly concerned with discerning between what
can be done and what cannot, regardless of complexity, led to coding theory —
a field mainly concerned with implementable ways to achieve what information
theory proves as achievable. In particular, Shannon’s 1948 paper triggered a race
for finding implementable ways to communicate reliably (i.e. with low error prob-
ability) at rates close to the channel capacity. Coding theory has produced many
beautiful results: too many to summarize here; yet, approaching channel capacity
in wireline and wireless communication was out of reach until the discovery of
turbo codes by Berrou, Glavieux, and Thitimajshima in 1993. They were the first
to demonstrate a method that could be used to communicate reliably over wireline
and wireless channels, with less than 1 dB of power above the theoretical limit.
As of today, the most powerful codes for wireless and wireline communication are
the low-density parity-check (LDPC) codes that were invented in 1960 by Gallager
in his doctoral dissertation at MIT and reinvented in 1996 by MacKay and Neal.
When first invented, the codes did not receive much attention because at that time
their extraordinary performance could not be demonstrated for lack of appropriate
analytical and simulation tools. What also played a role is that the mapping of
LDPC codes into hardware requires many connections, which was a problem before
the advent of VLSI (very-large-scale integration) technology in the early 1980s.

Problem formulation and preview

Our focus is on the system aspects of digital point-to-point communication. By the
term system aspect we mean that we remain at the level of building blocks rather
than going into electronic details; digital means that the message is taken from a
finite set of possibilities; and we restrict ourselves to point-to-point communication
as it constitutes the building block of all communication systems.
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Figure 1.6. Basic point-to-point communication system over
a bandlimited Gaussian channel.

Digital communication is a rather unique field in engineering in which theoretical
ideas from probability theory, stochastic processes, linear algebra, and Fourier
analysis have had an extraordinary impact on actual system design. The mathe-
matically inclined will appreciate how these theories seem to be so appropriate to
solve the problems we will encounter.

Our main target is to acquire a solid understanding about how to communicate
through a channel, modeled as depicted in Figure 1.6. The source chooses a message
represented in the figure by the index ¢, which is the realization of a random
variable H that takes values in some finite alphabet H = {0,1,...,m — 1}. As
already mentioned, in reality, the message is represented by a sequence of bits, but
for notational convenience it is often easier to label each sequence with an index
and use the index to represent the message. The transmitter maps a message @
into a signal w;(t) € W, where W and H have the same cardinality. The channel
filters the signal and adds Gaussian noise N(t). The receiver’s task is to guess
the message based on the channel output R(¢). So H is the receiver’s guess of H.
(Owing to the random behavior of the noise, H is a random variable even under
the condition that H = 1.)

In a typical scenario, the channel is given and the communication engineer
designs the transmitter/receiver pair, taking into account objectives and con-
straints. The objective could be to maximize the number of bits per second being
communicated, while keeping the error probability below some threshold. The
constraints could be expressed in terms of the signal’s power and bandwidth.

The noise added by the channel is Gaussian because it represents the contri-
bution of various noise sources.? The filter has both a physical and a conceptual
justification. The conceptual justification stems from the fact that most wireless
communication systems are subject to a license that dictates, among other things,
the frequency band that the signal is allowed to occupy. A convenient way for the
system designer to deal with this constraint is to assume that the channel contains
an ideal filter that blocks everything outside the intended band. The physical
reason has to do with the observation that the signal emitted from the transmitting
antenna typically encounters obstacles that create reflections and scattering. Hence
the receiving antenna might capture the superposition of a number of delayed and
attenuated replicas of the transmitted signal (plus noise). It is a straightforward

3 Individual noise sources do not necessarily have Gaussian statistics. However, due to
the central limit theorem, their aggregate contribution is often quite well approximated
by a Gaussian random process.



1.3. Problem formulation and preview 11

exercise to check that this physical channel is linear and time-invariant. Thus it
can be modeled by a linear filter as shown in Figure 1.6.* Additional filtering may
occur due to the limitations of some of the components at the sender and/or at
the receiver. For instance, this is the case for a linear amplifier and/or an antenna
for which the amplitude response over the frequency range of interest is not flat
and/or the phase response is not linear. The filter in Figure 1.6 accounts for all
linear time-invariant transformations that act upon the communication signals as
they travel from the sender to the receiver. The channel model of Figure 1.6 is
meaningful for both wireline and wireless communication channels. It is referred
to as the bandlimited Gaussian channel.

Mathematically, a transmitter implements a one-to-one mapping between the
message set and a set of signals. Without loss of essential generality, we may let
the message set be H = {0,1,...,m — 1} for some integer m > 2. For the channel
model of Figure 1.6, the signal set W = {wq(t), w1 (t),...,wm—_1(t)} consists of
continuous and finite-energy signals. We think of the signals as stimuli used by the
transmitter to excite the channel input. They are chosen in such a way that the
receiver can tell, with high probability, which channel input produced an observed
channel output.

Even if we model the source as producing an index from H = {0,1,...,m — 1}
rather than a sequence of bits, we can still measure the communication rate in
terms of bits per second (bps). In fact the elements of the message set can be labeled
with distinct binary sequences of length log, m. Every time that we communicate
a message, we equivalently communicate log, m bits. If we can send a signal from
the set W every T seconds, then the message rate is 1/T [messages per second]
and the bit rate is (log, m)/T [bits per second].

Digital communication is a field that has seen many exciting developments and
is still in vigorous expansion. Our goal is to introduce the reader to the field,
with emphasis on fundamental ideas and techniques. We hope that the reader will
develop an appreciation for the trade-offs that are possible at the transmitter, will
understand how to design (at the building-block level) a receiver that minimizes
the error probability, and will be able to analyze the performance of a point-to-
point communication system.

We will discover that a natural way to design, analyze, and implement a trans-
mitter /receiver pair for the channel of Figure 1.6 is to think in terms of the modules
shown in Figure 1.7. As in the OSI layering model, peer modules are designed
as if they were connected by their own channel. The bottom layer reduces the
passband channel to the more basic baseband-equivalent channel. The middle layer
further reduces the channel to a discrete-time channel that can be handled by the
encoder/decoder pair.

We conclude this section with a very brief overview of the chapters.

Chapter 2 addresses the receiver-design problem for discrete-time observations,
in particular in relationship to the channel seen by the top layer of Figure 1.7, which
is the discrete-time additive white Gaussian noise (AWGN) channel. Throughout

4 If the scattering and reflecting objects move with respect to the transmitting/receiving
antenna, then the filter is time-varying. We do not consider this case.
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Figure 1.7. Decomposed transmitter and receiver and corresponding
(sub-) layers of the physical layer.

the text the receiver’s objective is to minimize the probability of an incorrect
decision.

In Chapter 3 we “upgrade” the channel model to a continuous-time AWGN
channel. We will discover that all we have learned in the previous chapter has a
direct application for the new channel. In fact, we will discover that, without loss
of optimality, we can insert what we call a waveform former at the channel input
and the corresponding n-tuple former at the output and, in so doing, we turn the
new channel model into the one already considered.

Chapter 4 develops intuition about the high-level implications of the signal set
used to communicate. It is in this chapter that we start shifting attention from
the problem of designing the receiver for a given set of signals to the problem of
designing the signal set itself.

The next two chapters are devoted to practical signaling. In Chapter 5, we
focus on the waveform former for what we call symbol-by-symbol on a pulse train.
Chapter 6 is a case study on coding. The encoder is of convolutional type and the
decoder is based on the Viterbi algorithm.



1.4

1.4. Digital versus analog communication 13

Chapter 7 is about passband communication. A typical passband channel is the
radio channel. What we have learned in the previous chapters can, in principle,
be applied directly to passband channels; but there are several reasons in favor
of a design that consists of a baseband transmitter followed by an up-converter
that shifts the spectrum to the desired frequency interval. The receiver reflects the
transmitter’s structure, with the down-converter that shifts the spectrum back
to baseband. An obvious advantage of this approach is that we decouple most
of the transmitter/receiver design from the carrier frequency (also called center
frequency) of the transmitted signal. If we decide to shift the carrier frequency,
like when we change the channel in a walkie-talkie, we just act on the up/down-
converter, and this can be done very easily. Furthermore, having the last stage of
the transmitter operate in its own frequency band prevents the output signal from
feeding back “over the air” into the earlier stages and producing the equivalent of
the annoying “audio feedback” that occurs when we put a microphone next to the
corresponding speaker.

Digital versus analog communication

The meaning of digital versus analog communication needs to be clarified, in
particular because it should not be confused with their meaning in the context
of electronic circuits. We can communicate digitally by means of analog or digital
electronics and the same is true for analog communication.

We speak of digital communication when the transmitter sends one of a finite
set of possible signals. For instance, if we communicate 1000 bits, we are communi-
cating one out of 2109 possible binary sequences of length 1000. To communicate
our choice, we use signals that are appropriate for the channel at hand. No matter
which signals we use, the result will be digital communication. One of the simplest
ways to do this is that each bit determines the amplitude of a carrier over a
certain duration of time. So the first bit could determine the amplitude from time
0 to T, the second from T to 2T, etc. This is the simplest form of pulse amplitude
modulation. There are many sensible ways to map bits to waveforms that are
suitable to a channel, and regardless of the choice, it will be a form of digital
communication.

We speak of analog communication when the transmitter sends one of a contin-
uum of possible signals. The transmitted signal could be the output of a micro-
phone. Any tiny variation of the signal can constitute another valid signal. More
likely, in analog communication we use the source signal to vary a parameter of
a carrier signal. Two popular ways to do analog communication are amplitude
modulation (AM) and frequency modulation (FM). In AM we let the carrier’s
amplitude depend on the source signal. In FM it is the carrier’s frequency that
varies as a function of the source signal.

The difference between analog and digital communication might seem to be
minimal at this point, but actually it is not. It all boils down to the fact that
in digital communication the receiver has a chance to exactly reconstruct the
transmitted signal because there is a finite number of possibilities to choose from.
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The signals used by the transmitter are chosen to facilitate the receiver’s decision.
One of the performance criteria is the error probability, and we can design systems
that have such a small error probability that for all practical purposes it is zero.
The situation is quite different in analog communication. As there is a continuum
of signals that the transmitter could possibly send, there is no chance for the
receiver to reconstruct an ezact replica of the transmitted signal from the noisy
received signal. It no longer makes sense to talk about error probability. If we say
that an error occurs every time that there is a difference between the transmitted
signal and the reconstruction provided by the receiver, then the error probability
is always 1.

EXAMPLE 1.2 Consider a very basic transmitter that maps a sequence by, b1, ba, b3
of numbers into a sequence w(t) of rectangular pulses of a fized duration as shown
in Figure 1.8. (The ith pulse has amplitude b;.)

Is this analog or digital communication? It depends on the alphabet of b;, i =
0,...,3.

b1
bo b3

-

b

Figure 1.8. Transmitted signal w(¢).

If it is a discrete alphabet, like {0.9, 2, —1.3}, then we speak of digital commu-
nication. In this case there are only m* valid sequences by, by, bo,bs, where m is
the alphabet size, and equally many possibilities for w(t). In principle, the receiver
can compare the noisy channel output waveform against all these possibilities and
choose the most likely sequence. If the alphabet is R, then the communication is
analog. In this case the noise will make it virtually impossible for the receiver to
guess the correct sequence. O

The difference, which may still seem insignificant at this point, is made signifi-
cant by the notion of channel capacity. For every channel, there is a rate, called
channel capacity, with the following meaning. Digital communication across the
channel can be made as reliable as desired at any rate below channel capacity. At
rates above channel capacity, it is impossible to reduce the error probability below
a certain value. Now we can see where the difference between analog and digital
communication becomes fundamental. For instance, if we want to communicate
at 1 gigabit per second (Gbps) from Zurich to Los Angeles by using a certain
type of cable, we can cut the cable into pieces of length L, chosen in such a
way that the channel capacity of each piece is greater than 1 Gbps. We can then
design a transmitter and a receiver that allow us to communicate virtually error-
free at 1 Gbps over distance L. By concatenating many such links, we can cover
any desired distance at the same rate. By making the error probability over each



1.5

1.5. Notation 15

link sufficiently small, we can meet the desired end-to-end probability of error.
The situation is very different in analog communication, where every piece of
cable contributes to a degradation of the reconstruction.

Need another example? Compare faxing a text to sending an e-mail over the
same telephone line. The fax uses analog technology. It treats the document as
a continuum of gray levels (in two dimensions). It does not differentiate between
text or images. The receiver prints a degraded version of the original. And if we
repeat the operation multiple times by re-faxing the latest reproduction it will not
take long until the result is dismal. E-mail on the other hand is a form of digital
communication. It is almost certain that the receiver reconstructs an identical
replica of the transmitted text.

Because we can turn a continuous-time source into a discrete one, as described
in Appendix 1.8, we always have the option of doing digital rather than analog
communication. In the conversion from continuous to discrete, there is a deteriora-
tion that we control and can make as small as desired. The result can, in principle,
be communicated over unlimited distance and over arbitrarily poor channels with
no further degradation.

Notation

In Chapter 2 and Chapter 3 we use a discrete-time and a continuous-time channel
model, respectively. Accordingly, the signals we use to communicate are n-tuples in
Chapter 2 and functions of time in Chapter 3. The transition from one set of signals
to the other is made smoothly via the elegant theory of inner product spaces. This
requires seeing both n-tuples and functions as vectors of an appropriate inner
product space, which is the reason we have opted to use the same fonts for both
kind of signals. (Many authors use bold-faced fonts for n-tuples.)

Some functions of time are referred to as waveforms. These are functions that
typically represent voltages or currents within electrical circuits. An example of a
waveform is the signal we use to communicate across a continuous-time channel.
Pulses are waveforms that serve as building blocks for more complex waveforms.
An example of a pulse is the impulse response of a linear time-invariant filter
(LTT). From a mathematical point of view it is by no means essential to make
a distinction between a function, a waveform, and a pulse. We use these terms
because they are part of the language used by engineers and because it helps us
associate a physical meaning with the specific function being discussed.

In this text, a generic function such as g : Z — B, where Z C R is the domain
and B is the range, is typically a function of time or a function of frequency.
Engineering texts underline the distinction by writing ¢(¢) and g(f), respectively.
This is an abuse of notation, which can be very helpful. We will make use of this
abuse of notation as we see fit. By writing ¢(¢) instead of g : T — B, we are
effectively seeing t as representing Z, rather than representing a particular value
of Z. To refer to a particular moment in time, we use a subscripts such as in ty.
So, g(to) refers to the value that the function g takes at ¢ = to. Similarly, g(f)
refers to a function of frequency and g(fy) is the value that g takes at f = fo.
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The Fourier transform of a function g : R — C is denoted by gr. Hence

o0

a5 = [ ge > ra
— 00

where j = /1.

By [a, b] we denote the set of real numbers between a and b, including a and b.
We write (a,b], [a,b), and (a,b) to exclude a, b, or both a and b from the set,
respectively. A set that consists of the elements aq,as,...,a, is denoted by
{al, Ay ..., am}.

If Ais a set and S is a statement that can be true or false, then {z € A : S}
denotes the subset of A for which the statement S is true. For instance, {x € Z :
3 divides z} is the set of all integers that are an integer multiple of 3.

We write 1{S} for the indicator of the statement S. The indicator of S is 1 if S
is true and 0 if S is false. For instance 1{t € [a, b]} takes value 1 when t € [a, b] and
0 elsewhere. When the indicator is a function like in this case, we call it indicator
function. As another example, 1{k =1} is 1 when k = [ and 0 when k # [.

As is customary in mathematics, we use the letters ¢, j, k,I, m,n for integers.
(The integer j should not be confused with the complex number j.)

The convolution between w(t) and v(t) is denoted by (u * v)(t). Here (u * v)
should be seen as the name of a new function obtained by convolving the functions
u(t) and v(¢). Sometimes it is useful to write u(t) x v(t) for (u* v)(t).

A few anecdotes

This text is targeted mainly at engineering students. Throughout their careers
some will make inventions that may or may not be successful. After reading The
Information: A History, a Theory, a Flood by James Gleick® [5], I felt that I should
pass on some anecdotes that nicely illustrate one point, specifically that no matter
how great an idea or an invention is, there will be people that will criticize it.

The printing press was invented by Johannes Gutenberg around 1440. It is now
recognized that it played an essential role in the transition from medieval to modern
times. Yet in the sixteenth century, the German priest Martin Luther decried
that the “multitude of books [were| a great evil ...”; in the seventeenth century,
referring to the “horrible mass of books” Leibniz feared a return to barbarism for
“in the end the disorder will become nearly insurmountable”; in 1970 the American
historian Lewis Mumford predicted that “the overproduction of books will bring
about a state of intellectual enervation and depletion hardly to be distinguished
from massive ignorance”.

The telegraph was invented by Claude Chappe during the French Revolution.
A telegraph was a tower for sending optical signals to other towers in line of sight.
In 1840 measurements were made to determine the transmission speed. Over a
stretch of 760 km, from Toulon to Paris, comprising 120 stations, it was determined

5 A copy of the book was generously offered by our dean, Martin Vetterli, to each professor
as a 2011 Christmas gift.
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that two out of three messages arrived within a day during the warm months and
that only one in three arrived in winter. This was the situation when F. B. Morse
proposed to the French government a telegraph that used electrical wires. Morse’s
proposal was rejected because “No one could interfere with telegraph signals in
the sky, but wire could be cut by saboteurs” [5, Chapter 5].

In 1833 the lawyer and philologist John Pickering, referring to the American
version of the French telegraph on Central Wharf (a Chappe-like tower commu-
nicating shipping news with three other stations in a 12-mile line across Boston
Harbor) asserted that “It must be evident to the most common observer, that no
means of conveying intelligence can ever be devised, that shall exceed or even equal
the rapidity of the Telegraph, for, with the exception of the scarcely perceptible
relay at each station, its rapidity may be compared with that of light itself”. In
today’s technology we can communicate over optical fiber at more than 10'? bits
per second, which may be 12 orders of magnitude faster than the telegraph referred
to by Pickering. Yet Pickering’s flawed reasoning may have seemed correct to most
of his contemporaries.

The electrical telegraph eventually came and was immediately a great success,
yet some feared that it would put newspapers out of business. In 1852 it was
declared that “All ideas of connecting Europe with America, by lines extending
directly across the Atlantic, is utterly impracticable and absurd”. Six years later
Queen Victoria and President Buchanan were communicating via such a line.

Then came the telephone. The first experimental applications of the “electrical
speaking telephone” were made in the US in the 1870s. It quickly became a great
success in the USA, but not in England. In 1876 the chief engineer of the General
Post Office, William Preece, reported to the British Parliament: “I fancy the
descriptions we get of its use in America are a little exaggerated, though there
are conditions in America which necessitate the use of such instruments more
than here. Here we have a superabundance of messengers, errand boys and things
of that kind ... I have one in my office, but more for show. If I want to send a
message — | use a sounder or employ a boy to take it”.

Compared to the telegraph, the telephone looked like a toy because any child
could use it. In comparison, the telegraph required literacy. Business people first
thought that the telephone was not serious. Where the telegraph dealt in facts
and numbers, the telephone appealed to emotions. Seeing information technology
as a threat to privacy is not new. Already at the time one commentator said, “No
matter to what extent a man may close his doors and windows, and hermetically
seal his key-holes and furnace-registers, with towels and blankets, whatever he may
say, either to himself or a companion, will be overheard”.

In summary, the printing press has been criticized for promoting barbarism; the
electrical telegraphy for being vulnerable to vandalism, a threat to newspapers,
and not superior to the French telegraph; the telephone for being childish, of
no business value, and a threat to privacy. We could of course extend the list
with comments about typewriters, cell phones, computers, the Internet, or about
applications such as e-mail, SMS, Wikipedia, Street View by Google, etc. It would
be good to keep some of these examples in mind when attempts to promote new
ideas are met with resistance.
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Supplementary reading

Here is a small selection of recommended textbooks for background material,
to complement this text, or to venture into more specialized topics related to
communication theory.

There are many excellent books on background material. A recommended selec-
tion is: [6] by Vetterli, Kovacevié¢ and Goyal for signal processing; [7] by Ross for
probability theory; [8] by Rudin and [9] by Apostol for real analysis; [10] by Axler
and [11] by Hoffman and Kunze for linear algebra; [12] by Horn and Johnson for
matrices.

A very accessible undergraduate textbook on communication, with background
material on signals and systems, as well as on random processes, is [13] by Proakis
and Salehi. For the graduate-level student, [2] by Gallager is a very lucid exposition
on the principles of digital communication with integration theory done at the
“right level”. The more mathematical reader is referred to [3] by Lapidoth. For
breadth, more of an engineering perspective, and synchronization issues see [14] by
Barry, Lee, and Messerschmitt. Other recommended textbooks that have a broad
coverage are [15] by Madhow and [16] by Wilson. Note that [1] by Wozencraft and
Jacobs is a somewhat dated classic textbook but still a recommended read.

To specialize in wireless communication, the recommended textbooks are [17]
by Tse and Viswanath and [18] by Goldsmith. The standard textbooks for a first
course in information theory are [19] by Cover and Thomas and [20] by Gallager.
Reference [21] by MacKay is an original and refreshing textbook for information
theory, coding, and statistical inference; [22] by Lin and Costello is recommended
for a broad introduction to coding theory, whereas [23] by Richardson and Urbanke
is the reference for low-density parity-check coding, and [4] by Kurose and Ross is
recommended for computer networking.

Appendix: Sources and source coding

We often assume that the message to be communicated is the realization of a
sequence of independent and identically distributed binary symbols. The purpose
of this section is to justify this assumption. The results summarized here are given
without proof.

In communication, it is always a bad idea to assume that a source produces a
deterministic output. As mentioned in Section 1.2, if a listener knew exactly what a
speaker is about to say, there would be no need to listen. Therefore, a source output
should be considered as the realization of a stochastic process. Source coding is
about the representation of the source output by a string of symbols from a finite
(often binary) alphabet. Whether this is done in one, two, or three steps, depends
on the kind of source.

Discrete sources A discrete source is modeled by a discrete-time random process
that takes values in some finite alphabet. For instance, a computer file is repre-
sented as a sequence of bytes, each of which can take on one of 256 possible values.
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So when we consider a file as being the source signal, the source can be modeled as
a discrete-time random process taking values in the finite alphabet {0, 1,...,255}.
Alternatively, we can consider the file as a sequence of bits, in which case the
stochastic process takes values in {0,1}.

For another example, consider the sequence of pixel values produced by a digital
camera. The color of a pixel is obtained by mixing various intensities of red, green,
and blue. Each of the three intensities is represented by a certain number of bits.
One way to exchange images is to exchange one pixel at a time, according to some
predetermined way of serializing the pixel’s intensities. Also in this case we can
model the source as a discrete-time process.

A discrete-time sequence taking values in a finite alphabet can always be con-
verted into a binary sequence. The resulting average length depends on the source
statistic and on how we do the conversion. In principle we could find the minimum
average length by analyzing all possible ways of making the conversion. Surpris-
ingly, we can bypass this tedious process and find the result by means of a simple
formula that determines the so-called entropy (of the source). This was a major
result in Shannon’s 1948 paper.

EXAMPLE 1.3 A discrete memoryless source is a discrete source with the addi-
tional property that the output symbols are independent and identically distributed.
For a discrete memoryless source that produces symbols taking values in an m-
letter alphabet the entropy is

m
—> pilogy pi,
=1

where p;, 1 = 1,...,m is the probability associated to the ith letter. For instance,
if m = 3 and the probabilities are p1 = 0.5, po = ps = 0.25 then the source
entropy is 1.5 bits. Shannon’s result implies that it is possible to encode the source
in such a way that, on average, it requires 1.5 bits to describe a source symbol. To
see how this can be done, we encode two ternary source symbols into three binary
symbols by mapping the most likely source letter into 1 and the other two letters
into 01 and 00, respectively. Then the average length of the binary representation
15 1 xX0.5+2x0.25+2x0.25 = 1.5 bits per source symbol, as predicted by the source
entropy. There is no way to compress the source to fewer than 1.5 bits per source
symbol and be able to recover the original from the compressed description. O

Any book on information theory will prove the stated relationship between the
entropy of a memoryless source and the minimum average number of bits needed
to represent a source symbol. A standard reference is [19].

If the output of the encoder that produces the shortest binary sequence can no
longer be compressed, it means that it has entropy 1. One can show that to have
entropy 1, a binary source must produce independent and uniformly distributed
symbols. Such a source is called a binary symmetric source (BSS). We conclude
that the binary output of a source encoder can either be further compressed
or it has the same statistic as the output of a BSS. This is the main reason a
communication-link designer typically assumes that the source is a BSS.
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Discrete-time continuous-alphabet sources These are modeled by a discrete-time
random process that takes values in some continuous alphabet. For instance, if
we measure the temperature of a room at regular time-intervals, we obtain a
sequence of real-valued numbers, modeled as the realization of a discrete-time
continuous alphabet random process. (This is assuming that we measure with
infinite precision. If we use a digital thermometer, then we are back to the discrete
case.) To store or to transmit the realization of such a source, we first round
up or down the number to the nearest element of some fixed discrete set of
numbers (as the digital thermometer does). This is called quantization and the
result is the quantized process with the discrete set as its alphabet. Quantization
is irreversible, but by choosing a sufficiently dense alphabet, we can make the
difference between the original and the quantized process as small as desired. As
described in the previous paragraph, the quantized sequence can be mapped in a
reversible way into a binary sequence. If the resulting binary sequence is as short
as possible (in average) then, once again, it is indistinguishable from the output of
a BSS.

Continuous-time sources These are modeled by a continuous-time random pro-
cess. The electrical signal produced by a microphone can be seen as a sample path
of a continuous-time random process. In all practical applications, such signals
are either bandlimited or can be lowpass-filtered to make them bandlimited. For
instance, even the most sensitive human ear cannot detect frequencies above some
value (say 25 kHz). Hence any signal meant for the human ear can be made
bandlimited through a lowpass filter. The sampling theorem (Theorem 5.2) asserts
that a bandlimited signal can be represented by a discrete-time sequence, which
in turn can be made into a binary sequence as described.

In this text we will not need results from information theory, but we will often
assume that the message to be communicated is the output of a BSS. Because we
can always map a block of k bits into an index taking value in {0,1,..., 2k — 1},
an essentially equivalent assumption is that the source produces independent and
identically distributed (iid) random variables that are uniformly distributed over
some finite alphabet.

Exercises

Note: The exercises are available only in the official copy provided by the editor.
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Receiver design for
discrete-time observations:
First layer

Introduction

The focus of this and the next chapter is the receiver design. The task of the
receiver can be appreciated by considering a very noisy channel. The “GPS chan-
nel” is a good example. Let the channel input be the electrical signal applied to
the transmitting antenna of a GPS satellite orbiting at an altitude of 20200 km,
and let the channel output be the signal at the antenna output of a GPS receiver
at sea level. The signal of interest at the output of the receiving antenna is very
weak. If we were to observe the receiving antenna output with a general-purpose
instrument, such as an oscilloscope or a spectrum analyzer, we would not be able to
distinguish the signal from the noise. Yet, most of the time the receiver manages
to reproduce the bit sequence transmitted by the satellite. This is the result of
sophisticated operations performed by the receiver.

To understand how to deal with the randomness introduced by the channel, it is
instructive to start with channels that output n-tuples (possibly n = 1) rather than
waveforms. In this chapter, we learn all we need to know about decisions based
on the output of such channels. As a prominent special case, we will consider the
discrete-time additive white Gaussian noise (AWGN) channel. In so doing, by the
end of the chapter we will have derived the receiver for the first layer of Figure 1.7.

Figure 2.1 depicts the communication systems considered in this chapter. Its
components are as follows.

e A source: The source (not represented in the figure) produces the message to
be transmitted. In a typical application, the message consists of a sequence
of bits but this detail is not fundamental for the theory developed in this
chapter. It is fundamental that the source chooses one “message” from a set of
possible messages. We are free to choose the “label” we assign to the various
messages and our choice is based on mathematical convenience. For now the
mathematical model of a source is as follows. If there are m possible choices,
we model the source as a random variable H that takes values in the message
set H ={0,1,...,(m —1)}. More often than not, all messages are assumed to
have the same probability but for generality we allow message ¢ to occur with
probability Py (7). The message set H and the probability distribution Py are
assumed to be known to the system designer.

23
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2. First layer
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Figure 2.1. General setup for Chapter 2.

A channel: The system designer needs to be able to cope with a broad class of
channel models. A quite general way to describe a channel is by specifying its
input alphabet X (the set of signals that are physically compatible with the
channel input), the channel output alphabet ), and a statistical description
of the output given the input. Unless otherwise specified, in this chapter the
output alphabet ) is a subset of R. A convenient way to think about the channel
is to imagine that for each letter x € X that we apply to the channel input, the
channel outputs the realization of a random variable Y € ) of statistic that
depends on x. If Y is a discrete random variable, we describe the probability
distribution (also called probability mass function, abbreviated to pmf) of Y
given z, denoted by Py |x (- |z). I Y is a continuous random variable, we describe
the probability density function (pdf) of ¥ given z, denoted by fy|x(-|z). In
a typical application, we need to know the statistic of a sequence Yi,...,Y,
of channel outputs, Yy € ), given a sequence Xi,..., X, of channel inputs,
X € X, but our typical channel is memoryless, meaning that

n
Py, vl X X0 WLy Unl@, o) = H Py, x, (yilzi)
=1

for discrete-output alphabets and

n
le,...7Yn|X17...,Xn(yla s Ynl T, Tn) = Hin|Xi(yi|xi)

i=1
for continuous-output alphabets. A discrete-time channel of this generality
might seem to be a rather abstract concept, but the theory we develop with
this channel model turns out to be what we need.
A transmitter: Mathematically, the transmitter is a mapping from the message
set H ={0,1,...,m — 1} to the signal set C = {cp,c1,...,cm—1} (also called
signal constellation), where ¢; € X™ for some n. From an engineering point of
view, the transmitter is needed because the signals that represent the message
are not suitable to excite the channel. From this viewpoint, the transmitter
is just a sort of sophisticated connector. The elements of the signal set C are
chosen in such a way that a well-designed receiver that observes the channel
output can tell (with high probability) which signal from C has excited the
channel input.
A receiver: The receiver’s task is to “guess” the realization of the hypothesis
H from the realization of the channel output sequence. We use 7 to represent
the guess made by the receiver. Like the message, the guess of the message
is the outcome of a random experiment. The corresponding random variable
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is denoted by H € #. Unless specified otherwise, the receiver will always be
designed to minimize the probability of error, denoted P. and defined as the
probability that H differs from H. Guessing the value of a discrete random
variable H from the realization of another random variable (or random vector)
is called a hypothesis testing problem. We are interested in hypothesis testing
in order to design communication systems, but it can also be used in other
applications, for instance to develop a smoke detector.

EXAMPLE 2.1 (Source) As a first example of a source, consider H = {0,1}
and Py (0) = Py(l) = 1/2. H could model individual bits of, say, a file.
Alternatively, one could model an entire file of, say, 1 Mbit by saying that
H={0,1,...,(2°° — 1)} and Py (i) = =Ls,i € H. O

2106

EXAMPLE 2.2 (Transmitter) A transmitter for a binary source could be a map
from H = {0,1} to C = {—a,a} for some real-valued constant a. If the source
is 4-ary, the transmitter could be any one-to-one map from H = {0,1,2,3} to
C = {-3a,—a,a,3a}. Alternatively, the map could be from H = {0,1,2,3} to
C = {a,ja,—a,—ja}, where j = /—1. The latter is a valid choice if X C C. All
three cases have real-world applications, but we have to wait until Chapter 7 to
fully understand the utility of complex-valued signal sets. O

EXAMPLE 2.3 (Channel) The channel model that we will use frequently in this
chapter is the one that maps a signal ¢ € R™ intoY = c+Z, where Z is a Gaussian
random vector of independent and identically distributed components. As we will
see later, this is the discrete-time equivalent of the continuous-time additive white
Gaussian noise (AWGN) channel. O

The chapter is organized as follows. We first learn the basic ideas behind hypoth-
esis testing, the field that deals with the problem of guessing the outcome of a
random variable based on the observation of another random variable (or random
vector). Then we study the @ function as it is a very valuable tool in dealing with
communication problems that involve Gaussian noise. At that point, we will be
ready to consider the problem of communicating across the discrete-time additive
white Gaussian noise channel. We will first consider the case that involves two
messages and scalar signals, then the case of two messages and n-tuple signals,
and finally the case of an arbitrary number m of messages and n-tuple signals.
Then we study techniques that we use, for instance, to tell if we can reduce the
dimensionality of the channel output signals without undermining the receiver
performance. The last part of the chapter deals with techniques to bound the
error probability when an exact expression is unknown or too difficult to evaluate.

A point about terminology and symbolism needs to be clarified. We are using
¢; (and not s;) to denote the signal used for message i because the signals of this
chapter will become codewords in subsequent chapters.
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Hypothesis testing

Hypothesis testing refers to the problem of guessing the outcome of a random
variable H that takes values in a finite alphabet H = {0,1,...,m — 1}, based on
the outcome of a random variable Y called observable.

This problem comes up in various applications under different names. Hypothesis
testing is the terminology used in statistics where the problem is studied from a
fundamental point of view. A receiver does hypothesis testing, but communication
people call it decoding. An alarm system such as a smoke detector also does
hypothesis testing, but people would call it detection. A more appealing name
for hypothesis testing is decision making. Hypothesis testing, decoding, detection,
and decision making are all synonyms.

In communication, the hypothesis H is the message to be transmitted and
the observable Y is the channel output (or a sequence of channel outputs). The
receiver guesses the realization of H based on the realization of Y. Unless stated
otherwise, we assume that, for all ¢ € H, the system designer knows P (i) and
Fym(l0).!

The receiver’s decision will be denoted by 7 and the corresponding random
variable by H € #H. If we could, we would ensure that H = H, but this is
generally not possible. The goal is to devise a decision strategy that maximizes
the probability P, = Pr{H = H} that the decision is correct.2 An equivalent goal
is to minimize the error probability P, = Pr{H # H} =1 — P..

Hypothesis testing is at the heart of the communication problem. As described
by Claude Shannon in the introduction to what is arguably the most influential
paper ever written on the subject [24], “The fundamental problem of communica-
tion is that of reproducing at one point either exactly or approximately a message
selected at another point”.

EXAMPLE 2.4 As a typical example of a hypothesis testing problem, consider the
problem of communicating one bit of information across an optical fiber. The bit
being transmitted is modeled by the random variable H € {0,1}, Py (0) = 1/2. If
H =1, we switch on a light-emitting diode (LED) and its light is carried across the
optical fiber to a photodetector. The photodetector outputs the number of photons
Y € N it detects. The problem is to decide whether H = 0 (the LED is off)
or H =1 (the LED is on). Our decision can only be based on whatever prior
information we have about the model and on the actual observation Y = y. What
makes the problem interesting is that it is impossible to determine H from Y with
certainty. Even if the LED is off, the detector is likely to detect some photons (e.g.
due to “ambient light”). A good assumption is that Y is Poisson distributed with
intensity A, which depends on whether the LED is on or off. Mathematically, the
situation is as follows:

! We assume that Y is a continuous random variable (or continuous random vector). If
it is discrete, then we use Py g (-|é) instead of fy g (-|7).
2 Pr{-} is a short-hand for probability of the enclosed event.
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)\y
when H =0, Y ~ Pyu(yl0) = y—?e”‘o,

\Y
when H =1, Y ~ Pyg(yl) = —}e_)‘l,
y!

where 0 < Ao < A1. We read the above as follows: “When H = 0, the observable
Y is Poisson distributed with intensity \og. When H = 1, Y is Poisson distributed
with intensity A1 7. Once again, the problem of deciding the value of H from the
observable Y is a standard hypothesis testing problem. O

From Pgy and fy g, via Bayes’ rule, we obtain

Py (i) fya (yli)
fy(y)

where fy(y) = >, Pu(i)fy|u(y|i). In the above expression Ppy (ily) is the pos-
terior (also called a posteriori probability of H given Y'). By observing Y = y, the
probability that H =i goes from the prior Pg (i) to the posterior Py (ily).

Pry (ily) =

If the decision is H = i, the probability that it is the correct decision is the
probability that H =i, i.e. Pgjy (ily). As our goal is to maximize the probability
of being correct, the optimum decision rule is

H(y) = arg max Py (ily) (MAP decision rule), (2.1)

where arg max; ¢(4) stands for “one of the arguments ¢ for which the function g¢()
achieves its maximum?”. The above is called the mazimum a posteriori (MAP) deci-
sion rule. In case of ties, i.e. if Py (jly) equals Pyy (k|y) equals max; Py (ily),
then it does not matter if we decide for H = k or for H = j. In either case, the
probability that we have decided correctly is the same.

Because the MAP rule maximizes the probability of being correct for each
observation y, it also maximizes the unconditional probability P, of being cor-
rect. The former is PH‘Y(H(y)|y) If we plug in the random variable Y instead
of y, then we obtain a random variable. (A real-valued function of a random
variable is a random variable.) The expected value of this random variable is the
(unconditional) probability of being correct, i.e.

A

P. = E[Pyyy (H(Y)|Y)] = / Puyy (H(9)\y) v () dy. (2.2)

There is an important special case, namely when H is uniformly distributed.
In this case Py (ily), as a function of i, is proportional to fy|z(yli). Therefore,
the argument that maximizes Py (ily) also maximizes fy g (y|i). Then the MAP
decision rule is equivalent to the decision

H(y) = arg max Sy a (yli) (ML decision rule), (2.3)

called the mazimum likelihood (ML) decision rule. The name stems from the fact
that fyz(yli), as a function of 4, is called the likelihood function.
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Notice that the ML decision rule is defined even if we do not know Py. Hence
it is the solution of choice when the prior is not known. (The MAP and the ML
decision rules are equivalent only when the prior is uniform.)

2.2.1 Binary hypothesis testing

The special case in which we have to make a binary decision, i.e. H = {0,1}, is
both instructive and of practical relevance. We begin with it and generalize in the
next section.

As there are only two alternatives to be tested, the MAP test may now be
written as

H=1
fyim@)Pa(1) > fyia(y|0)Py(0)

fr(y) < Iy ()
H=0

The above notation means that the MAP test decides for H = 1 when the left is
bigger than or equal to the right, and decides for H = 0 otherwise. Observe that
the denominator is irrelevant because fy (y) is a positive constant — hence it will
not affect the decision. Thus an equivalent decision rule is

H
fY|H(y|1)PH(1)

1
fY|H(y|O)PH(O)-

AN

H=0

The above test is depicted in Figure 2.2 assuming y € R. This is a very important
figure that helps us visualize what goes on and, as we will see, will be helpful to
compute the probability of error.

The above test is insightful as it shows that we are comparing posteriors after
rescaling them by canceling the positive number fy(y) from the denominator.
However, there are alternative forms of the test that, depending on the details, can
be computationally more convenient. An equivalent test is obtained by dividing

leH(y‘l)PH(l)

fy 1 (y|0) Pr (0)

Figure 2.2. Binary MAP decision.
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both sides with the non-negative quantity fy g (y|0)Pg(1). This results in the
following binary MAP test:

Aly)

en g Pu(0) (2.4

~ fyia(l0)
H=0

The left side of the above test is called the likelihood ratio, denoted by A(y),
whereas the right side is the threshold 7. Notice that if Py (0) increases, so does
the threshold. In turn, as we would expect, the region {y : H(y) = 0} becomes
larger.

When P (0) = Py (1) = 1/2 the threshold 7 is unity and the MAP test becomes
a binary ML test:

A

H
fym(yl1)

1
fy 1 (y[0).
0

NIV

m)
Il

A function H:Y — H = {0,...,m — 1} is called a decision function (also called
decoding function). One way to describe a decision function is by means of the
decision regions R; = {y € Y : H(y) =i}, i € H. Hence R; is the set of y € Y for
which H(y) = i. We continue this subsection with H = {0,1}.

To compute the error probability, it is often convenient to compute the error
probability for each hypothesis and then take the average. When H = 0, the
decision is incorrect if Y € Ry or, equivalently, if A(y) > 7. Hence, denoting by
P.(i) the error probability when H =i,

P(0) = Pr{Y € Ry|H =0} = /R fy 11 (w]0)dy (2.5)

or, equivalently,
P.(0) = Pr{A(Y) > n|H = 0}. (2.6)

Whether it is easier to work with the right side of (2.5) or that of (2.6) depends
on whether it is easier to work with the conditional density of ¥ or of A(Y). We
will see examples of both cases.

Similar expressions hold for the probability of error conditioned on H = 1,
denoted by P.(1). Using the law of total probability, we obtain the (unconditional)
error probability

P. = P.(1)Py (1) + P.(0)Py (0).

In deriving the probability of error we have tacitly used an important technique
that we use all the time in probability: conditioning as an intermediate step.
Conditioning as an intermediate step may be seen as a divide-and-conquer strategy.
The idea is to solve a problem that seems hard by breaking it up into subproblems
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that (i) we know how to solve and (ii) once we have the solution to the sub-
problems we also have the solution to the original problem. Here is how it works
in probability. We want to compute the expected value of a random variable Z.
Assume that it is not immediately clear how to compute the expected value of
Z, but we know that Z is related to another random variable W that tells us
something useful about Z: useful in the sense that for every value w we are able
to compute the expected value of Z given W = w. Then, via the law of total
expectation, we compute: E[Z] = > E[Z|W = w] Pw(w). The same principle
applies for probabilities. (This is not a coincidence: The probability of an event is
the expected value of the indicator function of that event.) For probabilities, the
expression is Pr(Z € A) =), Pr(Z € A|[W = w)Pw (w). It is called the law of
total probability.

Let us revisit what we have done in light of the above comments and what else we
could have done. The computation of the probability of error involves two random
variables, H and Y, as well as an event {H # H}. To compute the probability
of error (2.5) we have first conditioned on all possible values of H. Alternatively,
we could have conditioned on all possible values of Y. This is indeed a viable
alternative. In fact we have already done so (without saying it) in (2.2). Between
the two, we use the one that seems more promising for the problem at hand. We
will see examples of both.

2.2.2 m-ary hypothesis testing

Now we go back to the m-ary hypothesis testing problem. This means that H =
{0,1,...,m—1}.

Recall that the MAP decision rule, which minimizes the probability of making
an error, is

Harap(y) = argmax Py (ily)

_ arg may T 01D P ()
= arg nax =
= argmax fyx (y|i) Pr (i),

where fy g (-]7) is the probability density function of the observable ¥ when the
hypothesis is 7 and Py (i) is the probability of the ith hypothesis. This rule is well
defined up to ties. If there is more than one i that achieves the maximum on the
right side of one (and thus all) of the above expressions, then we may decide for
any such ¢ without affecting the probability of error. If we want the decision rule
to be unambiguous, we can for instance agree that in case of ties we choose the
largest ¢ that achieves the maximum.

When all hypotheses have the same probability, then the MAP rule specializes
to the ML rule, i.e.

I:-’ML(y) = afgfiré%f fY|H(y|i)~
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Ro R1

Ri

Figure 2.3. Decision regions.

We will always assume that fyq is either given as part of the problem formulation
or that it can be figured out from the setup. In communication, we typically know
the transmitter and the channel. In this chapter, the transmitter is the map from H
to C C A™ and the channel is described by the pdf fy|x (y|=) known for all z € &A™
and all y € Y". From these two, we immediately obtain fy |z (yli) = fy|x (ylci),
where ¢; is the signal assigned to i.

Note that the decision (or decoding) function H assigns an i € H to each y € R™.
As already mentioned, it can be described by the decision (or decoding) regions
Ri, i € H, where R; consists of those y for which H (y) = ¢. It is convenient to
think of R™ as being partitioned by decoding regions as depicted in Figure 2.3.

We use the decoding regions to express the error probability P, or, equivalently,
the probability P, = 1 — P, of deciding correctly. Conditioned on H = i we have

Pe(i) = ]-_Pc(i)
—1- /R ol

The () function

The @ function plays a very important role in communication. It will come up
frequently throughout this text. It is defined as

Q) = w% / % de,

where the symbol := means that the left side is defined by the expression on the
right. Hence if Z is a normally distributed zero-mean random variable of unit
variance, denoted by Z ~ N (0,1), then Pr{Z > 2} = Q(z). (The Q function has
been defined specifically to make this true.)

If Z is normally distributed with mean m and variance o2, denoted by Z ~
N(m,c?), the probability Pr{Z > z} can also be written using the @ function.
In fact the event {Z > 2} is equivalent to {£=2 > Z=m1} But Z=2 ~ N(0,1).
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Hence Pr{Z > z} = Q(&
memorized.
We now describe some of the key properties of the @) function.

(a) If Z ~N(0,1), Fz(z) := Pr{Z < z} =1 — Q(z). (The reader is advised to
draw a picture that expresses this relationship in terms of areas under the
probability density function of Z.)

—™). This result will be used frequently. It should be

(b) Q0)=1/2, Q(— )Zl,Q(oo):()
() Q(—=)+ Q( ) = 1. (Again, it is advisable to draw a picture.)
< _a?
(d) 217Ta677(1+a2)<Q( ) me 2, a>0.
(e) An alternative expression for the @) function with fixed integration limits is

P rIJ2
Q(z) =1 [? e ==Tad. It holds for z > 0.

a2

) Q@) <ie %, a>0.

Proofs The proofs of (a), (b), and (c) are immediate (a picture suffices). The
proof of part (d) is left as an exercise (see Exercise 7?). To prove (e), let X ~
N(0,1) and Y ~ N(0,1) be independent random variables and let £ > 0 . Hence
Pr{X >0,Y >¢(=Q(0)Q(¢&) = % Using polar coordinates to integrate over
the region « > 0, y > £ (shaded region of the figure below), yields

Q p{x>oy>g}_/ / %rdrdﬁ

/ / ’tdtdﬁ——/ze = o,
27T 0

¢ g
7 r= sin((i)x
To prove (f), we use (e) and the fact that e 5 <e % > for 0 € [0, 5]. Hence
Q(ﬁ)é%/ogegdt?:%e% 0

A plot of the @ function and its bounds is given in Figure 2.4.

Receiver design for the discrete-time AWGN channel

The hypothesis testing problem discussed in this section is key in digital com-
munication. It is the one performed by the top layer of Figure 1.7. The setup
is depicted in Figure 2.5. The hypothesis H € H = {0,...,m — 1} represents
a randomly selected message. The transmitter maps H = ¢ to a signal n-tuple
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Figure 2.5. Communication over the discrete-time additive
white Gaussian noise channel.

¢; € R™. The channel adds a random (noise) vector Z which is zero-mean and has
independent and identically distributed Gaussian components of variance 2. In
short, Z ~ N(0,0%1,,). The observable is Y = ¢; + Z.

We begin with the simplest possible situation, specifically when there are only
two equiprobable messages and the signals are scalar (n = 1). Then we generalize
to arbitrary values for n and finally we consider arbitrary values also for the
cardinality m of the message set.
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2.4.1 Binary decision for scalar observations

Let the message H € {0, 1} be equiprobable and assume that the transmitter maps
H =0 into ¢g € R and H = 1 into ¢; € R. The output statistic for the various
hypotheses is as follows:

H=0: Y ~N(co,0?%)
H=1: Y ~N(c,0?).

An equivalent way to express the output statistic for each hypothesis is

1 (y —co)?
Ty (y)0) = —m—=5 exp {—%}

1 y—ca)®
fyia(yll) = s P {— Y 20_21 } .

We compute the likelihood ratio

A(y)—M:exp{_(y—cl)2—(y—60)2}:exp{ycl—co+cg—c§}_

B fY\H(y|O) 20? o? 20?
(2.7)
The threshold is
n— Pr(0)
Py (1)

Now we have all the ingredients for the MAP rule.

Instead of comparing A(y) to the threshold 5, we can compare In A(y) to lnn.
The function In A(y) is called log likelihood ratio. Hence the MAP decision rule
can be expressed as

H =
c1 — Co n 0(2) — c% >
o2 202 <

H=0

1

Inn.

The progress consists of the fact that the receiver no longer computes an expo-
nential function of the observation. It has to compute In(n), but this is done once
and for all.

Without loss of essential generality, assume ¢; > ¢y. Then we can divide both
sides by “% (which is positive) without changing the outcome of the above
comparison. We can further simplify by moving the constants to the right. The
result is the simple test

'y ]-1 Y Z 9
H =
Map () {O, otherwise,
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fya(y|0) Ty (yl1)

Figure 2.6. When Py (0) = Py (1), the decision threshold 6 is the midpoint
between ¢y and c¢;. The shaded area represents the probability of error
conditioned on H = 0.

where

2 co + c1

0= | .
nn+ 2

C1 — Co

Notice that if Py (0) = Pg(1), then Inn = 0 and the threshold 6 becomes the
midpoint £+ (Figure 2.6).
We now determine the error probability.

P.(0) = Pr{Y > 6|H = 0} = /9 " v (l0)dy.

This is the probability that a Gaussian random variable with mean ¢y and vari-
ance o2 exceeds the threshold #. From our review on the @ function we know
immediately that P.(0) = @ (G%O) Similarly, P.(1) = @ (clf:e) Finally, P, =
Py (0)Q (%52) + Pu(1)Q (252).

The most common case is when Py (0) = Py (1) = 1/2. Then 9%0 =a-f _

g
a=c — 4 where d is the distance between ¢y and ¢;. In this case, P.(0) =

20 20
d
n-o(L).

P.(1) = P., where

This result can be obtained straightforwardly without side calculations. As shown
in Figure 2.6, the threshold is the middle point between ¢y and ¢; and P, = P.(0) =
Q(%). This result should be known by heart.

2.4.2 Binary decision for n-tuple observations

As in the previous subsection, we assume that H takes values in {0,1}. What is
new is that the signals are now n-tuples for n > 1. So when H = 0, the transmitter
sends some ¢y € R™ and when H = 1, it sends ¢; € R". The noise added by the
channel is Z ~ N(0,021I,) and independent of H.

From here on, we assume that the reader is familiar with the definitions and basic
results related to Gaussian random vectors. (See Appendix 2.10 for a review.) We
also assume familiarity with the notions of inner product, norm, and affine plane.
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(See Appendix 2.12 for a review.) The inner product between the vectors u and v
will be denoted by (u,v), whereas |lu|| = \/(u, u) denotes the norm of u. We will
make extensive use of these notations.

Even though for now the vector space is over the reals, in Chapter 7 we will
encounter complex vector spaces. Whether the vector space is over R or over C,
the notation is almost identical. For instance, if a and b are (column) n-tuples in
Cn, then (a,b) = b'a, where t denotes conjugate transpose. The equality holds
even if ¢ and b are in R™, but in this case the conjugation is inconsequential and
we could write (a,b) = bTa, where T denotes transpose. By default, we will use
the more general notation for complex vector spaces. An equality that we will use
frequently, therefore should be memorized, is

la £ b]* = llal® + [Ib]* £ 2%{(a, )}, (2.8)

where R{-} denotes the real part of the enclosed complex number. Of course we
can drop the R{-} for elements of a real vector space.

As done earlier, to derive a MAP decision rule, we start by writing down the
output statistic for each hypothesis

H=0: Y =cy+Z~N(o,d’l,)
H=1: Y=c+Z~N(c1,0%1,),

or, equivalently,

1 ly — coll?
H=0: Y~ fya(yl0)= (ro)il exp{—T

1 ly — 1|f?
H=1: Y~ fyu(yll) = WQXP{_T '

Like in the scalar case, we compute the likelihood ratio

Aly) = D) :exp{Ily—00||2 - IIy—cl||2}
fy 1 (y]0) 20? .

Taking the logarithm on both sides and using (2.8), we obtain

o 2 _ _ 2
()~ el -~y —al

552 (2.9)
e —co\ | leoll® — [les|”
= . 2.10
<y7 o2 > + 202 (2.10)
From (2.10), the MAP rule can be written as
H=1
ca—co\ el —fal? >
<y, = > + St (2.11)
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Notice the similarity with the corresponding expression of the scalar case. As for
the scalar case, we move the constants to the right and normalize to obtain

H=1
>
W) = 0. (212)
H=0
where
C1 —Co
Y= 7
is the unit-length vector that points in the direction ¢; — ¢g, d = |1 — ¢o]| is the
distance between the signals, and
o’ l[eall® = lleoll
0=—1 —_
a1t o

is the decision threshold. Hence the decision regions Ry and R, are delimited by
the affine plane

{y eR™: (y, ) :9}.

For definiteness, we are assigning the points of the delimiting affine plane to Rq,
but this is an arbitrary decision that has no effect on the error probability because
the probability that Y is on any given affine plane is zero.

We obtain additional geometrical insight by considering those y for which (2.9)
is constant. The situation is depicted in Figure 2.7, where the signed distance p is
positive if the delimiting affine plane lies in the direction pointed by v with respect
to co and ¢ is positive if the affine plane lies in the direction pointed by — with
respect to ¢1. (In the figure, both p and ¢ are positive.) By Pythagoras’ theorem
applied to the two right triangles with common edge, for all y on the affine plane,
ly — coll®> = lly — c1]|* equals p* — ¢*.

affine plane

Figure 2.7. Affine plane delimiting Ry and R;.
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Note that p and ¢ are related to 7, o2, and d via

ly —coll® = lly — c1ll* =p* — ¢
ly —coll> = |ly — 1| = 20% 7.

Hence p? — ¢> = 202 In7. Using this and d = p + ¢, we obtain

d o%*lnny
P34
d o%ln
q=: - 7,
2 d

When Py (0) = Pg(1) = 3, the delimiting affine plane is the set of y € R™ for
which (2.9) equals 0. These are the points y that are at the same distance from
co and from c¢;. Hence, Ry contains all the points y € R™ that are closer to ¢
than to ¢;.

A few additional observations are in order.

e The vector 9 is not affected by the prior but the threshold 6 is. Hence the prior
affects the position but not the orientation of the delimiting affine plane. As
one would expect, the plane moves away from ¢y when P (0) increases. This is
consistent with our intuition that the decoding region for a hypothesis becomes
larger as the probability of that hypothesis increases.

e The above-mentioned effect of the prior is amplified when o? increases. This is
also consistent with our intuition that the decoder relies less on the observation
and more on the prior when the observation becomes noisier.

e Notice the similarity of (2.9) and (2.10) with (2.7). This suggests a tight
relationship between the scalar and the vector case. We can gain additional

insight by placing the origin of a new coordinate system at cogcl and by

letting the first coordinate be in the direction of i = “=% where again
d = |le1 — ¢ol|- In this new coordinate system, H = 0 is mapped into the
vector ¢y = (—g,O,...,O)T and H = 1 is mapped into ¢; = (%,O,...,O)T.
If § = (§1,...,9n)" is the channel output in this new coordinate system,

(g,%) = 1. This shows that for a binary decision, the vector case is essentially
the scalar case embedded in an n-dimensional space.

As for the scalar case, we compute the probability of error by conditioning
on H = 0 and H = 1 and then remove the conditioning by averaging: P, =
Pe(0) P (0) + Pe(1) Py (1).

When H =0,Y = ¢o+ Z and the MAP decoder makes the wrong decision when
(Z,1) > p, i.e. when the projection of Z onto the directional unit vector ¢ has
(signed) length that is equal to or greater than p. That this is the condition for
an error should be clear from Figure 2.7, but it can also be derived by inserting
Y =¢p+ Z into (Y, ¢) > 6 and using (2.8). Since (Z, 1)) is a zero-mean Gaussian
random variable of variance o (see Appendix 2.10), we obtain

ri0=a(2) ~o(h+752).
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Figure 2.8. Example of Voronoi regions in R2.

Proceeding similarly, we find
B qy\ _ i _ olnn
Pe(l)_Q<a)_Q<2a d )

The case Py(0) = Py (1) = 0.5 is the most common one. Because p = ¢ = 2,
determining the error probability for this special case is straightforward:

P. = P.(1) = P.(0) = Pr{<z,w> > g} -q( i ).

20

2.4.3 m-ary decision for n-tuple observations

When H =14,i€ H={0,1,...,m — 1}, the channel input is ¢; € R™. For now we

make the simplifying assumption that Py (i) = %, which is a common assumption

in communication. Later on we will see that generalizing is straightforward.
When Y =y € R™, the ML decision rule is

I:-’ML(?J) = arg fllé%f fY|H(y|i)

1 ly - cill?
= arg?&%‘me@{—w} (2.13)

= argmin [|ly — ¢|.

Hence an ML decision rule for the AWGN channel is a minimum-distance decision
rule as shown in Figure 2.8. Up to ties, R; corresponds to the Voronoi region of
¢;, defined as the set of points in R™ that are at least as close to ¢; as to any
other c;.

EXAMPLE 2.5 (m-PAM) Figure 2.9 shows the signal set {co,c1,...,c5} CR for
6-ary PAM (pulse amplitude modulation) (the appropriateness of the name will
become clear in the next chapter). The figure also shows the decoding regions of an
ML decoder, assuming that the channel is AWGN. The signal points are elements
of R, and the ML decoder chooses according to the minimum-distance rule. When
the hypothesis is H = 0, the receiver makes the wrong decision if the observation
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y € R falls outside the decoding region Ro. This is the case if the noise Z € R is
larger than d/2, where d =¢; —¢;—1, i =1,...,5. Thus

P.(0) :PT{Z> g} :Q(%).

By symmetry, P.(5) = P.(0). For i € {1,2,3,4}, the probability of error when
H =i is the probability that the event {Z > 9} U{Z < —%} occurs. This event
1s the union of disjoint events. Its probability is the sum of the probabilities of the
individual events. Hence

P.(i) = Pr{{Z > g} U {Z < —g}} - 2Pr{Z > g} - 2@(%)7 i€ {1,2,3,4}.

Finally, P, = %Q(%) + %2@(%) = %Q(%) We see immediately how to
generalize. For a PAM constellation of m points (m positive integer), the error
probability is

| | d | |
I I " I I
I I I I I
N ! N ! ° ! N ! ° ! N y
co ! c1 ! c2 ! c3 ! c4 ! Cs
| | | | |
Ro R1 Reo Rs Ra Rs
Figure 2.9. 6-ary PAM constellation in R.
O

EXAMPLE 2.6 (m-QAM) Figure 2.10 shows the signal set {co, c1,c2,c3} C R? for
4-ary quadrature amplitude modulation (QAM). We consider signals as points in
R2. (We could choose to consider signals as points in C, but we have to postpone
this view until we know how to deal with complex valued noise.) The noise is
Z ~ N(0,0215) and the observable, when H =i, is Y = ¢; + Z. We assume that
the receiver implements an ML decision rule, which for the AWGN channel means
minimum-distance decoding. The decoding region for cy is the first quadrant, for
c1 the second quadrant, etc. When H = 0, the decoder makes the correct decision
if {Z1 > =4}y n{Z> > —4}, where d is the minimum distance among signal
points. This is the intersection of independent events. Hence the probability of the
intersection is the product of the probability of each event, i.e.

P.(0) = Pr{{% > —g} n{z> —g}} = Q%—%) - [1 —Q(%)r.
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By symmetry, for all i, P.(i) = P.(0). Hence,

Po= P0) =1~ P.(0) = 20(50) ~ @ (52).

Y2 Y2 29 )
d °
2
C1 Co Z1
° a1 °
2 d
2
| Y1 ! Y1
d
2
° °
C2 C3

Figure 2.10. 4-ary QAM constellation in R?.

m-QAM is defined for all m of the form (2j)2, for j = 1,2,.... An example of
16-QAM is given later in Figure 77. O

EXAMPLE 2.7 In Ezample 2.6 we have computed P.(0) via P:(0), but we could
have opted for computing P.(0) directly. Here is how:

S T
_ pr{zl < —g} +PT{ZQ < —g} —PT{{ZI = —g} 4 {ZQ = _g}}

d d
() o)
@ 20 @ 20
Notice that, in determining P.(0) (Example 2.6), we compute the probability of
the intersection of independent events (which is the product of the probability of
the individual events) whereas in determining P.(0) without passing through P,.(0)

(this example), we compute the probability of the union of events that are not
disjoint (which is not the sum of the probability of the individual events). O

Irrelevance and sufficient statistic

Have you ever tried to drink from a fire hydrant? There are situations in which the
observable Y contains excessive data, but if we reduce the amount of data, how
to be sure that we are not throwing away anything useful for a MAP decision? In
this section we derive a criterion to answer that question. We begin by recalling
the notion of Markov chain.
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DEFINITION 2.8 Three random variables U, V,W are said to form a Markov
chain in that order, symbolized by U — V — W, if the distribution of W given
both U and V' is independent of U, i.e. Py v,u(w|v,u) = Py v (wlv). O

The reader should verify the correctness of the following two statements, which
are straightforward consequences of the above Markov chain definition.

(i) U—V — Wifand only if Py wv(u, w|v) = Py (ulv)Pw v (wlv). In words,
U,V,W form a Markov chain (in that order) if and only if U and W are
independent when conditioned on V.

(i) U —-V — Wifand only ift W — V — U, i.e. Markovity in one direction
implies Markovity in the other direction.

Let Y be the observable and T'(Y") be a function (either stochastic or determin-
istic) of Y. Observe that H — Y — T'(Y) is always true, but in general it is not
true that H - T(Y) —» Y.

DEFINITION 2.9 Let T(Y) be a random variable obtained from processing an
observable Y. If H — T(Y) — Y, then we say that T(Y) is a sufficient statistic
(for the hypothesis H ). O

If T(Y) is a sufficient statistic, then the error probability of a MAP decoder that
observes T'(Y) is identical to that of a MAP decoder that observes Y. Indeed for
all i € H and all Yy € y, PH‘y(ZkI/) = PH\Y7T(i|y7t) = PH|T(Z|t)7 where t = T(y)
(The first equality holds because the random variable T is a function of Y and the
second equality holds because H — T'(Y) — Y'.) Hence if i maximizes Pgy (-|y)
then it also maximizes Py 7 (-|t). We state this important result as a theorem.

THEOREM 2.10 If T(Y) is a sufficient statistic for H, then a MAP decoder
that estimates H from T(Y) achieves the exact same error probability as one that
estimates H from Y. O

EXAMPLE 2.11 Consider the communication system depicted in Figure 2.11
where H, Z1,Zs are independent random variables. Let Y = (Y1,Y2). Then H —
Y1 — Y. Hence a MAP receiver that observes Y1 = T(Y) achieves the same
error probability as a MAP receiver that observes Y. Note that the independence
assumption is essential here. For instance, if Zo = Z1, we can obtain Zs (and Zy)
from the difference Yo — Yy. We can then remove Zy from Y1 and obtain H. In

this case from (Y1,Ya2) we can make an error-free decision about H. (]
Z1 Z2
) )
H &) &)

Receiver —> §H

Y1

Figure 2.11. Example of irrelevant measurement.
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In some situations, like in the above example, we make multiple measurements
and want to prove that some of the measurements are relevant for the detection
problem and some are not. Specifically, the observable Y may consist of two
components Y = (Y7,Y3) where Y7 and Y2 may be m and n tuples, respectively.
If T(Y) =Y is a sufficient statistic, then we say that Y5 is irrelevant.

We have seen that H — T'(Y) — Y implies that Y cannot be used to reduce
the error probability of a MAP decoder that observes T'(Y"). Is the contrary also
true? Specifically, assume that a MAP decoder that observes Y always makes the
same decision as one that observes only T'(Y). Does this imply H — T(Y) — Y?

The answer is “yes and no”. We may expect the answer to be “no” because, for
H — U — V to hold, it has to be true that Py v (i|u,v) equals Py (i|u) for all
values of 7, u, v, whereas for v to have no effect on a MAP decision it is “sufficient”
that for all u,v the mazimum of Pyy(-|u) and that of Pyy,v (-|u,v) be achieved
for the same i. It seems clear that the former requirement is stronger. Indeed in
Exercise 7?7 we give an example to show that the answer to the above question is
“no” in general.

The choice of distribution on H is relevant for the example in Exercise 77.
That we can construct artificial examples by “playing” with the distribution on H
becomes clear if we choose, say, Py (0) = 1. Now the decoder that chooses H=0
all the time is always correct. Yet one should not conclude that Y is irrelevant.
However, if for every choice of Py, the MAP decoder that observes Y and the
MAP decoder that observes T'(Y) make the same decision, then H - T'(Y) - Y
must hold. We prove this in Exercise ?7. The following example is an application
of this result.

EXAMPLE 2.12  Regardless of the distribution on H, the binary test (2.4) depends
on'Y only through the likelihood ratio A(Y). Hence H — A(Y) — Y must hold,
which makes the likelihood ratio a sufficient statistic. Notice that A(y) is a scalar
even when y is an n-tuple. O

The following result is a useful tool in verifying that a function T'(y) is a sufficient
statistic. It is proved in Exercise 77.

THEOREM 2.13 (Fisher—Neyman factorization theorem) Suppose that go, g1, - - -,
gm—1 and h are functions such that for each i € H one can write

fyia(li) = gi(T(y))h(y). (2.14)
Then T is a sufficient statistic. O

We will often use the notion of indicator function. Recall that if A is an arbitrary
set, the indicator function 1{z € A} is defined as

1, z€ A
0, otherwise.

]l{a:e./l}z{

EXAMPLE 2.14 Let H € H = {0,1,...,m — 1} be the hypothesis and when
H = i let the components of Y = (Y1,...,Y,)" be iid uniformly distributed in
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[0,7]. We use the Fisher—-Neyman factorization theorem to show that T(Y) =
max{Y1,...,Y,} is a sufficient statistic. In fact

Frian(uli) = 21 € 0,3 1{y2 € 0,41} -+ 2 1{ya € [0,1])

Z.in, if 0 <minf{y1,...,yn} and max{ys,...,yn} <1
0, otherwise

1 . )
= i_”]l{o < min{y,..., Yo}t I{max{ys,...,yn} < i}.

In this case, the Fisher—-Neyman factorization theorem applies with g;(T) =
+1{T < i}, where T(y) = max{y1,...,yn}, and h(y) = 1{0 < min{y1,...,yn}}.
O

Error probability bounds

2.6.1 Union bound

Here is a simple and extremely useful bound. Recall that for general events A, B
P(AUB)=P(A)+P(B)—P(ANB)
<P(A)+P(B).

More generally, using induction, we obtain the union bound

P(Q Ai) < éP(Ai)7 (UB)

that applies to any collection of events A;, i = 1,...,m. We now apply the union
bound to approximate the probability of error in multi-hypothesis testing. Recall
that

Pu(0) = Pr{Y € Rl =i} = [ fri(oliy

where R{ denotes the complement of R;. If we are able to evaluate the above

integral for every i, then we are able to determine the probability of error exactly.

The bound that we derive is useful if we are unable to evaluate the above integral.
For i # j define

Bij ={y:Pulj)fyiuWli) > Pu(i)fyiuyli)}.

B;,; is the set of y for which the a posteriori probability of H given Y = y is at
least as high for j as it is for 7. Roughly speaking,® it contains the ys for which a
MAP decision rule would choose j over i.

3 A y for which the a posteriori probability is the same for ¢ and for j is contained in
bOth Bi,j and Bj,i.
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The following fact is very useful:

R < | Bij. (2.15)
JigFi
To see that the above inclusion holds, consider an arbitrary y € R{. By definition,
there is at least one k € H such that Pg(k)fy g (ylk) > Pr(i)fy|m(yli). Hence
y € Bix.

The reader may wonder why we do not have equality in (2.15). To see that
equality may or may not apply, consider a y that belongs to B;; for some [. It
could be so because Py (1) fy|u(yll) = Pu(i)fy|u(yli) (notice the equality sign).
To simplify the argument, let us assume that for the chosen y there is only one
such [. The MAP decoding rule does not prescribe whether y should be in the
decoding region of ¢ or . If it is in that of ¢, then equality in (2.15) does not hold.
If none of the y for which Py (1) fy g (y|l) = Pu(i)fy)m(yli) for some [ has been
assigned to R; then we have equality in (2.15). In one sentence, we have equality
if all the ties have been resolved against 1.

We are now in the position to upper bound P.(i). Using (2.15) and the union
bound we obtain

P.(i)= Pr{Y e RS|H = i} < Pr{Y e | BijlH = z}
Jij#i
<Y Pr{Y €Bi,|H =1} (2.16)
Juj#i
= / fyu(yli)dy.
jiji * Bid
The gain is that it is typically easier to integrate over B; ; than over Rf.
For instance, when the channel is AWGN and the decision rule is ML, B; ; is
the set of points in R™ that are at least as close to ¢; as they are to ¢;. Figure 2.12

depicts this situation.
In this case,

/ fyia(yli)dy = Q (H(JE;CH) ,
Bi, g

and the union bound yields the simple expression

P <Y Q (”%%”) .

JigFi

oy

Figure 2.12. The shape of B; ; for AWGN channels and ML decision.
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In the next section we derive an easy-to-compute tight upper bound on
[ Frintelidy
Bi,j

for a general fy y. Notice that the above integral is the probability of error under
H = i when there are only two hypotheses, the other hypothesis is H = j, and
the priors are proportional to Py (i) and Py (j).

EXAMPLE 2.15 (m-PSK) Figure 2.13 shows a signal set for 8-ary PSK (phase-
shift keying). m-PSK is defined for all integers m > 2. Formally, the signal
transmitted when H =14 , i € H ={0,1,...,m—1}, is

cos (%)
Ci = \/gs
sin (222)

For now \/&s is just the radius of the PSK constellation. As we will see, Es = ||c;||?
is (proportional to) the energy required to generate c;.

Cc2 Ro

C3 C1

C4 Co

Cs Cc7

Ce

Figure 2.13. 8-ary PSK constellation in R? and decoding regions.

Assuming the AWGN channel, the hypothesis testing problem is specified by
H=i: Y ~N(c,0°l)

and the prior Py (i) is assumed to be uniform. Because we have a uniform prior,
the MAP and the ML decision rules are identical. Furthermore, since the channel is
the AWGN channel, the ML decoder is a minimum-distance decoder. The decoding
regions are also shown in Figure 2.13.

By symmetry, P. = P.(i). Using polar coordinates to integrate the density of the
noise, it is not hard to show that

1 [T m sin® = &,
P.(i)=— exp{ — m db
e( ) T /O p{ SiHQ(Q) 20.2
The above expression is rather complicated. Let us see what we obtain through the
union bound.
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With reference to Figure 2.14 we have:

C3
B3

Ra C4 Ba,z N Bas

B
Cs

Figure 2.14. Bounding the error probability of PSK by means
of the union bound.

Pe(i) = P?"{Y S Bi,i—l U Biyi+1|H = Z}
< P?"{Y S B¢7i_1|H = Z} + P?"{Y S B¢7i+1|H = Z}
= 2PT{Y € Bi)i,1|H = Z}

_ llei — ciall

=20 (T)

:2Q< & sin1> .
g m

Notice that we have been using a version of the union bound adapted to the problem:
we get a tighter bound by using the fact that R C B;i—1 U B; 41 rather than
Ri S UjziBBij-

How good is the upper bound? We know that it is good if we can find a lower
bound which is close enough to the upper bound. From Figure 2.14 with ¢ = 4 in
mind we see that

Pe(i) = P?"{Y S B¢7i_1|H = Z} + P?"{Y S B¢7i+1|H = Z}
— P?"{Y S Bi,i—l n Biyi+1|H = Z}

The above expression can be used to upper and lower bound P.(i). In fact, if we
lower bound the last term by setting it to zero, we obtain the upper bound that we
have just derived. To the contrary, if we upper bound the last term, we obtain a
lower bound to P.(i). To do so, observe that RS is the union of (m — 1) disjoint
cones, one of which is B;i—1 N By it1 (see again Figure 2.14). The integral of
fyu(-]7) over those cones is P.. If all those integrals gave the same result (which

is not the case) the result would be Z—Ezl) From the figure, the integral of fy|m(-|i)
over Bi;_1 N B; i1 s clearly smaller than that over the other cones. Hence its
value must be less than Z—Ezl) Mathematically,

Pe(q)

PT{Y € (Bi,ifl ﬂBi7i+1)|H = Z} < o1
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Inserting in the previous expression, solving for P.(i) and using the fact that
P,.(i) = P. yields the desired lower bound

P, >20Q <\/%sin%> mT—l

The ratio between the upper and the lower bound is the constant —==. For m large,
the bounds become very tight.

The way we upper-bounded Pr{Y € B; ;_1NB; ;41|H =i} is not the only way to
proceed. Alternatively, we could use the fact that B; ;—1 N B; 11 is included in B;
where k is the index of the codeword opposed to c;. (In Figure 2.14, Bas N Bys C
84)0,) Hence P’I‘{Y S Bijfl ﬂBi)i+1|H = Z} < PT{Y S Bi)le = Z} =Q (\/(‘,TS/O')
This goes to zero as Es/0? — oo. It implies that the lower bound obtained this way
becomes tight as Es/0? becomes large.

It is not surprising that the upper bound to P.(i) becomes tighter as m or
Es/a? (or both) become large. In fact it should be clear that under those conditions
Pr{Y € B;;—1 N B, i+1|H =i} becomes smaller. O

PAM, QAM, and PSK are widely used in modern communications systems. See
Section 2.7 for examples of standards using these constellations.

2.6.2 Union Bhattacharyya bound

Let us summarize. From the union bound applied to R{ C Uj; ot B;; we have
obtained the upper bound
P.(i) = Pr{Y € R{|H = i}
< Z P?"{Y S B¢7j|H = Z}
jigi
and we have used this bound for the AWGN channel. With the bound, instead of
having to compute

Pr{Y € R{|H =i} = / fyim(yli)dy,
R§

which requires integrating over a possibly complicated region R, we have only to
compute

Pr{Y ¢ Biyj|H =i} = / fY\H(y|i)dy'
B;,;

The latter integral is simply Q(d; ;/o), where d; ; is the distance between ¢; and
the affine plane bounding B; ;. For an ML decision rule, d; ; = 1ol
What if the channel is not AWGN? Is there a relatively simple expression for

Pr{Y € B; ;j|H = i} that applies for general channels? Such an expression does
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exist. It is the Bhattacharyya bound that we now derive.* We will need it only for
those ¢ for which P (i) > 0. Hence, for the derivation that follows, we assume that
it is the case.

The definition of B; ; may be rewritten in either of the following two forms

Pu()fyia(yli) ) [ Pu() fyia(yld)
{y ' PH(i)fY|H(y|i) & 1} B {y PH(i)fY\H(yli) = 1}

except that the above fraction is not defined when fy |y (y[7) vanishes. This excep-
tion apart, we see that

Py (5) fyia(yli)
=\ Pul) i (vl
is true when y is inside B;;; it is also true when outside because the left side

vanishes and the right is never negative. We do not have to worry about the
exception because we will use

yie(l)Hy € Bij} < fyia(yli) %ﬁgz:g

= 1;1;((123 \/fY|H(y|i)fY\H(y|j)7

which is obviously true when fy g (y|i) vanishes.
We are now ready to derive the Bhattacharyya bound:

Pr{Y € B;;|H =i} = / fy i (wli)dy

yeB; ;

:/ fria(yli) Ly € Bi ;}dy
yeRn

<4/ ig((g /yeRn \/fY\H(y|i)fY|H(y|j) dy. (2.17)

What makes the last integral appealing is that we integrate over the entire R™. The
above bound takes a particularly simple form when there are only two hypotheses
of equal probability. In this case,

PO=PM=P< [ a0t @1

As shown in Exercise 77, for discrete memoryless channels the bound further
simplifies.

4 There are two versions of the Bhattacharyya bound. Here we derive the one that has
the simpler derivation. The other version, which is tighter by a factor 2, is derived in
Exercises 77 and ?77.
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As the name indicates, the union Bhattacharyya bound combines (2.16) and
(2.17), namely

-

We can now remove the conditioning on H = 4 and obtain

P S VPG [ [l d @19)

i G

P(i)< Y Pr{YeBy,|H=i}< >

JigF JigF

EXAMPLE 2.16 (Tightness of the Bhattacharyya bound) Let the message H €
{0,1} be equiprobable, let the channel be the binary erasure channel described in
Figure 2.15, and let ¢; = (i,i,...,i)7, i € {0,1}.

X Yy
1-p

0 >0

A

1 -1
1-p

Figure 2.15. Binary erasure channel.

The Bhattacharyya bound for this case yields

Pr{Y €BoalH=0}< 3 \/Prin(yl)Pria(l0)
ye{0,1,A}n

= > Prixle)Prix(wleo)
ye{0,1,A}"
@

)

where in (a) we used the fact that the first factor under the square root vanishes if y
contains 0s and the second vanishes if y contains 1s. Hence the only non-vanishing
term in the sum is the one for which y; = A for all i. The same bound applies for
H =1. Hence P, < %p” + %p” =p".

If we use the tighter version of the union Bhattacharyya bound, which as men-
tioned earlier is tighter by a factor of 2, then we obtain

1
Pe é §pn
For the binary erasure channel and the two codewords co and ci we can

actually compute the exact probability of error. An error can occur only if
Y =(A,A,...,A)T, and in this case it occurs with probability % Hence,
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P = %PT{Y —(AA,. AT = %pn.

The Bhattacharyya bound is tight for the scenario considered in this example! [

Summary

The maximum a posteriori probability (MAP) rule is a decision rule that does
exactly what the name implies — it maximizes the a posteriori probability — and in
so doing it maximizes the probability that the decision is correct. With hindsight,
the key idea is quite simple and it applies even when there is no observable. Let
us review it.

Assume that a coin is flipped and we have to guess the outcome. We model the
coin by the random variable H € {0,1}. All we know is Py (0) and Py (1). Suppose
that Pr(0) < Pg(1). Clearly we have the highest chance of being correct if we
guess H=1 every time we perform the experiment of flipping the coin. We will
be correct if indeed H = 1, and this has probability Py (1). More generally, for an
arbitrary number m of hypotheses, we choose (one of) the ¢ that maximizes Py ()
and the probability of being correct is P (7).

It is more interesting when there is some “side information”. The side informa-
tion is obtained when we observe the outcome of a related random variable Y.
Once we have made the observation Y = y, our knowledge about the distribution
of H gets updated from the prior distribution Pg(+) to the posterior distribution
Pry (-ly). What we have said in the previous paragraphs applies with the posterior
instead of the prior.

In a typical example P (-) is constant whereas for the observed y, Pgy (-|y) is
strongly biased in favor of one hypothesis. If it is strongly biased, the observable
has been very informative, which is what we hope of course.

Often Pgy is not given to us, but we can find it from Py and fy |y via Bayes’
rule. Although Ppy is the most fundamental quantity associated to a MAP test
and therefore it would make sense to write the test in terms of Ppy, the test is
typically written in terms of Py and fy |y because these are the quantities that
are specified as part of the model.

Ideally a receiver performs a MAP decision. We have emphasized the case in
which all hypotheses have the same probability as this is a common assumption
in digital communication. Then the MAP and the ML rule are identical.

The following is an example of how the posterior becomes more and more
selective as the number of observations increases. The example also shows that
the posterior becomes less selective if the observations are more “noisy”.

EXAMPLE 2.17 Assume H € {0,1} and Py (0) = Py(1) = 1/2. The outcome of
H is communicated across a binary symmetric channel (BSC) of crossover proba-
bility p < % via a transmitter that sends n Os when H =0 and n 1s when H = 1.
The BSC has input alphabet X = {0,1}, output alphabet Y = X, and transition
probability py|x (y|z) = [T;=, py|x (yilx:i) where py|x (yilzi) equals 1 —p if yi = a;
and p otherwise. (We obtain a BSC, for instance, if we place an appropriately
chosen 1-bit quantizer at the output of the AWGN channel used with a binary
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input alphabet.) Letting k be the number of 1s in the observed channel output y we
have
A Jpt=pntt H =0
PY\H(:’JlZ) = {pn_k(l—p)k7 H=1.
Using Bayes’ rule,
Puy(i,y)  Pra(i)Pyia(yli)
Py(y) Py (y)

where Py (y) = 3, Py|u(yli)Pr (i) is the normalization that ensures ), Py (ily)
equals 1.

Py (ily) =

Hence
k n—k k n
p"(1-p) p (1-p)
Py (Oly) = = ( )
2Py (y) 1-p) 2Py(y)
n—k k k n
p" (1 —-p) (1 - p) p
Pyiy(1y) = — ,
iy (1Y) 2Py (y) D 2Py (y)
Py (0ly)
1+ Py (0ly)
® 1
0.5
0.5
0 4L k 0 T T epensapency
0 1 0 10 20 30 40 50
(a) p=10.25n=1. (b) p=0.25,n = 50.
Py (0ly)
1 Py (Oly)
1
0.5-¢
0.5
0 — k 0 ‘ | MTT??Q?..--? k
0 1 0 10 20 30 40 50
() p=047,n=1. (d) p = 0.47, n = 50.

Figure 2.16. Posterior as a function of the number k of 1s observed at the
output of a BSC of crossover probability p. The channel input consists of
n 0s when H = 0 and of n 1s when H = 1.
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Figure 2.16 depicts the behavior of Pgy (0ly) as a function of the number k of 1s
iny. For the top two figures, p = 0.25. We see that when n = 50 (top right figure),
the prior is very biased in favor of one or the other hypothesis, unless the number k
of observed 1s is nearly n/2 = 25. Comparing ton = 1 (top left figure), we see that
many observations allow the receiver to make a more confident decision. This is
true also for p = 0.47 (bottom row), but we see that with the crossover probability
p close to 1/2, there is a smoother transition between the region in favor of one
hypothesis and the region in favor of the other. If we make only one observation
(bottom left figure), then there is only a slight difference between the posterior for
H =0 and that for H = 1. This is the worse of the four cases (fewer observations
through noisier channel). The best situation is of course the one of figure (b) (more
observations through a more reliable channel). (]

We have paid particular attention to the discrete-time AWGN channel as it will
play an important role in subsequent chapters. The ML receiver for the AWGN
channel is a minimum-distance decision rule. For signal constellations of the PAM
and QAM family, the error probability can be computed exactly by means of the
Q@ function. For other constellations, it can be upper bounded by means of the
union bound and the @ function.

A quite general and useful technique to upper bound the probability of error is
the union Bhattacharyya bound. Notice that it applies to MAP decisions associated
to general hypothesis testing problems, not only to communication problems. The
union Bhattacharyya bound just depends on fy |z and Py (no need to know the
decoding regions).

Most current communications standards use PAM, QAM, or PSK to form their
codewords. The basic idea is to form long codewords with components that belong
to a PAM, QAM, or PSK set of points, called alphabet. Only a subset of the
sequences that can be obtained this way are used as codewords. Chapter 6 is
dedicated to a comprehensive case study. Here are a few concrete applications:
5-PAM is used as the underlying constellation for the Ethernet; QAM is used in
telephone modems and in various digital video broadcasting standards (DVB-C2,
DVB-T2); depending on the data rate, PSK and QAM are used in the wireless
LAN (local area network) IEEE 802.11 standard, as well as in the third-generation
partnership project (3GPP) and long-term evolution (LTE) standards; and PSK
(with variations) is used in the Bluetooth 2, ZigBee, and EDGE standards.

Appendix: Facts about matrices

In this appendix we provide a summary of useful definitions and facts about
matrices over C. An excellent text about matrices is [12]. Hereafter HT is the
conjugate transpose of the matrix H. It is also called the Hermitian adjoint
of H.

DEFINITION 2.18 A matriz U € C*™*" is said to be unitary if UTU = I. If U is
unitary and has real-valued entries, then it is said to be orthogonal. O
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The following theorem lists a number of handy facts about unitary matrices.
Most of them are straightforward. Proofs can be found in [12, page 67].

THEOREM 2.19 IfU € C™"*™, the following are equivalent:

(a) U is unitary;

(b) U is nonsingular and UT = U~1;

(c) UUt=1;

(d) U is unitary;

(e) the columns of U form an orthonormal set;

(f) the rows of U form an orthonormal set; and

(g) for all x € C™ the Euclidean length of y = Ux is the same as that of x; that
is, yty = 2fx. O

The following is an important result that we use to prove Lemma 2.22.

THEOREM 2.20 (Schur) Any square matriz A can be written as A = URUT where
U is unitary and R is an upper triangular matriz whose diagonal entries are the
eigenvalues of A. O

Proof Let us use induction on the size n of the matrix. The theorem is clearly
true for n = 1. Let us now show that if it is true for n — 1, it follows that it is
true for n. Given a matrix A € C™*", let v be an eigenvector of unit norm, and
B the corresponding eigenvalue. Let V' be a unitary matrix whose first column
is v. Consider the matrix VTAV. The first column of this matrix is given by
V1TAv = BVTv = Bey, where e; is the unit vector along the first coordinate. Thus

_ (B
VTAV_(O B),

where B is square and of dimension n—1. By the induction hypothesis B = WSW,
where W is unitary and S is upper triangular. Thus,

ViAV = (g W;WT> = ((1) 12/> (g ;> ((1) V3T> (2.20)

_ 1 0 (B x
U_V<0 W) and R = (O S),
we see that U is unitary, R is upper triangular, and A = URUT, completing the
induction step. The eigenvalues of a matrix are the roots of the characteristic
polynomial. To see that the diagonal entries of R are indeed the eigenvalues of

A, it suffices to bring the characteristic polynomial of A in the following form:
det(A — A) = det [U(AI — R)UT] =det(M — R) =[[,(A —ru). O

and putting

DEFINITION 2.21 A matric H € C™*" is said to be Hermitian if H = H'. It
is said to be skew-Hermitian if H = —H'. If H is Hermitian and has real-valued
entries, then it is said to be symmetric. O



2.8. Appendix: Facts about matrices 55

LEMMA 2.22 A Hermitian matriz H € C*"*™ can be written as

H=UAU" =" Nuul,

where U is unitary and A = diag(\1, ..., \,) is a diagonal matrixz that consists of
the eigenvalues of H. Moreover, the eigenvalues are real and the ith column of U,
u;, 1S an eigenvector associated to A;. O

Proof By Theorem 2.20 (Schur) we can write H = URUT, where U is unitary
and R is upper triangular with the diagonal elements consisting of the eigenvalues
of H. From R = UTHU we immediately see that R is Hermitian. Hence it must be
a diagonal matrix and the diagonal elements must be real. If w; is the ith column
of U, then

Hui = UAUTul = UAeZ = U/\Zez = /\iui,
showing that it is indeed an eigenvector associated to the ith eigenvalue A;. O

If H € C"*" is Hermitian, then u' Hu is real for all u € C". Indeed, [uf Hu]t =
utHtu = uf Hu. Hence, if we compare the set C**™ of square matrices to the set
C of complex numbers, then the subset of Hermitian matrices is analogous to the
real numbers.

A class of Hermitian matrices with a special positivity property arises naturally
in many applications, including communication theory. They are the analogs of
the positive numbers.

DEFINITION 2.23 A Hermitian matric H € C"*™ is said to be positive definite if
uw'Hu >0  for all non-zero u € C".

If H satisfies the weaker inequality utHu > 0, then H is said to be positive
semidefinite. O

For any matrix A € C™*", the matrix AA! is positive semidefinite. Indeed, for
any vector v € C™, vf AATv = ||ATv||? > 0. Similarly, a covariance matrix is
positive semidefinite. To see why, let X € C™ be a zero-mean random vector and
let K = E [XXT] be its covariance matrix. For any v € C™,
v Kv=v'E [XXT} v

=E [ XXTy]

=E [’ X (v X)1]

=E[p'X*] > 0.
LEMMA 2.24 (Eigenvalues of positive (semi)definite matrices) The eigenvalues of

a positive definite matriz are positive and those of a positive semidefinite matriz
are mon-negative. O

Proof Let A be a positive definite matrix, let v be an eigenvector of A associated
to the eigenvalue ), and calculate u'Au = ufAu = Mufu. Hence A = uf Au/ufu,
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proving that A must be positive, because it is the ratio of two positive numbers.
If A is positive semidefinite, then the numerator of A = u' Au/u'u can vanish. O

THEOREM 2.25 (SVD) Any matriz A € C™*™ can be written as a product
A=UDVT,

where U and V are unitary (of dimension m X m and n X n, respectively)
and D € R™*™ {s non-negative and diagonal. This is called the singular value
decomposition (SVD) of A. Moreover, by letting k be the rank of A, the following
statements are true.

(a) The columns of V are the eigenvectors of ATA. The last n — k columns span
the null space of A.

(b) The columns of U are eigenvectors of AAT. The first k columns span the
range of A.

(¢) If m>mn then

diag(v/A1, .-, vVAn)
D= ...

where A\ > Ag > -+ > A > A1 = -+ = Ay = 0 are the eigenvalues of
AT A € C™™ which are non-negative because AT A is positive semidefinite.
(d) If m <n then

D= (diag(\//\_l,...,\/ﬂ) : Omx(n—m)) )

where A\ > Ao > -+ > A > Agy1 = -+ = Ay, = 0 are the eigenvalues of
AAT. O

Note 1: Recall that the set of non-zero eigenvalues of AB equals the set of non-zero
eigenvalues of BA, see e.g. [12, Theorem 1.3.29]. Hence the non-zero eigenvalues
in (c) and (d) are the same.

Note 2: To remember that V contains the eigenvectors of ATA (as opposed to
containing those of AAT) it suffices to look at the dimensions: V has to be an
n x n matrix, and so is ATA.

Proof 1t is sufficient to consider the case with m > n because if m < n, we
can apply the result to AT = UDVT and obtain A = VDTU'. Hence let m >
n, and consider the matrix ATA € C™ . This matrix is positive semidefinite.
Hence its eigenvalues A1 > Ao > --- ), > 0 are real and non-negative and we can

choose the eigenvectors vy, v, ..., v, to form an orthonormal basis for C™. Let
V = (v1,...,v,). Let k be the number of positive eigenvalues and choose
1 .
Ui = —A’Ul', 1= 1,2,...,]{3. (221)

Ai



2.8. Appendix: Facts about matrices 57

Observe that

1 Aj
t TATAv; =/ Zoto, = 655 1<4.7<k.
uluj /—A'LA] Uz U] )\i Uz U] 179 >1,]>

Hence {u; : i = 1,...,k} is a set of orthonormal vectors. Complete this set of
vectors to an orthonormal basis for C™ by choosing {u; : i = k+1,...,m} and
let U = (u1,ug,...,un). Note that (2.21) implies

u;\/ Ay = Av;, i=1,2,...,kk+1,...,n,

where for i = k4 1,...,n the above relationship holds since A\; = 0 and v; is a
corresponding eigenvector. Using matrix notation we obtain

VL 0

vl o | =4v (2.22)

ie. A=UDVt. Fori=1,2,...,m,

AATw, = UDVIVDIU W,
= UDDTUT’LLZ' = ’ui>\1‘,

where in the last equality we use the fact that Uu,; contains 1 at position i and 0
elsewhere, and DD' = diag(A1, A2, ..., Mk, 0,...,0). This shows that ); is also an
eigenvalue of AAT. We have also shown that {v; :4 =k +1,...,n} spans the null
space of A and from (2.22) we see that {u; : i = 1,..., k} spans the range of A. 0O

The following key result is a simple application of the SVD.

LEMMA 2.26  The linear transformation described by a matriz A € R™™™ maps
the unit cube into a parallelepiped of volume |det A|. O

Proof From the singular value decomposition, we can write A = UDVT, where
D is diagonal and U and V' are unitary matrices. A transformation described by
a unitary matrix is volume preserving. (In fact if we apply an orthogonal matrix
to an object, we obtain the same object described in a new coordinate system.)
Hence we can focus our attention on the effect of D. But D maps the unit vectors
€1,€2,...,€n N0 Are1, Aoea, ..., A\pe,, respectively. Therefore it maps the unit
square into a rectangular parallelepiped of sides Aj, Az,..., A\, and of volume
[ TIAi]l = | det D| = | det A|, where the last equality holds because the determinant
of a product (of matrices) is the product of the determinants and the determinant
of a unitary matrix has unit magnitude. O
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Appendix: Densities after one-to-one differentiable
transformations

In this appendix we outline how to determine the density of a random vector
Y when we know the density of a random vector X and ¥ = ¢(X) for some
differentiable and one-to-one function g.

We begin with the scalar case. Generalizing to the vector case is conceptually
straightforward. Let X € X be a random variable of density fx and define
Y = g(X) for a given one-to-one differentiable function ¢g : X — Y. The density
becomes useful when we integrate it over some set A to obtain the probability
that X € A. In Figure 2.17 the shaded area “under” fx equals Pr{X € A}. Now
assume that g maps the interval A into the interval 5. Then X € A if and only if
Y € B. Hence Pr{X € A} = Pr{Y € B}, which means that the two shaded areas
in the figure must be identical. This requirement completely specifies fy .

For the mathematical details we need to consider an infinitesimally small
interval A. Then Pr{X € A} = fx(&)I(A), where [(A) denotes the length of A
and Z is any point in A. Similarly, Pr{Y € B} = fy(4)I(B) where § = g(Z). Hence
fy fulfills fx (2)I(A) = fv (5)U(B).

The last ingredient is the fact that the absolute value of the slope of g at Z
is the ratio %. (We are still assuming infinitesimally small intervals.) Hence

fy (W)’ (x)] = fx(z) and after solving for fy (y) and using z = g~(y) we obtain
the desired result

_ Ix(g' ()
M) = 1t Tw)r (2:23)
EXAMPLE 2.27 If g(x) = ax + b then fy(y) = fx(‘;;b). 0

Y fx(x)

Figure 2.17. Finding the density of ¥ = g(X) from that of X.
Shaded surfaces have the same area.
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EXAMPLE 2.28 Let fx be Rayleigh, specifically

0, otherwise

and let Y = g(X) = X2. Then

05e" %, y>0
= ’ - D
Fr(®) {O, otherwise.

Next we consider the multidimensional case, starting with two dimensions. Let
X = (X1, X2)" have pdf fx(z) and consider first the random vector Y obtained
from the affine transformation

Y=AX+b

for some nonsingular matrix A and vector b. The procedure to determine fy
parallels that for the scalar case. If A is a small rectangle, small enough that fx ()
can be considered as constant for all z € A, then Pr{X € A} is approximated by
fx(Z)a(A), where a(A) is the area of A and z € A. If B is the image of A, then

fr(aB) = fx(@)a(A) as a(A) — 0.

Hence

a(A)
a(B)

For the next and final step, we need to know that A maps A of area a(A) into B
of area a(B) = a(A)|det A|. So the absolute value of the determinant of a matrix
is the amount by which areas scale through the affine transformation associated
to the matrix. This is true in any dimension n, but for n = 1 we speak of length
rather than area and for n > 3 we speak of volume. (For the one-dimensional case,
observe that the determinant of the scalar a is a). See Lemma 2.26 (in Appendix
2.8) for an outline of the proof of this important geometrical interpretation of the
determinant of a matrix. Hence

fy(y) = fx(@)

as a(A) — 0.

fx (A_l(y - b))
| det A| '

We are ready to generalize to a function g : R — R"™ which is one-to-one and
differentiable. Write g(z) = (¢1(x), ..., gn(x)) and define its Jacobian J(x) to be

the matrix that has gw? at position (7, 7). In the neighborhood of z the relationship
J

y = g(x) may be approximated by means of an affine expression of the form

fy(y) =

y=Ax+b,

where A is precisely the Jacobian J(z). Hence, leveraging on the affine case, we
can immediately conclude that

_ Ix(g7'w)
MO = ad G wr 220

which holds for any n.
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Sometimes the new random vector Y is described by the inverse function,
namely X = ¢g~1(Y) (rather than the other way around, as assumed so far). In
this case there is no need to find g. The determinant of the Jacobian of g at x is
one over the determinant of the Jacobian of g=% at y = g(z).

As a final note we mention that if g is a many-to-one map, then for a specific
y the pull-back g~!(y) will be a set {x1,..., %} for some k. In this case the right
side of (2.24) will be Y, e
EXAMPLE 2.29 (Rayleigh distribution) Let X; and X5 be two independent, zero-
mean, unit-variance, Gaussian random variables. Let R and © be the corresponding
polar coordinates, i.e. X1 = Rcos® and Xo = Rsin©. We are interested in the
probability density functions fre, fr, and fo. Because we are given the map g
from (r,0) to (x1,z2), we pretend that we know fre and that we want to find
le,Xg . Thus

1

le,Xz (331, 332) = mf&@(ﬁ 9)7

where J is the Jacobian of g, namely
J— cos) —rsinf
“ \sinf® rcosf |-
Hence det J = r and
1
Ix1,x, (%1, 22) = ;fRﬁ(% 0).

2

. 1 z3+ad 2 2 .
Using fx,x,(T1,72) = 5-exp{ —=5-2 ¢ and 7 + x5 = r*, we obtain

2

fro(r,0) = %exp{ — %}

Since fro(r,0) depends only on r, we infer that R and © are independent
random variables and that © is uniformly distributed in [0,27). Hence

fo(6) = {% 9 € [0,27)

0 otherwise

and

0 otherwise.

We come to the same conclusion by integrating fre over 0 to obtain fr and by
integrating over r to obtain fo. Notice that fr is a Rayleigh probability density. It
18 often used to evaluate the error probability of a wireless link subject to fading. [
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Appendix: Gaussian random vectors

A Gaussian random vector is a collection of jointly Gaussian random variables.
We learn to use vector notation as it simplifies matters significantly.

Recall that a random variable W : (2 — R is a mapping from the sample space
to the reals. W is a Gaussian random variable with mean m and variance o2 if
and only if its probability density function (pdf) is

i (w) = w;r_gxp{—%}

Because a Gaussian random variable is completely specified by its mean m and
variance o2, we use the short-hand notation N'(m,o?) to denote its pdf. Hence
W ~ N(m,o?).

An n-dimensional random wvector X is a mapping X : Q@ — R™. It can be
seen as a collection X = (X1, Xs,...,X,)" of n random variables. The pdf
of X is the joint pdf of X7, X5,...,X,,. The expected value of X, denoted by
E[X], is the n-tuple (E[X1],E[X2],...,E[X,])T. The covariance matriz of X is
Kx =E[(X — E[X])(X —E[X])"]. Notice that XX is an n x n random matrix,
i.e. a matrix of random variables, and the expected value of such a matrix is, by
definition, the matrix whose components are the expected values of those random
variables. A covariance matrix is always Hermitian. This follows immediately from
the definitions.

The pdf of a vector W = (Wy, Wa,...,W,)T that consists of independent and
identically distributed (iid) ~ N(0,1) components is

~ol w?
w) = —exp| —— 2.25
wtw) =11 zew () (2.29

1 wlw

= — — . 2.26
e (1) (220
DEFINITION 2.30 The random vector Z = (Z1,...,Zy)" € R™ is a zero-mean
Gaussian random vector and Z1,. .., Ly are zero-mean jointly Gaussian random

variables if and only if there exists a matrix A € R™*™ such that Z can be
expressed as

Z = AW, (2.27)
where W € R™ is a random vector of #d ~ N(0,1) components. (]

More generally, Z = AW +m, m € R™, is a Gaussian random vector of mean
m. We focus on zero-mean Gaussian random vectors since we can always add or
remove the mean as needed.

It follows immediately from the above definition that linear combinations of
zero-mean jointly Gaussian random variables are zero-mean jointly Gaussian
random variables. Indeed, BZ = BAW, where the right-hand side is as in (2.27)
with the matrix BA instead of A.
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Recall from Appendix 2.9 that, if Z = AW for some nonsingular matrix
A € R then

fw(Aflz)

fa(2) = [det A

Using (2.26) we obtain

exp (_ <A-1z>;<A—1z>)

J2(2) = 5 det Al

The above expression can be written using Kz instead of A. Indeed from

Kz =E[AW(AW)T] = E[AWWTAT] = AL, AT = AAT

we obtain
(Aflz)T(Aflz) _ ZT(Afl)TAfl
_ ZT(AAT)—l
= zTKglz
and
Vdet Kz = Vdet AAT = Vdet Adet A = | det Al.
Thus
fz(z) - e ( lzTK_lz> (2.28a)
= X - = .
g Crrdek, P\ 2% Tz
S exp (—lzTKzlz> . (2.28b)
det(27‘er) 2

The above densities specialize to (2.26) when Kz = I,,.

EXAMPLE 2.31 Let W € R™ have iid ~ N(0,1) components and define Z = UW
for some orthogonal matriz U. Then Z is zero-mean, Gaussian, and its covariance
matriz is Ky = UUY = 1,,. Hence Z has the same distribution as W. O

If A€ R™*™ (hence not necessarily square) with linearly independent rows and
Z = AW, then we can find an m x m nonsingular matrix A and write Z = AW
for a Gaussian random vector W € R™ with iid ~ A(0,1) components. To see
this, we use the SVD (Appendix 2.8) to write A = UDVT. Now

Z =UDV'™W = UDW,

where (with a slight abuse of notation) we have substituted W for VTW because
they have the same distribution (Example 2.31). The m x n diagonal matrix D
can be written as [D : 0], where D is an m x m diagonal matrix with positive
diagonal elements and 0 is the m x (n — m) zero-matrix. Hence DW = DW,
where W consists of the first m components of W. Thus Z = UDW = AW with
A=UD nonsingular because U is orthogonal and D is nonsingular.
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If A has linearly dependent rows, then K, = AAT is singular. In fact, AT has
linearly dependent columns and we cannot recover z € R™ from ATz, let alone
from Kzz = AATz. In this case the random vector Z is still Gaussian but it
is not possible to write its pdf as in (2.28), and we say that its pdf does not
exist.? This is not a problem because on the rare occasions when we encounter
such a case, we can generally find a workaround that goes as follows. Typically
we want to know the density of a random vector Z so that we can determine the
probability of an event such as Z € B. If A has linearly dependent rows, then
(with probability 1) some of the components of Z are linear combinations of some
of the other components. There is always a way to write the event Z € B in terms
of an event that involves only a linearly independent subset of the Zi,..., Z,,.
This subset forms a Gaussian random vector of nonsingular covariance matrix,
for which the density is defined as in (2.28). An example follows. (For more on
degenerate cases see e.g. [3, Section 23.4.3].)

EXAMPLE 2.32 (Degenerate case) Let W ~ N (0,1), A= (1,1)T, and Z = AW.
By our definition, Z is a Gaussian random vector. However, A is a matric of
linearly dependent rows implying that Z has linearly dependent components. Indeed
71 = Zy. We can easily check that Kz is the 2 X 2 matriz with 1 in each position,
hence it is singular and fz is not defined. How do we compute the probability
of events involving Z if we do not know its pdf? Any event involving Z can be
rewritlen as an event involving Z1 only (or equivalently involving Zs only). For
instance, the event {Z1 € [1,3]} N{Z2 € [2,5]} occurs if and only if {Z1 € [2,3]}
(see Figure 2.18). Hence

Pr{{zi e 1,3} {Z € 2,5} } = Pr{Z1 € [2.3]} = Q(2) - Q(3).

22

> 21

0 L 3
Figure 2.18.

O

Next we show that if a random vector has density as in (2.28), then it can be
written as in (2.27). Let Z € R™ be such a random vector and let Kz be its

5 It is possible to play tricks and define a function that can be considered as being the
density of a Gaussian random vector of singular covariance matrix. But what we gain
in doing so is not worth the trouble.
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nonsingular covariance matrix. As a covariance matrix is Hermitian, we can write
(see Appendix 2.8)

Ky =UAUT, (2.29)

where U is unitary and A is diagonal. Because Kz is nonsingular, all diagonal
elements of A must be positive. Define W = A_%UTZ, where for o € R, A% is
the diagonal matrix obtained by raising the diagonal elements of A to the power
o. Then Z = UA:W = AW with A = UA: nonsingular. It remains to be
shown that fy (w) is as on the right-hand side of (2.26). It must be, because the
transformation from R™ to R™ that sends W to Z = AW is one-to-one. Hence the
density of fy (w) that leads to fz(z) is unique. It must be (2.26), because (2.28)
was obtained from (2.26) assuming Z = AW.

Many authors use (2.28) to define a Gaussian random vector. We favor (2.27)
because it is more general (it does not depend on the covariance being nonsingular),
and because from this definition it is straightforward to prove a number of key
results associated to Gaussian random vectors. Some of these are dealt with in
the examples that follow.

EXAMPLE 2.33  The ith component Z; of a Gaussian random vector Z = (Z1, .. .,
Zm)" is a Gaussian random variable. This is an immediate consequence of
Definition 2.30. In fact, Z; = AZ, where A is the row vector that has 1 at position
i and 0 elsewhere. To appreciate the convenience of working with (2.27) instead of
(2.28), compare this answer with the tedious derivation that consists of integrating
over fz to obtain fz, (see Exercise 77). O

EXAMPLE 2.34 (Gaussian random variables are not necessarily jointly Gaussian)
Let Yy ~ N(0,1), let X € {£1} be uniformly distributed, and let Yo = Y1 X. Notice
that Ys has the same pdf as Y. This follows from the fact that the pdf of Y1 is an
even function. Hence Y1 and Ys are both Gaussian. However, they are not jointly
Gaussian. We come to this conclusion by observing that Y = Y1 +Y, =Y1(1+ X)
is 0 with probability 1/2. Hence' Y cannot be Gaussian. (]

EXAMPLE 2.35 Two random wvariables are said to be uncorrelated if their
covariance is 0. Uncorrelated Gaussian random variables are not necessarily
independent. For instance, Y1 and Ys of Example 2.34 are uncorrelated Gaussian
random wvariables, yet they are mot independent. However, uncorrelated jointly
Gaussian random wvariables are always independent. This follows immediately
from the pdf (2.28). The contrary is always true: random wvariables (not nec-
essarily Gaussian) that are independent are always uncorrelated. The proof is
straightforward. O

The shorthand Z ~ N(m, Kz) means that Z is a Gaussian random vector of
mean m and covariance matrix Kz. If Kz is nonsingular, then

1 1 _1
fz(2) = W exp (‘5(2 - ]E[Z])TKZ (z— E[Z])> .
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Appendix: A fact about triangles

In Example 2.15 we derive the error probability for PSK by using the fact that
for a triangle with edges a, b, ¢ and angles «, 3, v as shown in the figure below,
the following relationship holds:

a b c

sina sinfB siny’

(2.30)

asin 8 = bsin(w — a)

To prove the first equality relating a and b we consider the distance between the
vertex v (common to a and b) and its projection onto the extension of ¢. As shown
in the figure, this distance may be computed in two ways obtaining asin 3 and
bsin(m — «), respectively. The latter may be written as bsin(«). Hence asin g =
bsin(a), which is the first equality. The second equality is proved similarly. O

Appendix: Inner product spaces
2.12.1 Vector space

Most readers are familiar with the notion of vector space from a linear algebra
course. Unfortunately, some linear algebra courses for engineers associate vectors
to n-tuples rather than taking the axiomatic point of view — which is what we need.
A wector space (or linear space) consists of the following (see e.g. [10, 11] for more).

(1) A field F of scalars.
(2) A set V of objects called vectors.”
(3) An operation called vector addition, which associates with each pair of vectors
a and B in V a vector o+ § in V), in such a way that
(i) it is commutative: a + 5 =+ o
(ii) it is associative: a + (8 + ) = (oo + B) + 7 for every «, 8,7 in V;
(iii) there is a unique vector, called the zero vector and denoted by 0, such
that a4+ 0 = « for all « in V;
(iv) for each « in V, there is a 8 in V such that a + 8 = 0.
(4) An operation called scalar multiplication, which associates with each vector
a in V and each scalar a in F a vector ac in V, in such a way that
(i) la =« for every o in V;
(ii) (ar1a2)a = a1(aza) for every aq,as in F;

5 In this book the field is almost exclusively R (the field of real numbers) or C (the field
of complex numbers). In Chapter 6, where we talk about coding, we also work with the
field F2 of binary numbers.

7 We are concerned with two families of vectors: n-tuples and functions.
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(iii) a(a+ B) =aa+ af for every o, f in V;
(iv) (a+b)a = ac + ba for every a,b € F.

In this appendix we consider general vector spaces for which the scalar field is
C. They are commonly called complex vector spaces. Vector spaces for which the
scalar field is R are called real vector spaces.

2.12.2 Inner product space

Given a vector space and nothing more, one can introduce the notion of a basis for
the vector space, but one does not have the tool needed to define an orthonormal
basis. Indeed the axioms of a vector space say nothing about geometric ideas such
as “length” or “angle”. To remedy this, one endows the vector space with the
notion of inner product.

DEFINITION 2.36 Let V be a vector space over C. An inner product on V is a
function that assigns to each ordered pair of vectors a, 8 in'V a scalar (o, B) in C
in such a way that, for all a, B, v in V and all scalars c in C,

(a) (a+B,7) = (a,7)+ (57

(ca, B) = c{a, B);
(b) (B,a)={a,B)"; (Hermitian symmetry)
(¢c) {a,a) >0 with equality if and only if o = 0.

It is implicit in (c) that («, «) is real for all € V. From (a) and (b), we obtain
the additional properties

(d) {a,B+7)={a,B)+{(a,7)
(o, eB) = c*{a, B).

O

Notice that the above definition is also valid for a vector space over the field of
real numbers, but in this case the complex conjugates appearing in (b) and (2.36)
are superfluous. However, over the field of complex numbers they are necessary
for any a # 0, otherwise we could write

0< (ja,ja) =—1{a,a) <0,

where the first inequality follows from condition (c) and the fact that jo is a
valid vector (j = y/—1), and the equality follows from (a) and (2.36) without the
complex conjugate. We see that the complex conjugate is necessary or else we can
create the contradictory statement 0 < 0.

On C” there is an inner product that is sometimes called the standard inner
product. It is defined on a = (a1, ...,a,) and b = (by,...,b,) by

(a,b)y = Z a;by.
J

On R”, the standard inner product is often called the dot or scalar product and
denoted by a - b. Unless explicitly stated otherwise, over R™ and over C" we will
always assume the standard inner product.
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An inner product space is a real or complex vector space, together with a
specified inner product on that space. We will use the letter V to denote a generic
inner product space.

EXAMPLE 2.37 The vector space R™ equipped with the dot product is an inner
product space and so is the vector space C" equipped with the standard inner
product. O

By means of the inner product, we introduce the notion of length, called norm,
of a vector «, via

lall = V(e ).

Using linearity, we immediately obtain that the squared norm satisfies
la £ BII* = (@£ B, a £ B) = lol* + [I8]* £ 2R{(e, £)}. (2.31)

The above generalizes (a & b)? = a? + b> & 2ab, a,b € R, and |a + b> =
la|? + |b]? + 2R{ab*}, a,b € C.
We say that two vectors are collinear if one is a scalar multiple of the other.

THEOREM 2.38 IfV is an inner product space then, for any vectors o, 3 in V
and any scalar c,

(@) lleall = lelllal;

(b) ||l > 0 with equality if and only if o = 0;

(c) e, B)] < ||| 8|l with equality if and only if « and B are collinear
(Cauchy—-Schwarz inequality);

(d) |la+ 8| < |||+ ||8|| with equality if and only if one of a, B is a non-negative
multiple of the other (triangle inequality);

(¢) lla+ B>+ lla—Bl* =2(all? + [18I*)
(parallelogram equality).

Proof Statements (a) and (b) follow immediately from the definitions. We
postpone the proof of the Cauchy-Schwarz inequality to Example 2.48 as at
that time we will be able to make a more elegant proof based on the concept of a
projection. To prove the triangle inequality we use (2.31) and the Cauchy-Schwarz
inequality applied to R{{a, B)} < [{a, B)| to prove that || + B> < (||la|l + || B])?.
Notice that R{{ca, )} < (e, B)| holds with equality if and only if (a,B) is a
non-negative real. The Cauchy—Schwarz inequality holds with equality if and only
if a and B are collinear. Both conditions for equality are satisfied if and only if
one of a, B is a non-negative multiple of the other. The parallelogram equality
follows immediately from (2.31) used twice, once with each sign. O
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50

«

Triangle inequality. Parallelogram equality.

At this point we could use the inner product and the norm to define the angle
between two vectors but we do not have any use for this. Instead, we will make
frequent use of the notion of orthogonality. Two vectors a and g are defined to
be orthogonal if (o, 8) = 0.

EXAMPLE 2.39 This example and the two that follow are relevant for what we
do from Chapter 8 on. Let W = {wo(t),...,wm—1(t)} be a finite collection of
functions from R to C such that ffooo lw(t)|?dt < oo for all elements of W. Let
V be the complex vector space spanned by the elements of VW, where the addition
of two functions and the multiplication of a function by a scalar are defined in
the obvious way. The reader should verify that the axioms of a vector space are
fulfilled. A wvector space of functions will be called a signal space. The standard
inner product for functions from R to C is defined as

(@, ) = / a(t)8" (1)dt,

which implies the norm

laf| = / () 2dt,

but it is not a given that V with the standard inner product forms an inner product
space. It is straightforward to verify that the axioms (a), (¢), and (d) of Definition
2.36 are fulfilled for all elements of V but axiom (b) is not necessarily fulfilled
(see Example 2.40). If V is such that for all @ € V, (o, @) = 0 implies that « is
the zero vector, then V endowed with the standard inner product forms an inner
product space. All we have said in this example applies also for the real vector
spaces spanned by functions from R to R. O

EXAMPLE 2.40 LetV be the set of functions from R to R spanned by the function
that is zero everywhere, except at 0 where it takes value 1. It can easily be checked
that this is a vector space. It contains all the functions that are zero everywhere,
except at 0 where they can take on any value in R. Its zero vector is the function
that is 0 everywhere, including at 0. For all o in V, the standard inner product
(a, @) equals 0. Hence V with the standard inner product is not an inner product
space. O

The problem highlighted with Example 2.40 is that for a general function
a:Z — C, [|a(t)*dt = 0 does not necessarily imply a(t) = 0 for all t € Z. It
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is important to be aware of this fact. However, this potential problem will never
arise in practice because all electrical signals are continuous. Sometimes we work
out examples using signals that have discontinuities (e.g. rectangles) but even
then the problem will not arise unless we use rather bizarre signals.

EXAMPLE 2.41 Let p(t) be a complez-valued square-integrable function (i.e.
[ Ip(t)]2dt < 00) and let [ |p(t)|*>dt > 0. For instance, p(t) could be the rectangular
pulse 1{t € [0,T} for some T > 0. The set V = {cp(t) : ¢ € C} with the standard
inner product forms an inner product space. (In'V, only the zero-pulse has zero
norm.) O

THEOREM 2.42 (Pythagoras’ theorem) If o and 8 are orthogonal vectors in V,
then

lloc + BII* = llod|* + 1131 O

Proof Pythagoras’ theorem follows immediately from the equality ||a + 8]|*> =
llel|? + [IB]1? + 2R{{cr, B)} and the fact that (o, 8) = 0 by definition of orthogo-
nality. O

Given two vectors «, 8 € V, 8 # 0, we define the projection of a on S as
the vector a)g collinear to 3 (i.e. of the form cf3 for some scalar c) such that
a1p = a— g is orthogonal to 3.

a alp

Qg B
Projection of o on .
Using the definition of orthogonality, what we want is
0= (a1p,B) = (@ —cB, B) = (e, B) — cl|B]I*.

(a8

N

Solving for ¢ we obtain ¢ = R Hence
(a, B)
aW:Wﬂ:m,(pﬁp and alp=a— g,

where ¢ = ﬁ is B scaled to unit norm. Notice that the projection of o on 8 does

not depend on the norm of 3. In fact, the norm of g is |(a, p)|.
Any non-zero vector § € V defines a hyperplane by the relationship

{a€eV:{a,p)=0}.
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0

Hyperplane defined by £.

The hyperplane is the set of vectors in V that are orthogonal to 5. A hyperplane
always contains the zero vector.
An affine plane, defined by a vector 5 and a scalar ¢, is an object of the form

{a eV :{a,B) =c}.

Affine plane defined by . 0

The vector 8 and scalar ¢ that define a hyperplane are not unique, unless
we agree that we use only normalized vectors to define hyperplanes. By letting

p = ﬁ, the above definition of affine plane may equivalently be written as

{aeV:{nyp) = H—g”} oreven as {a € V: (o — H—g”ga,go) = 0}. The first shows
that at an affine plane is the set of vectors that have the same projection ﬁg&
on . The second form shows that the affine plane is a hyperplane translated by
the vector mgo. Some authors make no distinction between affine planes and
hyperplanes; in this case both are called hyperplane.

In the example that follows, we use the notion of projection to prove the
Cauchy—Schwarz inequality stated in Theorem 2.38.

EXAMPLE 2.43 (Proof of the Cauchy—Schwarz inequality). The Cauchy—Schwarz
inequality states that, for any o, B € V, |{a, B)| < ||e|||| ]| with equality if and only
if a and B are collinear. The statement is obviously true if f = 0. Assume 5 # 0
and write o = g + a1 5. (See the next figure.) Pythagoras’ theorem states that
al|? = [Jagl|?+laLsll®. If we drop the second term, which is always non-negative,
we obtain |o||* > ||evg||* with equality if and only if o and B3 are collinear. From

2 2
the definition of projection, |ag||* = Hﬁ%ﬁ)z‘ . Hence ||af]? > Hﬁ%ﬁ)z‘ with equality

if and only if a and B are collinear. This is the Cauchy—Schwarz inequality. [
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llexl

The Cauchy—Schwarz inequality.

A basis of V is a list of vectors in V that is linearly independent and spans V.
Every finite-dimensional vector space has a basis. If 1, 8s,..., 8, is a basis for
the inner product space V and a € V is an arbitrary vector, then there are unique
scalars (coefficients) as,...,a, such that a = > a;3; but finding them may be
difficult. However, finding the coefficients of a vector is particularly easy when the
basis is orthonormal.

A basis ¥1,%2,...,1, for an inner product space V is orthonormal if

0, i#j
1, i=j.

(i, 5) :{

Finding the ith coefficient a; of an orthonormal expansion a = > a;i; is
immediate. It suffices to observe that all but the ith term of Y a;1; are orthogonal
to 1¢; and that the inner product of the ith term with ; yields a;. Hence if
a =Y a;1; then

a; = <Oé, ¢l>

Observe that |a;| is the norm of the projection of a on ;. This should not be
surprising given that the ith term of the orthonormal expansion of « is collinear
to 1; and the sum of all the other terms are orthogonal to ;.

There is another major advantage to working with an orthonormal basis. If a
and b are the n-tuples of coefficients of the expansion of o and 8 with respect to
the same orthonormal basis, then

<O‘aﬂ> = <0,, b>7 (232)

where the right-hand side inner product is given with respect to the standard
inner product. Indeed

o B) = <Z aiwiﬂzba‘@bﬁ = Zai<¢i,2bj¢j>
= Zaiwi,biw» = Zaib;‘ = (a,b).

Letting 8 = «, the above also implies

el = [lall,

where [la]] = v/S; ai 2.
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An orthonormal set of vectors ¢1, . .., ¥, of an inner product space V is a linearly
independent set. Indeed 0 = )" a;%; implies a; = (0,v;) = 0. By normalizing the
vectors and recomputing the coefficients, we can easily extend this reasoning to a
set of orthogonal (but not necessarily orthonormal) vectors a1, ..., a,. They too
must be linearly independent.

The idea of a projection on a vector generalizes to a projection on a subspace. If
U is a subspace of an inner product space V, and « € V, the projection of o on U
is defined to be a vector ajy € U such that o — oy is orthogonal to all vectors in
U. TE 9y, ..., 9 is an orthonormal basis for U, then the condition that a — ayy is
orthogonal to all vectors of & implies 0 = (@ — ay, Vi) = (o, i) — (s, ¥i). This
shows that («, ;) = (ayu, 1i). The right side of this equality is the ith coefficient
of the orthonormal expansion of a;, with respect to the orthonormal basis. This

proves that
m

ap = (on i
i=1
is the unique projection of o on U. We summarize this important result and prove
that the projection of o on U is the element of U that is closest to a.

THEOREM 2.44 Let U be a subspace of an inner product space V, and let a € V.
The projection of a on U, denoted by ayy, is the unique element of U that satisfies
any (hence all) of the following conditions:

(i) a — ayy is orthogonal to every element of U;
(i) ape =300 ()i
(i) for any B €U, || — oyl < |la— Bl O

Proof Statement (i) is the definition of projection and we have already proved
that it is equivalent to statement (ii). Now consider any vector S €U. From
Pythagoras’ theorem and the fact that o — ayy, is orthogonal to aj, — 8 € U, we
obtain

oo = B = [l = gy + ap = BIP = la = apl® + o = BI* > [l = |-
Moreover, equality holds if and only if ||y —B|* = 0, L.e. if and only if = app,. O

THEOREM 245 Let V be an inner product space and let B1,...,0B, be any
collection of linearly independent vectors in V. Then we may construct orthogonal
vectors ai,...,on, iV such that they form a basis for the subspace spanned by

Blv"‘vﬁn' O

Proof The proof is constructive via a procedure known as the Gram—Schmidt
orthogonalization procedure. First let a; = 81. The other vectors are constructed
inductively as follows. Suppose a1, . .., @, have been chosen so that they form an
orthogonal basis for the subspace U,, spanned by (i, ..., Bm,. We choose the next
vector as

Um+41 = Bmt1 — Bmtipy,, (2.33)

where /Bm+1|um is the projection of 3,,+1 on U,,. By definition, au,+1 is orthogonal
to every vector in Uy, including ag, ..., am. Also, a1 # 0 for otherwise 5,11
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contradicts the hypothesis that it is linearly independent of (i, ..., 8. Therefore

1, ...,Qmt1 is an orthogonal collection of non-zero vectors in the subspace Uy, 41
spanned by f31,..., Bmy1. Therefore it must be a basis for U, +1. Thus the vectors
aq, ..., may be constructed one after the other according to (2.33). O

COROLLARY 2.46 FEwvery finite-dimensional vector space has an orthonormal

basis. O
Proof Let Bi,..., 5, be a basis for the finite-dimensional inner product space V.
Apply the Gram—Schmidt procedure to find an orthogonal basis aq, ..., a,. Then
Y1, ..., Uy, where ¢; = Hgi\V is an orthonormal basis. O

Gram-Schmidt orthonormalization procedure

We summarize the Gram—Schmidt procedure, modified so as to produce orthonor-

mal vectors. If £1,...,0, is a linearly independent collection of vectors in the
inner product space V, then we may construct a collection 1, ..., that forms
an orthonormal basis for the subspace spanned by f1,..., 3, as follows. We let
P = Hg—i\l and for i = 2,...,n we choose
i—1
ai =B — Y _(Bi i)
j=1
W = Qi
[l
We have assumed that (1,..., 3, is a linearly independent collection. Now assume

that this is not the case. If 3; is linearly dependent of 31,...,5;_1, then at step
i = j the procedure will produce a; = 1; = 0. Such vectors are simply disregarded.

Figure 2.19 gives an example of the Gram—Schmidt procedure applied to a set
of signals.

i Bi Bis i) | Bipyv,_, | =Bi—Bipy,_, | llall i b;
7 <1

2

I I I
1 - ) 2 | 0
1 [] 1 (0>

%

0,0 e

i
1; 1 17 1 1
R e | e e ()
1 ]
[ 2 2

) 0
2 | Hyt (g)

Figure 2.19. Application of the Gram—Schmidt orthonormalization procedure
starting with the waveforms given in the left column.
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2.13 Exercises

Note: The exercises are available only in the official copy provided by the editor.



3.1

Receiver design for the
continuous-time AWGN
channel: Second layer

Introduction

In Chapter 2 we focused on the receiver for the discrete-time AWGN (additive
white Gaussian noise) channel. In this chapter, we address the same problem for
a channel model closer to reality, namely the continuous-time AWGN channel.
Apart from the channel model, the assumptions and the goal are the same: We
assume that the source statistic, the transmitter, and the channel are given to
us and we seek to understand what the receiver has to do to minimize the error
probability. We are also interested in the resulting error probability, but this follows
from Chapter 2 with no extra work. The setup is shown in Figure 3.1.

The channel of Figure 3.1 captures the most important aspect of all real-
world channels, namely the presence of additive noise. Owing to the central limit
theorem, the assumption that the noise is Gaussian is often a very good one. In
Section 3.6 we discuss additional channel properties that also affect the design and
performance of a communication system.

EXAMPLE 3.1 A cable is a good example of a channel that can be modeled by
the continuous-time AWGN channel. If the cable’s frequency response cannot be
considered as constant over the signal’s bandwidth, then the cable’s filtering effect
also needs to be taken into consideration. We discuss this in Section 3.6. Another
good example is the channel between the antenna of a geostationary satellite and
the antenna of the corresponding Earth station. For the communication in either
direction we can consider the model of Figure 3.1. O

Although our primary focus is on the receiver, in this chapter we also gain
valuable insight into the transmitter structure. First we need to introduce the
notion of signal’s energy and specify two mild technical restrictions that we impose
on the signal set W = {wo(t), ..., wm-1(t)}.

EXAMPLE 3.2  Suppose that w;(t) is the voltage feeding the antenna of a trans-
mitter when H = i. An antenna has an internal impedance Z. A typical value for
Z is 50 ohms. Assuming that Z is purely resistive, the current at the feeding point
is w;(t)/Z, the instantaneous power is w?(t)/Z, and the energy transferred to the
antenna is 5 [w?(t)dt. Alternatively, if the w;(t) is the current feeding the antenna
when H = i, the voltage at the feeding point is w;(t)Z, the instantaneous power is

95
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H=icH wi(t) €W  R(t) Hen
— Transmitter ? Receiver
N(t)

Figure 3.1. Communication across the continuous-time AWGN channel.

w?(t)Z, and the energy is Z [w?(t)dt. In both cases the energy is proportional to
lwil|? = [ |wi(t)[?dt. O

As in the above example, the squared norm of a signal w;(¢) is generally associ-
ated with the signal’s energy. It is quite natural to assume that we communicate
via finite-energy signals. This is the first restriction on W. A linear combination
of a finite number of finite-energy signals is itself a finite-energy signal. Hence,
every vector of the vector space V spanned by W is a square-integrable function.
The second requirement is that if v € V has a vanishing norm, then v(¢) vanishes
for all t. Together, these requirements imply that V is an inner product space of
square-integrable functions. (See Example 2.39.)

EXAMPLE 3.3 (Continuous functions) Let v : R — R be a continuous function
and suppose that |v(t)| = a for some ty and some positive a. By continuity, there
exists an € > 0 such that [v(t)] > § for all t € T where T = (to — 5,t0 + 5). It
follows that

2
lo@®I? > [o(t)2{t € ZH? = == > 0.

We conclude that if a continuous function has a vanishing norm, then the function
vanishes everywhere. O

All signals that represent real-world communication signals are finite-energy and
continuous. Hence the vector space they span is always an inner product space.

This is a good place to mention the various reasons we are interested in the
signal’s energy or, somewhat equivalently, in the signal’s power, which is the energy
per second. First, for safety and for spectrum reusability, there are regulations that
limit the power of a transmitted signal. Second, for mobile devices, the energy of
the transmitted signal comes from the battery: a battery charge lasts longer if we
decrease the signal’s power. Third, with no limitation to the signal’s power, we can
transmit across a continuous-time AWGN channel at any desired rate, regardless
of the available bandwidth and of the target error probability. Hence, it would be
unfair to compare signaling methods that do not use the same power.

For now, we assume that W is given to us. The problem of choosing a suitable
set W of signals will be studied in subsequent chapters.

The highlight of the chapter is the power of abstraction. The receiver design
for the discrete-time AWGN channel relied on geometrical ideas that can be
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H=i H
Encoder Decoder
C; Y
Waveform n-Tuple
Former Former
w; (t) R(t)

—

2

(t)

Figure 3.2. Waveform channel abstraction.

formulated whenever we are in an inner product space. We will use the same
ideas for the continuous-time AWGN channel.

The main result is a decomposition of the sender and the receiver into the
building blocks shown in Figure 3.2. We will see that, without loss of generality,
we can (and should) think of the transmitter as consisting of an encoder that
maps the message i € H into an n-tuple ¢;, as in the previous chapter, followed
by a waveform former that maps ¢; into a waveform w;(t). Similarly, we will see
that the receiver can consist of an n-tuple former that takes the channel output
and produces an n-tuple Y. The behavior from the waveform former input to the
n-tuple former output is that of the discrete-time AWGN channel considered in the
previous chapter. Hence we know already what the decoder of Figure 3.2 should
do with the n-tuple former output.

In this chapter (like in the previous one) the vectors (functions) are real-valued.
Hence, we could use the formalism that applies to real inner product spaces. Yet, in
preparation of Chapter 7, we use the formalism for complex inner product spaces.
This mainly concerns the standard inner product between functions, where we
write (a,b) = [a(t)b*(t)dt instead of (a,b) = [a(t)b(t)dt. A similar comment
applies to the definition of covariance, where for zero-mean random variables we
use cov(Zy, Z;) = B [Z; Z7] instead of cov(Z;, Z;) = E[Z: Z;].

White Gaussian noise

The purpose of this section is to introduce the basics of white Gaussian noise N (t).
The standard approach is to give a mathematical description of N(¢), but this
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requires measure theory if done rigorously. The good news is that a mathematical
model of N(t) is not needed because N(t) is not observable through physical
experiments. (The reason will become clear shortly.) Our approach is to model
what we can actually measure. We assume a working knowledge of Gaussian
random vectors (reviewed in Appendix 2.10).

A receiver is an electrical instrument that connects to the channel output via
a cable. For instance, in wireless communication, we might consider the channel
output to be the output of the receiving antenna; in which case, the cable is the
one that connects the antenna to the receiver. A cable is a linear time-invariant
filter. Hence, we can assume that all the observations made by the receiver are
through some linear time-invariant filter.

So if N(t) represents the noise introduced by the channel, the receiver sees, at
best, a filtered version Z(t) of N(t). We model Z(t) as a stochastic process and,
as such, it is described by the statistic of Z(t1), Z(t2),..., Z(tx) for any positive
integer k and any finite collection of sampling times t¢1,to, ..., k.

If the filter impulse response is h(t), then linear system theory suggests that

2(t) = /N(a)h(t—a)da
and
Z(t:) = / N(a)h(t: — a)da, (3.1)

but the validity of these expressions needs to be justified, because N(t) is not
a deterministic signal. It is possible to define N(t) as a stochastic process and
prove that the (Lebesgue) integral in (3.1) is well defined; but we avoid this path
which, as already mentioned, requires measure theory. In this text, equation (3.1) is
shorthand for the statement “Z(t;) is the random variable that models the output
at time ¢; of a linear time-invariant filter of impulse response h(t) fed with white
Gaussian noise N (t)”. Notice that h(t; — a) is a function of « that we can rename
as gi(«). Now we are in the position to define white Gaussian noise.

DEFINITION 3.4 N(t) is white Gaussian noise of power spectral density % if,

for any finite collection of real-valued Lo functions g1 (), ..., gr(a),
7 = /N(oz)gi(a)da, P=1.2, .k (3.2)
s a collection of zero-mean jointly Gaussian random variables of covariance
cov(Z:, ;) = E [2:2}] = % /gi(t)g;(t)dt - %@i,gjy (3.3)

O

If we are not evaluating the integral in (3.2), how do we know if N(¢) is white
Gaussian noise? In this text, when applicable, we say that N(t) is white Gaussian
noise, in which case we can use (3.3) as we see fit. In the real world, often we know
enough about the channel to know whether or not its noise can be modeled as
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white and Gaussian. This knowledge could come from a mathematical model of
the channel. Another possibility is that we perform measurements and verify that
they behave according to Definition 3.4.

Owing to its importance and frequent use, we formulate the following special
case as a lemma. It is the most important fact that should be remembered about
white Gaussian noise.

LEMMA 3.5 Let {g1(t),...,gk(t)} be an orthonormal set of real-valued functions.
Then Z = (Z1,...,2y)", with Z; defined as in (5.2), is a zero-mean Gaussian
random vector with #id components of variance o2 = % O

Proof The proof is a straightforward application of the definitions. O

EXAMPLE 3.6 Consider two bandpass filters that have non-overlapping frequency
responses but are otherwise identical, i.e. if we frequency-translate the frequency
response of one filter by the proper amount we obtain the frequency response of the
other filter. By Parseval’s relationship, the corresponding impulse responses are
orthogonal to one another. If we feed the two filters with white Gaussian noise and
sample their output (even at different times), we obtain two iid Gaussian random
variables. We could extend the experiment (in the obvious way) to n filters of non-
overlapping frequency responses, and would obtain n random variables that are
1id — hence of identical variance. This explains why the noise is called white: like
for white light, white Gaussian noise has its power equally distributed among all
frequencies. O

Are there other types of noise? Yes, there are. For instance, there are natural
and man-made electromagnetic noises. The noise produced by electric motors and
that produced by power lines are examples of man-made noise. Man-made noise is
typically neither white nor Gaussian. The good news is that a careful design should
be able to ensure that the receiver picks up a negligible amount of man-made noise
(if any). Natural noise is unavoidable. Every conductor (resistor) produces thermal
(Johnson) noise. (See Appendix 3.10.) The assumption that thermal noise is white
and Gaussian is an excellent one. Other examples of natural noise are solar noise
and cosmic noise. A receiving antenna picks up these noises, the intensity of which
depends on the antenna’s gain and pointing direction. A current in a conductor
gives rise to shot noise. Shot noise originates from the discrete nature of the electric
charges. Wikipedia is a good reference to learn more about various noise sources.

Observables and sufficient statistics
Recall that the setup is that of Figure 3.1, where N(¢) is white Gaussian noise.
As discussed in Section 3.2, owing to the noise, the channel output R(t) is not

observable. What we can observe via physical experiments (measurements) are
k-tuples V = (Vi,...,Vi)T such that

vV, = /R Vgl (@)de,  i=1,2,...k, (3.4)
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where k is an arbitrary positive integer and g1 (t),...,gx(t) are arbitrary finite-
energy waveforms. The complex conjugate operator “*” on gf(«) is superfluous for
real-valued signals but, as we will see in Chapter 7, the baseband representation
of a passband impulse response is complex-valued.

Notice that we assume that we can perform an arbitrarily large but finite number
k of measurements. By disallowing infinite measurements we avoid distracting
mathematical subtleties without losing anything of engineering relevance.

It is important to point out that the kind of measurements we consider is quite
general. For instance, we can pass R(t) through an ideal lowpass filter of cutoff
frequency B for some huge B (say 10'° Hz) and collect an arbitrary large number
of samples taken every % seconds so as to fulfill the sampling theorem (Theorem
5.2). In fact, by choosing g;(t) = h(55 — t), where h(t) is the impulse response of
the lowpass filter, V; becomes the filter output sampled at time ¢t = %. As stated
by the sampling theorem, from these samples we can reconstruct the filter output.
If R(t) consists of a signal plus noise, and the signal is bandlimited to less than B
Hz, then from the samples we can reconstruct the signal plus the portion of the
noise that has frequency components in [—B, B].

Let V be the inner product space spanned by the elements of the signal set W
and let {¢1(t),...,9¥n(¢)} be an arbitrary orthonormal basis for V. We claim that
the n-tuple Y = (Y3,...,Y,,)T with ith component

Y= [ Rl (@)da

is a sufficient statistic (for the hypothesis H) among any collection of measurements
that contains Y. To prove this claim, let V = (Vi,...,Vi)T be the collection of
additional measurements made according to (3.4). Let U be the inner product space

spanned by VU{g1(t), ..., gx(t)} and let {¢1(2), ..., ¥n(t), d1(t),. .., ¢a(t)} be an
orthonormal basis for U obtained by extending the orthonormal basis {1 (t),...,

P (t)} for V. Define

U;, = /R(a)d)f(oz)doz7 i=1,...,7.

It should be clear that we can recover V' from Y and U. This is so because, from
the projections onto a basis, we can obtain the projection onto any waveform in
the span of the basis. Mathematically,

Vi

| rt@i(@)da

*

/ R(a) | sv5(0) + 3 &jandi()| da
e 2

Jj=1

n

=3¢+ 36U
j=1 j

—1
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where & 1,...,& ntn is the unique set of coefficients in the orthonormal expansion

of g;(t) with respect to the basis {1 (t),...,¥n(t), d1(t), P2(t), ..., da(t)}.
Hence we can consider (Y,U) as the observable and it suffices to show that Y is
a sufficient statistic. Note that when H =i,

Y= / R(a)y (o) = / (wi(a) + N(@)vj(@)da = ci; + Zpv,j,

where ¢; ; is the jth component of the n-tuple of coefficients ¢; that represents
the waveform w;(t) with respect to the chosen orthonormal basis, and Zjy ; is a

zero-mean Gaussian random variable of variance % The notation Zy ; is meant
to remind us that this random variable is obtained by “projecting” the noise onto
the jth element of the chosen orthonormal basis for V. Using n-tuple notation, we
obtain the following statistic

H =i, Y =¢ + Z)y,

where Z),, ~ N(0, 82 1,,). Similarly,

U, = / R(a)é%(a) = / (wi(a) + N(0)) ¢ (0)da = / N(a)éi(a)da = Z1v 5,

where we used the fact that w;(¢) is in the subspace spanned by {¢1(¢),..., ¥, ()}
and therefore it is orthogonal to ¢;(t) for each j = 1,2,...,7. The notation Z,y ;
reminds us that this random variable is obtained by “projecting” the noise onto
the jth element of an orthonormal basis that is orthogonal to V. Using n-tuple
notation, we obtain

H =i, U=2y,

where 7,1, ~ N(0, %Iﬁ). Furthermore, 7}y, and Z,y are independent of each
other and of H. The conditional density of Y, U given H is

Sy, uli) = fya(yli) fo(u).

From the Fisher-Neyman factorization theorem (Theorem 2.13, Chapter 2, with
h(y,u) = fo(u), T(y,u) = y, and gi(T'(y,u)) = fyu(yli)), we see that Y is a
sufficient statistic and U is irrelevant as claimed.

Figure 3.3 depicts what is going on, which we summarize as follows:

Y=c+2yv is a sufficient statistic: it is the projection of R(t) onto the
signal space V;
U=Zvy is irrelevant: it contains only independent noise.

Could we prove that a subset of the components of Y is not a sufficient statistic?
Yes, we could. Here is the outline of a proof. Without loss of essential generality,
let us think of Y as consisting of two parts, Y, and Y. Similarly, we decompose
every ¢; into the corresponding parts ¢;, and c¢;. The claim is that H followed
by Y, followed by (Y,,Y;) does not form a Markov chain in that order. In fact
when H = i, Y}, consists of ¢;;, plus noise. Since c¢;, cannot be deduced from Y, in
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Ziy

Cqi L

Figure 3.3. The vector of measurements (Y'T,UT)T describes the projection
of the received signal R(t) onto U. The vector Y describes the projection of
R(t) onto V.

general (or else we would not bother sending c¢;), it follows that the statistic of
Y}, depends on ¢ even if we know the realization of Y.

Transmitter and receiver architecture

The results of the previous section tell us that a MAP receiver for the waveform
AWGN channel can be structured as shown in Figure 3.4. We see that the receiver
front end computes Y € R™ from R(t) in a block that we call n-tuple former. (The
name is not standard.) Thus the n-tuple former performs a huge data reduction
from the channel output R(t) to the sufficient statistic Y. The hypothesis testing
problem based on the observable Y is

H=i: Y =c¢i+Z,

where Z ~ N(0, %In) is independent of H. This is precisely the hypothesis testing
problem studied in Chapter 2 in conjunction with a transmitter that sends ¢; € R”
to signal message i across the discrete-time AWGN channel. As shown in the figure,
we can also decompose the transmitter into a module that produces ¢;, called
encoder, and a module that produces w;(t), called waveform former. (Once again,
the terminology is not standard.) Henceforth the n-tuple of coefficients ¢; will be
referred to as the codeword associated to w;(t). Figure 3.4 is the main result of the
chapter. It implies that the decomposition of the transmitter and the receiver as
depicted in Figure 3.2 is indeed completely general and it gives details about the
waveform former and the n-tuple former.

Everything that we learned about a decoder for the discrete-time AWGN channel
is applicable to the decoder of the continuous-time AWGN channel. Incidentally,
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Figure 3.4. Decomposed transmitter and receiver.

the decomposition of Figure 3.4 is consistent with the layering philosophy of the
OSI model (Section 1.1), in the sense that the encoder and decoder are designed as
if they were talking to each other directly via a discrete-time AWGN channel. In
reality, the channel seen by the encoder/decoder pair is the result of the “service”
provided by the waveform former and the n-tuple former.

The above decomposition is useful for the system conception, for the perfor-
mance analysis, as well as for the system implementation; but of course, we always
have the option of implementing the transmitter as a straight map from the
message set H to the waveform set VW without passing through the codebook C.
Although such a straight map is a possibility and makes sense for relatively
unsophisticated systems, the decomposition into an encoder and a waveform former
is standard for modern designs. In fact, information theory, as well as coding
theory, devote much attention to the study of encoder/decoder pairs.

The following example is meant to make two important points that apply when
we communicate across the continuous-time AWGN channel and make an ML
decision. First, sets of continuous-time signals may “look” very different yet they
may share the same codebook, which is sufficient to guarantee that the error
probability be the same; second, for binary constellations, what matters for the
error probability is the distance between the two signals and nothing else.

EXAMPLE 3.7 (Orthogonal signals) The following four choices of W = {wo(t),

wy (t)} look very different yet, upon an appropriate choice of orthonormal basis,
they share the same codebook C = {co, c1} with co = (VE,0)T and ¢; = (0,VE)T.
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To see this, it suffices to verify that (w;, w;) equals € if i = j and equals 0 otherwise.
Hence the two signals are orthogonal to each other and they have squared norm &.
Figure 3.5 shows the signals and the associated codewords.

(2> T2

P1 T1

wo Co

(a) W in the signal space. (b) C in R%.
Figure 3.5. W and C.

Choice 1 (Rectangular pulse position modulation,):

wo(t) = \/; 1{t €[0,T]}

wy (t) = \/g 1{t € [T, 27T},

where we have used the indicator function 1{t € [a,b]} to denote a rectangular pulse
which is 1 in the interval [a,b] and O elsewhere. Rectangular pulses can easily be
generated, e.g. by a switch. They are used, for instance, to communicate a binary
symbol within an electrical circuit. As we will see, in the frequency domain these
pulses have side lobes that decay relatively slow, which is not desirable for high
data rate over a channel for which bandwidth is at a premium.

Choice 2 (Frequency-shift keying):

wo(t) = \/?sin (wk%) 1{t € (0,77}
wi(t) = \/?Sin (m%) 1{t € [0, 7]},

where k and 1 are positive integers, k # 1. With a large value of k and I, these
signals could be used for wireless communication. To see that the two signals are
orthogonal to each other we can use the trigonometric identity sin(a)sin(f) =
0.5[cos(a — B) — cos(ax + B)].

Choice 3 (Sinc pulse position modulation):
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An advantage of sinc pulses is that they have a finite support in the frequency
domain. By taking their Fourier transform, we quickly see that they are orthogonal
to each other. See Appendiz 5.10 for details.

Choice 4 (Spread spectrum):

wo(t) = VEPL(E),  with pr(t) = \/;isoﬂ {t‘j% © [O’ %H

wit) = VEG (L), with s(t) = \/;ismn {t —j% c [o, ﬂ }

where (S0.1,---,50n) € {£1}™ and (s11,...,51,n) € {£1}"™ are orthogonal. This
signaling method is called spread spectrum. It is not hard to show that it uses much
bandwidth but it has an inherent robustness with respect to interfering (non-white
and possibly non-Gaussian) signals.

Now assume that we use one of the above choices to communicate across a
continuous-time AWGN channel and that the receiver implements an ML decision
rule. Since the codebook C is the same in all cases, the decoder and the error
probability will be identical no matter which choice we make.

Computing the error probability is particularly easy when there are only two
codewords. From the previous chapter we know that P, = Q(M 2 =

or ), where o
%. The distance

2

||Cl — Co” = Z(Cl’i — Coy¢)2 =VE+E=V2€

i=1

can also be computed as

s — wol| := \/ / fn (£) — wo (£) 2,

which requires meither an orthonormal basis nor the codebook. Yet another
alternative is to use Pythagoras’ theorem. As we know already that our sig-
nals have squared norm & and are orthogonal to each other, their distance is

Vlwol]2 + JJwi]|2 = V2E. Inserting, we obtain
3

P, = — |.

(/)

EXAMPLE 3.8 (Single-shot PAM) Let ¥(t) be a unit-energy pulse. We speak of
single-shot pulse amplitude modulation when the transmitted signal is of the form

wi(t) = cip(t),

where ¢; takes a value in some discrete subset of R of the form {+a, £3a,+5a, ...,
+(m—1)a} for some positive number a. An example for m = 6 is shown in Figure
2.9, where d = 2a. O

O
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EXAMPLE 3.9 (Single-shot PSK) Let T and f. be positive numbers and let m be
a positive integer. We speak of single-shot phase-shift keying when the signal set
consists of signals of the form

wi(t):\/?cos (27rfct+ %z) 1{te[0,T]}, i=0,1,...,m—1.  (3.5)

For mathematical convenience, we assume that 2f. T is an integer, so that
|wil|> = & for all i. (When 2f.T is an integer, w2(t) has an integer number
of periods in a length-T interval. This ensures that all w;(t) have the same
norm, regardless of the initial phase. In practice, f.T is very large, which
implies that there are many periods in an interval of length T, in which case
the energy difference due to an incomplete period is negligible.) The signal space
representation can be obtained by using the trigonometric identity cos(a + 8) =
cos() cos(B) — sin(a) sin(B) to rewrite (3.5) as

w;(t) = ci1yn (t) + ¢ 212(1),

where

cix = VE cos (%) () = \/gcos(%rfct)]l{t 0,77},
cia = VEsin (%) . ha(t) = —\/gsin(%rfct)]l{t e [0,7]}.

The reader should verify that 11(t) and ¥a(t) are normalized functions and,
because 2f.T is an integer, they are orthogonal to each other. This can easily be
verified using the trigonometric identity sinacos f = 3[sin(a + ) + sin(a — B)].
Hence the codeword associated to w;(t) is

o= VE (cos 2mi /m) .

sin 27i/m

In Example 2.15, we have already studied this constellation for the discrete-time
AWGN channel. O

EXAMPLE 3.10 (Single-shot QAM) Let T' and f. be positive numbers such that
2f.T is an integer, let m be an even positive integer, and define

P (t) = \/gcos(%rfct)l{t €[0,7]}
Pa(t) = \/gsin(%rfct)]l{t €[0,7]}.

(We have already established in Example 8.9 that 11 (t) and ¥2(t) are orthogonal
to each other and have unit norm.) If the components of ¢; = (¢;1,¢i2)7, i =
0,...,m? — 1, take values in some discrete subset of the form {+a,+3a,+5a,...,
+(m — 1)a} for some positive a, then

w;(t) = ¢y (t) + ci212(1),
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is a single-shot quadrature amplitude modulation (QAM). The wvalues of ¢; for
m =2 and m = 4 are shown in Figures 2.10 and ?7, respectively. O

The signaling methods discussed in this section are the building blocks of many
communication systems.

Generalization and alternative receiver structures

It is interesting to explore a refinement and a variation of the receiver structure
shown in Figure 3.4. We also generalize to an arbitrary message distribution. We
take the opportunity to review what we have so far.

The source produces H = i with probability Py (i), ¢ € H. When H = i, the
channel output is R(¢t) = w;(t) + N(t), where w;(t) € W = {wo(t), w1 (t),...,
wm—1(t)} is the signal constellation composed of finite-energy signals (known to
the receiver) and N (t) is white Gaussian noise. Throughout this text, we make the
natural assumption that the vector space V spanned by W forms an inner product
space (with the standard inner product). This is guaranteed if the zero signal is
the only signal that has vanishing norm, which is always the case in real-world
situations. Let {¢1(¢),...,¥n(t)} be an orthonormal basis for V. We can use the
Gram—Schmidt procedure to find an orthonormal basis, but sometimes we can pick
a more convenient one “by hand”. At the receiver, we obtain a sufficient statistic
by taking the inner product of the received signal R(t) with each element of the
orthonormal basis. The result is

Y = (Y1,Ys,...,Y,)T, where
Y, = (R,), i=1,...,n.

We now face a hypothesis testing problem with prior Py (i), i € H, and observ-

able Y distributed according to
A VR
(2m0?)% 202 ’

where 02 = % A MAP receiver that observes Y = y decides H = i for one of
the i € H that maximize Py () fy |z (y|i) or any monotonic function thereof. Since
fym (y]7) is an exponential function of y, we simplify the test by taking the natural
logarithm. We also remove terms that do not depend on 7 and rescale, keeping in
mind that if we scale with a negative number, we have to change the maximization
into minimization.

If we choose negative Ny as the scaling factor we obtain the first of the following
equivalent MAP tests.

fyia(yli) =

(i) Choose H as one of the j that minimizes ||y — ¢;||*> — NoIn Py (j).

(i) Choose H as one of the j that maximizes (y, c;) — w + 2o In Py (j).

(iii) Choose H as one of the j that maximizes Jr(t)w; (t)dt— M + % In Py (j).
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r(t) Integrator —  [r()b (t)dt

b*(t) (a)

r(t) ——s b* (T —t) —t_\T—> [ r(t)b*(t)dt

(b)

Figure 3.6. Two ways to implement [ 7(¢)b*(¢)dt, namely via a correlator
(a) and via a matched filter (b) with the output sampled at time T'.

The second is obtained from the first by using ||y—c;||* = ||y[|?—2R{(y, ¢:) } +||c:]|*-
Once we drop the R{-} operator (the vectors are real-valued), remove the constant
ly||?, scale by —1/2, we obtain (ii).

Rules (i) and (iii) are equivalent since [r(t)w; (t)dt = [r(t)( 2, cf 05 (1)) dt =
> vich; = (Y, i)

The MAP rules (i)—(iii) require performing operations of the kind

[ row (3.6)

where b(t) is some function (¢;(t) or w;(t)). There are two ways to implement
(3.6). The obvious way, shown in Figure 3.6a is by means of a so-called correlator.
A correlator is a device that multiplies and integrates two input signals. The other
way to implement (3.6) is via a so-called matched filter. This is a filter that takes
r(t) as the input and has h(t) = b*(T'—1t) as impulse response (Figure 3.6b), where
T is an arbitrary design parameter selected in such a way as to make h(t) a causal
impulse response. The matched filter output y(t) is then

y(t) = /T(a) h(t — a) da
_ /r(a) V(T +a — ) da,

and at ¢t =T it is
y(T) = / r(a) b*(a) da.
We see that the latter is indeed (3.6).

EXAMPLE 3.11 (Matched filter) If b(t) is as in Figure 3.7, then y = (r(t), b(t))
is the output at t = 0 of a linear time-invariant filter that has input r(t) and
has ho(t) = b(—t) as the impulse response (see the figure). The impulse response
ho(t) is non-causal. We obtain the same result with a causal filter by delaying the
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impulse response by 3T and by sampling the output at t = 3T'. The delayed impulse

response is hap(t), also shown in the figure. O
b(t) ho(t)
A A
1
> t > t —1
0 3T 3T 0
| | | | | |
1] 1] |
hgT(t)
A
> ti

] 3T

| [

| ]

Figure 3.7.

It is instructive to plot the matched filter output as we do in the next example.

EXAMPLE 3.12  Suppose that the signals are wo(t) = a(t) and wi(t) = —a(t),
where a is some positive number and

W(t) = \/;11{0 <t<T).

The signals are plotted on the left of Figure 3.8. The n-tuple former consists of
the matched filter of impulse response h(t) = *(T —t) = ¥(t), with the output
sampled at t = T. In the absence of noise, the matched filter output at the sampling
time should be a when wy(t) is transmitted and —a when w1 (t) is transmitted. The

wo () noiseless y(t) when wo(t) transmitted
1 a
> ¢ t >
T T
wi () noiseless y(t) when w (t) transmitted
A
r 1 t

>
1 —al

Figure 3.8. Matched filter response (right) to the input on the left.
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plots on the right of the figure show the matched filter response y(t) to the input
on the left. Indeed, at t = T we have a or —a. At any other time we have b or —b,
for some b such that 0 < b < a. This, and the fact that the noise variance does not
depend on the sampling time, implies that t =T is the sampling time at which the
error probability is minimized. O

Figure 3.9 shows the block diagrams for the implementation of the three MAP
rules (i)—(iii). In each case the front end has been implemented by using matched
filters, but correlators could also be used, as in Figure 3.4.

Whether we use matched filters or correlators depends on the technology and on
the waveforms. Implementing a correlator in analog technology is costly. But, if the
processing is done by a microprocessor that has enough computational power, then
a correlation can be done at no additional hardware cost. We would be inclined to
use matched filters if there were easy-to-implement filters of the desired impulse
response. In Exercise 7?7 of this chapter, we give an example where the matched
filters can be implemented with passive components.

minimize
ly = ¢;lI* = Noln P (j)

>

or, equivalently, >
maximize
(s c5) + a5
q0
/-ll—\
L i
Qm—1 Select | —
(l\ Largest
&)

Alternative to the n-Tuple Former.

Figure 3.9. Block diagrams of a MAP receiver for the waveform AWGN
channel, with y = (y1,...,yn)" and q; = —||w;||?/2 + (No/2) In Py (5).
The dashed boxes can alternatively be implemented

via correlators.
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Notice that the bottom implementation of Figure 3.9 requires neither an
orthonormal basis nor knowledge of the codebook, but it does require m as
opposed to n matched filters (or correlators). We know that m > n, and often
m is much larger than n. Notice also that this implementation does not quite fit
into the decomposition of Figure 3.2. In fact the receiver bypasses the need for
the n-tuple Y. As a byproduct, this proves that the receiver performance is not
affected by the choice of an orthonormal basis.

In a typical communication system, n and m are very large. So large that
it is not realistic to have n or m matched filters (or correlators). Even if we
disregard the cost of the matched filters, the number of operations required by
a decoder that performs a “brute force” search to find the distance-minimizing
index (or inner-product-maximizing index) is typically exorbitant. We will see
that clever design choices can dramatically reduce the complexity of a MAP
receiver.

The equivalence of the two operations of Figure 3.6 is very important. It should
be known by heart.

Continuous-time channels revisited

Every channel adds noise and this is what makes the communication problem both
challenging and interesting. In fact, noise is the only reason there is a fundamental
limitation to the maximal rate at which we can communicate reliably through
a cable, an optical fiber, and most other channels of practical interest. Without
noise we could transmit reliably as many bits per second as we want, using as little
energy as desired, even in the presence of the other channel imperfections that we
describe next.

Attenuation and amplification ~Whether wireline or wireless, a passive channel
always attenuates the signal. For a wireless channel, the attenuation can be of
several orders of magnitude. Much of the attenuation is compensated for by a
cascade of amplifiers in the first stage of the receiver, but an amplifier scales both
the information-carrying signal and the noise, and adds some noise of its own.

The fact that the receiver front end incorporates a cascade of amplifiers needs
some explanation. Why should the signal be amplified if the noise is amplified by
the same factor? A first answer to this question is that electronic devices, such as
an n-tuple former, are designed to process electrical signals that are in a certain
range of amplitudes. For instance, the signal’s amplitude should be large compared
to the noise added by the circuit. This explains why the first amplification stage
is done by a so-called low-noise amplifier. If the receiving antenna is connected
to the receiver via a relatively long cable, as it would be the case for an outdoor
antenna, then the low-noise amplifier is typically placed between the antenna and
the cable.

The low-noise amplifier (or the stage that follows it) contains a noise-reduction
filter that removes the out-of-band noise. With perfect electronic circuits, such a
filter is superfluous because the out-of-band noise is removed by the n-tuple former.
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But the out-of-band noise increases the chance that the electronic circuits — up to
and including the n-tuple former — saturate, i.e. that the amplitude of the noise
exceeds the range that can be tolerated by the circuits.

The typical next stage is the so-called automatic gain control (AGC) amplifier,
designed to bring the signal’s amplitude into the desired range. Hence the AGC
amplifier introduces a scaling factor that depends on the strength of the input
signal.

For the rest of this text, we ignore hardware imperfections. Therefore, we can
also ignore the presence of the low-noise amplifier, of the noise-reduction filter, and
of the automatic gain control amplifier. If the channel scales the signal by a factor
a, the receiver front end can compensate by scaling the received signal by a1, but
the noise is also scaled by the same factor. This explains why, in evaluating the error
probability associated to a signaling scheme, we often consider channel models that
only add noise. In such cases, the scaling factor a~! is implicitly accounted for
in the noise parameter Ny/2. An example of how to determine Ny/2 is given in
Appendix 3.11, where we work out a case study based on satellite communication.

Propagation delay and clock misalignment Propagation delay refers to the time
it takes a signal to reach a receiver. If the signal set is W = {wo(t), w1 (t),...,
wm—1(t)} and the propagation delay is T, then for the receiver it is as if the signal
set were W = {wo(t —7), w1 (t —7), ..., wm_1(t —7)}. The common assumption is
that the receiver does not know 7 when the communication starts. For instance,
in wireless communication, a receiver has no way to know that the propagation
delay has changed because the transmitter has moved while it was turned off. It
is the responsibility of the receiver to adapt to the propagation delay. We come to
the same conclusion when we consider the fact that the clocks of different devices
are often not synchronized. If the clock of the receiver reads ¢t — 7 when that of
the transmitter reads ¢ then, once again, for the receiver, the signal set is W for
some unknown 7. Accounting for the unknown 7 at the receiver goes under the
general name of clock synchronization. For reasons that will become clear, the
clock synchronization problem decomposes into the symbol synchronization and
into the phase synchronization problems, discussed in Sections 5.7 and 7.5. Until
then and unless otherwise specified, we assume that there is no propagation delay
and that all clocks are synchronized.

Filtering In wireless communication, owing to reflections and diffractions on
obstacles, the electromagnetic signal emitted by the transmitter reaches the
receiver via multiple paths. Each path has its own delay and attenuation. If w;(t)
is transmitted, the receiver antenna output has the form R(t) = ZlL:l w;(t — 1) hy
plus noise, where 7; and h; are the delay and the attenuation along the lth
path. Unlike a mirror, the rough surface of certain objects creates a large
number of small reflections that are best accounted for by the integral form
R(t) = [w;(t — 7)h(7)d7 plus noise. This is the same as saying that the channel
contains a filter of impulse response h(t). For a different reason, the same channel
model applies to wireline communication. In fact, due to dispersion, the channel
output to a unit-energy pulse applied to the input at time ¢ = 0 is some impulse
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response h(t). Owing to the channel linearity, the output due to w;(t) at the input
is, once again, R(t) = [w;(t — 7)h(7)dr plus noise.

The possibilities we have to cope with the channel filtering depend on whether
the channel impulse response is known to the receiver alone, to both the transmit-
ter and the receiver, or to neither. It is often realistic to assume that the receiver
can measure the channel impulse response. The receiver can then communicate it
to the transmitter via the reversed communication link (if it exists). Hence it is
hardly the case that only the transmitter knows the channel impulse response.

If the transmitter uses the signal set W = {wq(t), w1(t), ..., wm—1(t)} and the
receiver knows h(t), from the receiver’s point of view, the signal set is W with the
ith signal being w;(t) = (w; xh)(t) and the channel just adds white Gaussian noise.
This is the familiar case. Realistically, the receiver knows at best an estimate iL(t)
of h(t) and uses it as the actual channel impulse response.

The most challenging situation occurs when the receiver does not know and
cannot estimate h(t). This is a realistic assumption in bursty communication, when
a burst is too short for the receiver to estimate h(¢) and the impulse response
changes from one burst to the next.

The most favorable situation occurs when both the receiver and the transmitter
know h(t) or an estimate thereof. Typically it is the receiver that estimates the
channel impulse response and communicates it to the transmitter. This requires
two-way communication, which is typically available. In this case, the transmitter
can adapt the signal constellation to the channel characteristic. Arguably, the
best strategy is the so-called water-filling (see e.g. [19]) that can be implemented
via orthogonal frequency division multiplexing (OFDM).

We have assumed that the channel impulse response characterizes the channel
filtering for the duration of the transmission. If the transmitter and/or the receiver
move, which is often the case in mobile communication, then the channel is still
linear but time-varying. Excellent graduate-level textbooks that discuss this kind
of channel are [2] and [17].

Colored Gaussian noise ~ We can think of colored noise as filtered white noise. It
is safe to assume that, over the frequency range of interest, i.e. the frequency range
occupied by the information-carrying signals, there is no positive-length interval
over which there is no noise. (A frequency interval with no noise is physically
unjustifiable and, if we insist on such a channel model, we no longer have an
interesting communication problem because we can transmit infinitely many bits
error-free by signaling where there is no noise.) For this reason, we assume that
the frequency response of the noise-shaping filter cannot vanish over a positive-
length interval in the frequency range of interest. In this case, we can modify
the aforementioned noise-reduction filter in such a way that, in the frequency
range of interest, it has the inverse frequency response of the noise-shaping filter.
The noise at the output of the modified noise-reduction filter, called whitening
filter, is zero-mean, Gaussian, and white (in the frequency range of interest).
The minimum error probability with the whitening filter cannot be higher than
without, because the filter is invertible in the frequency range of interest. What
we gain with the noise-whitening filter is that we are back to the familiar situation
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where the noise is white and the signal set is W = {ag(t), @1 (t), . .., Wm-_1(t)},
where w;(t) = (w; = h)(t) and h(t) is the impulse response of the whitening filter.

Summary

In this chapter we have addressed the problem of communicating a message across
a waveform AWGN channel. The importance of the continuous-time AWGN
channel model comes from the fact that every conductor is a linear time-invariant
system that smooths out and adds up the voltages created by the electron’s motion.
Owing to the central limit theorem, the result of adding up many contributions can
be modeled as white Gaussian noise. No conductor can escape this phenomena,
unless it is cooled to zero degrees kelvin. Hence every channel adds Gaussian noise.
This does not imply that the continuous-time AWGN channel is the only channel
model of interest. Depending on the situation, there can be other impairments
such as fading, nonlinearities, and interference, that should be considered in the
channel model, but they are outside the scope of this text.

As in the previous chapter, we have focused primarily on the receiver that
minimizes the error probability assuming that the signal set is given to us. We
were able to move forwards swiftly by identifying a sufficient statistic that reduces
the receiver design problem to the one studied in Chapter 2. The receiver consists
of an n-tuple former and a decoder. We have seen that the sender can also be
decomposed into an encoder and a waveform former. This decomposition nat-
urally fits the layering philosophy discussed in the introductory chapter: The
waveform former at the sender and the n-tuple former at the receiver can be
seen as providing a “service” to the encoder—decoder pair. The service consists
in making the continuous-time AWGN channel look like a discrete-time AWGN
channel.

Having established the link between the continuous-time and the discrete-
time AWGN channel, we are in the position to evaluate the error probability
of a communication system for the AWGN channel by means of simulation. An
example is given in Appendix 3.8.

How do we proceed from here? First, we need to introduce the performance
parameters we care mostly about, discuss how they relate to one another, and
understand what options we have to control them. We start this discussion in the
next chapter where we also develop some intuition about the kind of signals we
want to use to transmit many bits.

Second, we need to start paying attention to cost and complexity because they
can quickly get out of hand. For a brute-force implementation, the n-tuple former
requires n correlators or matched filters and the decoder needs to compute and
compare (y,c;) + q; for m codewords. With k£ = 100 (a very modest number of
transmitted bits) and n = 2k (a realistic relationship), the brute-force approach
requires 200 matched filters or correlators and the decoder needs to evaluate
roughly 103 inner products. These are staggering numbers. In Chapter 5 we will
learn how to choose the waveform former in such a way that the n-tuple former
can be implemented with a single matched filter. In Chapter 6 we will see that
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there are encoders for which the decoder needs to explore a number of possibilities
that grows linearly rather than exponentially in k.

Appendix: A simple simulation

Here we give an example of a basic simulation. Instead of sending a continuous-
time waveform w(t), we send the corresponding codeword c¢; instead of adding a
sample path of white Gaussian noise of power spectral density Ny/2, we add a
realization z of a Gaussian random vector that consists of iid components that are
zero mean and of variance 02 = Ny /2. The decoder observes y = c+ z. MATLAB is a
programming language that makes it possible to implement a simulation in a few
lines of code. Here is how we can determine (by simulation) the error probability
of m-PAM for m =6, d =2, and 02 = 1.

% define the parameters

m = 6 % alphabet size (positive even number)
d = 2 % distance between points
noiseVariance = 1

k = 1000 % number of transmitted symbols

% define the encoding function
encodingFunction = -(m-1)*d/2:d: (m-1)*d/2;

% generate the message
message = randi(m,k,1);

% encode
¢ = encodingFunction(message) ;

% generate the noise
z = normrnd(0,sqrt(noiseVariance),1,k);

% add the noise
y = c+z;

% decode
[distances,message_estimate] = min(abs(repmat(y’,1,m)...
-repmat (encodingFunction,k,1)),[1,2);

% determine the symbol error probability and print
errorRate = symerr(message,message_estimate)/k
The above MATLAB code produces the following output (reformatted)

m =

6
d=2
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noiseVariance = 1
k = 1000
errorRate = 0.2660

Appendix: Dirac-delta-based definition of white
Gaussian noise

It is common to define white Gaussian noise as a zero-mean WSS Gaussian random
process N(t) of autocovariance Ky (1) = Z25(7).

From the outset, the difference between this and the approach we chose (Section
3.2) lies on where we start with a mathematical model of the physical world. We
chose to start with the measurements that the receiver can make about N(t),
whereas the standard approach starts with N (t) itself.

To model and use N (t) in a rigorous way requires familiarity with the notion
of stochastic processes (typically not a problem), the ability to manipulate the
Dirac delta (not a problem until something goes wrong), and measure theory to
guarantee that integrals such as [ N(a)g(a)da are well-defined. Most engineers
are not familiar with measure theory. This results in situations that are undesirable
for the instructor and for the student. Nevertheless it is important that the reader
be aware of the standard procedure, which is the reason for this appendix.

As the following example shows, it is a simple exercise to derive (3.3) from the
above definition of N(¢). (We take it for granted that the integrals exist.)

EXAMPLE 3.13  Let g1(t) and ga(t) be two finite-energy pulses and for i = 1,2,
define

Z; = /N(a)gi(a)da, (3.7)

where N (t) is white Gaussian noise as we just defined. We compute the covariance
cov(Zi,Zj) as follows:

cov(Z;, Z;) = E[Z:Z]]
_E [ / N(a)gi(a)da / N*(8)g] (B)dﬁ}
_ / / E[N(a)N"(8)) gi(a)g] (8)dadp
- / / 20 5(a — Bgu(a)g; (8)dads
No

=5 [ a1a 6105
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EXAMPLE 3.14 Let N(t) be white Gaussian noise at the input of a lin-
ear time-invariant circuit of impulse response h(t) and let Z(t) be the
filter’s output. Compute the autocovariance of the output Z(t) = [ N(a)h(t—a)der.

Solution: The definition of autocovariance is Kz(t) := E[Z(t+ 7)Z*(t)]. We
proceed two ways. The computation using the definition of N(t) given in this
appendiz mimics the derivation in Example 3.13. The result is K z(t) = &2 [ h(t+
T)h*(t)dt. If we use the definition of white Gaussian noise given in Section 3.2,
we do not need to calculate (but we do need to know (3.3), which is part of the
definition). In fact, the Z; and Z; defined in (3.2) and used in (3.8) become
Z(t+7) and Z(t) if we set g;(a)) = h(t+7— ) and g;(a) = h(t — o), respectively.
Hence we can read the result directly out of 3.3, namely

N N
Kz(r) = 70 / h(t+7 —a)h*(t — a)dt = 70 / h(B +7)h* (8)dB.
By defining the self-similarity function! of h(t)

Ru(r) = / h(t + 7)h* (£)dt
we can summarize as follows
N,
Kz(r) = = Ba(7). O

The definition of N(t) given in this appendix is somewhat unsatisfactory also
based on physical grounds. Recall that the Fourier transform of the autocovariance
Kn(7) is the power spectral density Sn(f) (also called power spectrum). If
Ky(r) = 226(r) then Sy(f) = &2, ie. a constant. Integrating over the power
spectral density yields the power, which in this case is infinite. The noise of a
physical system cannot have infinite power. A related problem shows up from a
different angle when we try to determine the variance of a sample N (tg) for an
arbitrary time to. This is the autocovariance Ky (7) evaluated at 7 = 0, but a
Dirac delta is not defined as a stand-alone function.? Since we think of a Dirac
delta as a very narrow and very tall function of unit area, we could argue that
0(0) = oo. This is also unsatisfactory because we would rather avoid having to
define Gaussian random variables of infinite variance. More precisely, a stochastic
process is characterized by specifying the joint distribution of each finite collection
of samples, which implies that we would have to define the density of any collection
of Gaussian random variables of infinite variance. Furthermore, we know that a
random variable of infinite variance is not a good model for what we obtain when
we sample noise. The reason the physically-unsustainable Dirac-delta-based model
leads to physically meaningful results is that we use it only to describe filtered

L Also called the autocorrelation function. We reserve the term autocorrelation function
for stochastic processes and use self-similarity function for deterministic pulses.

2 Recall that a Dirac delta function is defined through what happens when we integrate
it against a function, i.e. through the relationship [ §(t)g(t) = ¢(0).
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white Gaussian noise. (But then, why not bypass the mathematical description of
N(t) as we do in Section 3.27)

As a final remark, note that defining an object indirectly through its behavior,
as we have done in Section 3.2, is not new to us. We do something similar when
we introduce the Dirac delta function by saying that it fulfills the relationship
[ f(#)8(t) = f(0). In both cases, we introduce the object of interest by saying how
it behaves when integrated against a generic function.

Appendix: Thermal noise

Any conductor at non-zero temperature produces thermal (Johnson) noise. The
motion of charges (electrons) that move inside a conductor yields many tiny
electrical fields, the sum of which can be measured as a voltage at the conductor’s
terminals. Owing to the central limit theorem, the aggregate voltage can be
modeled as white Gaussian noise. (It looks white, up to very high frequencies.)

Thermal noise was first measured by Johnson (Bell Labs, 1926) who made the
following experiment. He took a number of different conducting substances, such
as solutions of salt in water, copper sulfate, etc., and measured the intrinsic voltage
fluctuations across these substances. He found that the thermal noise expresses
itself as a voltage source Vi (¢) in series with the noise-free conductor (Figure 3.10).
The mean square voltage of Vy(t) per hertz (Hz) of bandwidth (accounting only
for positive frequencies) equals 4RkpT, where kg = 1.381 x 10~23 is Bolzmann’s
constant in joules/kelvin, T' is the absolute temperature of the substance in kelvin
(290 K at room temperature), and R its resistance in ohms.

Johnson described his findings to Nyquist (also at Bell Labs) who was able to
explain the results by using thermodynamics and statistical mechanics. (Nyquist’s
paper [25] is only four pages and very accessible. A recommended reading.) The
expression for the mean of VZ(¢) per Hz of bandwidth derived by Nyquist is

4Rh
T A ! ) (3.8)
efsT —1
e
R
R A0
(a) Noisy conductor. (b) Equivalent electrical circuit.

Figure 3.10. (a) Conductor of resistance R; (b) equivalent electrical
circuit, where Vv (¢) is a voltage source modeled as white Gaussian
noise of (single-sided) power spectral density Nyg = 4kgTR and R is
an ideal (noise-free) resistor.
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where h = 6.626 x 1073* joulesxseconds is Planck’s constant. This expression
also holds for the mean square voltage at the terminals of an impedance Z with
R{Z} = R.

For small values of =, e* — 1 is approximately x. Hence, as long as hf is much
smaller than kT, the denominator of Nyquist’s expression is approximately k};—fT,
in which case (3.8) simplifies to

4RkpT,
in exact agreement with Johnson’s measurements.

EXAMPLE 3.15 At room temperature (T = 290 kelvin), kT is about 4-10721. At
600 GHz, hf is about 4-10~22. Hence, for applications in the frequency range from
0 to 600 GHz, we can pretend that Vi (t) has a constant power spectral density. [

EXAMPLE 3.16 Consider a resistor of 50 ohms at T = 290 kelvin. The
mean square voltage per Hz of bandwidth due to thermal noise is 4kpTR =
4 x 1.381 x 10723 x 290 x 50 = 8 x 1071 wolts® / Hz. O

It is a straightforward exercise to check that the power per Hz of (single-
sided) bandwidth that the voltage source of Figure 3.10b dissipates into a load
of matching impedance is kT watts. Because this is a very small number, it is
convenient to describe it by means of its temperature T

Even other noises, such as the noise produced by an amplifier or the one picked
up by an antenna, are often characterized by a “noise temperature”, defined as
the number 7" that makes kT equal to the spectral density of the noise injected
into the receiver. (See Appendix 3.11.)

Appendix: Channel modeling, a case study

Once the signal set W is fixed (up to a scaling factor), the error probability of a
MAP decoder for the AWGN channel depends only on the signal energy divided
by the noise-power density (signal-to-noise ratio in short) £/Ny at the input of the
n-tuple former. How do we determine £ in terms of the design parameters that we
can measure, such as the power Pr of the transmitter, the transmitting antenna
gain G, the distance d between the transmitter and the receiver, the receiving
antenna gain Gr? And how do we find the value for Ny? In this appendix, we
work out a case study based on satellite communication.

Consider a transmitting antenna that radiates isotropically in free space at a
power level of Pr watts. Imagine a sphere of radius d meters centered at the
transmitting antenna. The surface of this sphere has an area of 4wd?, thus the
power density at distance d is ;22> watts/m?.

Satellites and the corresponding Earth stations use antennas that have direc-
tivity (typically a parabolic or a horn antenna for a satellite, and a parabolic
antenna for an Earth station). Their directivity is specified by their gain G in the
pointing direction. If the transmitting antenna has gain G, the power density in

the pointing direction at distance d is T;g} watts/m?.
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A receiving antenna at distance d gathers a portion of the transmitted power
that is proportional to the antenna’s effective area Ag. If we assume that the
transmitting antenna is pointed in the direction of the receiving antenna, the
received power is Pr = %

Like the transmitting antenna, the receiving antenna can be described by its
gain Gg. For a given effective area Ap, the gain is inversely proportional to A2,
where A is the wavelength. (As the bandwidth of the transmitted signal is small
compared to the carrier frequency, we can use the carrier frequency wavelength.)
Notice that this relationship between area, gain, and wavelength is rather intuitive.
A familiar case is that of a flashlight. Owing to the small wavelength of light,
a flashlight can create a focused beam even with a relatively small parabolic
reflector. As we know from experience, the bigger the flashlight reflector, the

narrower the beam. The precise relationship is Gr = 4’;‘313. (Thanks to the ratio

%, the gain Gg is dimension-free.) Solving for Ap and plugging into Pg yields

PrGrGr
Pr=—7"+—. 3.9
B Urd/N)? (3:9)
The factor Lg = (47d/)\)? is commonly called the free-space path loss, but this
is a misnomer. In fact the free-space attenuation is independent of the wavelength.
It is the relationship between the antenna’s effective area and its gain that brings
in the factor A2. Nevertheless, being able to write

GrGpgr
Lg

has the advantage of underlining the “gains” and the “losses”. Notice also that
Lg is a factor on which the system designer has little control (for a geostationary
satellite the distance is fixed and the carrier frequency is often dictated by
regulations), whereas Pp, G, and Gr are parameters that a designer might be
able to choose (within limits).

Now suppose that the receiving antenna is connected to the receiver via a
lossless coaxial cable. The antenna and the receiver input have an impedance and
the connecting cable has a characteristic impedance. For best power transfer, the
three impedances should be resistive and have the same value, typically 50 ohms
(see, e.g., Wikipedia, impedance matching). We assume that it is indeed the case
and let R ohms be its value. Then, the impedance seen by the antenna looking
into the cable is also R as if the receiver were connected directly to the antenna
(see, e.g., Wikipedia, transmission line, or [14]). Figure 3.11 shows the electrical
model for the receiving antenna and its load.? It shows the voltage source W (t)
that represents the intended signal, the voltage source Viy(t) that represents all
noise sources, the antenna impedance R and the antenna’s load R.

Pr="Pr (3.10)

3 The circuit of Figure 3.11 is a suitable model for determining the voltage (and the
current) at the receiver input (the load in the figure). There is a more complete
model [26] that enables us to associate the power dissipated by the antenna’s internal
impedance with the power that the antenna radiates back to space.
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Figure 3.11. Electrical model for the receiving antenna and the load
it sees looking into the first amplifier.

The advantage of having all the noise sources be represented by a single source
which is co-located with the signal source W (t) is that the signal-to-noise ratio at
that point is the same as the signal-to-noise-ratio at the input of the n-tuple former.
(Once all noise sources are accounted for at the input, the electronic circuits are
considered as noise free). So, the /Ny of interest to us is the signal energy absorbed
by the load divided by the noise-power density absorbed by the same load.

The power harvested by the antenna is passed onto the load. This power is Pg,
hence the energy is Pr7, where 7 is the duration of the signals (assumed to be
the same for all signals).

As mentioned in Appendix 3.10, it is customary to describe the noise-power
density by the temperature Ty of a fictitious resistor that transfers the same noise-
power density to the same load. This density is kpTw. If we know (for instance
from measurements) the power density of each noise source, we can determine the
equivalent density at the receiver input, sum all the densities, and divide by kp to
obtain the noise temperature T . Here we assume that this number is provided to
us by the manufacturer of the receiver (see Example 3.17 for a numerical value).
Putting things together, we obtain

PRT . PTTGTGR

Ny = - .
E/No kgTn  LskpTy

(3.11)

To go one step further, we characterize the two voltage sources of Figure 3.11.
This is a calculation that the hardware designer might want to do to determine
the range of voltages and currents at the antenna output.

Recall that a voltage of v volts applied to a resistor of R ohms dissipates the
power P = v?/R watts. When H = i, W(t) = aw;(t) for some scaling factor a.
We determine « by computing the resulting average power dissipated by the load
and by equating to Pr. Thus Pr = %. Inserting the value of Pr and solving for
« yields

o= ARPrGrGpR
B Ls&E/m
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aw; (t) l

(a) Electrical circuit.

aw; (t) @

Vi (t)
No/2 = 2RksTx

(b) System-engineering viewpoint.

w;q m
(t) )

N(t)

_ kBTnLsE
Noj2 = 2PprGrGR

(c) Preferred channel model.

Figure 3.12. Various viewpoints under hypothesis H = i.

Hence, when H = i, the received signal (before noise) is

W(t) = aw;(t) = 4 /%wi@).

Figure 3.12a summarizes the equivalent electrical circuit under the hypothesis
H = i. As determined in Appendix 3.10, the mean square voltage of the noise
source Vy(t) per Hz of (single-sided) bandwidth is Ng = 4RkpTn. Figure 3.12b
is the equivalent representation from the point of view of a system designer. The
usefulness of these models is that they give us actual voltages. As long as we are not
concerned with hardware limitations, for the purpose of the channel model, we are
allowed to scale the signal and the noise by the same factor. Specifically, if we divide
the signal by o and divide the noise-power density by a?, we obtain the channel
model of Figure 3.12c. Observe that the impedance R has fallen out of the picture.



3.12

3.12. Exercises 123

As a “sanity check”, if we compute £/Ny using Figure 3.12c we obtain %7

which corresponds to (3.11). The following example gives numerical values.

EXAMPLE 3.17 The following parameters pertain to Mariner-10, an American
robotic space probe launched by NASA in 1973 to fly to the planets Mercury and
Venus.

Pr =16.8 watts (12.25 dBW).

A =0.13 m (carrier frequency at 2.3 GHz).
Gy = 575.44 (27.6 dB).

Gr=1.38x10% (61.4 dB).

d =1.6x 10" meters.

Ty = 13.5 kelvin.

Ry, =117.6 kbps.

The bit rate Ry = 117.6 kbps (kilobits per second) is the mazimum data rate at
which the space probe could transmit information. This can be achieved via antipo-
dal signals of duration T = 1/R, = 8.5 x 1075 seconds. Under this assumption,
plugging into (8.11) yields £/No = 2.54. The error rate for antipodal signaling is
2&s

= 0.0120.
w)

Pe:Q<

We see that the error rate is fairly high, but by means of coding techniques
(Chapter 6), it is possible to achieve reliable communication at the expense of
some reduction in the bit rate. O

Exercises

Note: The exercises are available only in the official copy provided by the editor.
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4.2

Signal design trade-offs

Introduction

In Chapters 2 and 3 we have focused on the receiver, assuming that the signal set
was given to us. In this chapter we introduce the signal design.

The problem of choosing a convenient signal constellation is not as clean-cut as
the receiver-design problem. The reason is that the receiver-design problem has
a clear objective, to minimize the error probability, and one solution, namely the
MAP rule. In contrast, when we choose a signal constellation we make trade-offs
among conflicting objectives.

We have two main goals for this chapter: (i) to introduce the design parameters
we care mostly about; and (ii) to sharpen our intuition about the role played by the
dimensions of the signal space as we increase the number of bits to be transmitted.
The continuous-time AWGN channel model is assumed.

Isometric transformations applied to the codebook

If the channel is AWGN and the receiver implements a MAP rule, the error
probability is completely determined by the codebook C = {cg,...,¢m—1}. The
purpose of this section is to identify transformations to the codebook that do
not affect the error probability. For the moment we assume that the codebook
and the noise are real-valued. Generalization to complex-valued codebooks and
complex-valued noise is straightforward but requires familiarity with the formalism
of complex-valued random vectors (Appendix 7.9).

From the geometrical intuition gained in Chapter 2, it should be clear that the
probability of error remains the same if a given codebook and the corresponding
decoding regions are translated by the same n-tuple b € R™.

A translation is a particular instance of an isometry. An isometry is a distance-
preserving transformation. Formally, given an inner product space V, a: V — V is
an isometry if and only if for any o« € V and S € V, the distance between a and
equals that between a(a) and a(8). All isometries from R™ to R™ can be obtained
from the composition of a reflection, a rotation, and a translation.

132
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4.2. Isometric transformations applied to the codebook

EXAMPLE 4.1 Figure 4.1 shows an original codebook C = {cy, c1,ca, c3} and three
variations obtained by applying to C a reflection, a rotation, and a translation,
respectively. In each case the isometry a : R™ — R™ sends ¢; to ¢; = a(c;).

e

> T1

oC3

> T1

51.

(a) Original codebook C.  (b) Reflected codebook.

X2 x2

A
®co c1@® L Y&

51.
X1 > T1
.53 - -
c2® oc3
62.

(c) Rotated codebook.  (d) Translated codebook.

Figure 4.1. Isometries.

It should be intuitively clear that if we apply an isometry to a codebook and its
decoding regions, then the error probability remains unchanged. A formal proof
of this fact is given in Appendix 4.8.

If we apply a rotation or a reflection to an n-tuple, we do not change its norm.
Hence reflections and rotations applied to a signal set do not change the average
energy, but translations generally do. We determine the translation that minimizes
the average energy.

Let Y be a zero-mean random vector in R”. For any b € R,

E[Y + 0] = E[Y||? + [|bl|* + 2E(Y, b) = E||Y||* + [[o]* > E[Y||?

with equality if and only if b = 0. An arbitrary (not necessarily zero-mean) random
vector Y € R™ can be written as Y =Y +m, where m =E[Y] and Y =Y —m is
zero-mean. The above inequality can then be restated as

E[Y —b|* =E[lY +m —0|* > E|[Y|?,

with equality if and only if b = m.
We apply the above to a codebook C = {cg,...,cm—1}. If we let Y be the
random variable that takes value ¢; with probability Py (i), then we see that the
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average energy £ = E [||Y||2} can be decreased by a translation if and only if the
mean m = E[Y] = Y. Py(i)c; is non-zero. If it is non-zero, then the translated
constellation C = {Coy...,Cm—1}, where & = ¢; — m, will achieve the minimum
energy among all possible translated versions of C. The average energy associated
to the translated constellation is £ = £ — ||m||2.

If S = {wo(t),...,wm-1(t)} is the set of waveforms linked to C via some
orthonormal basis, then through the same basis ¢ will be associated to w;(t) =
w;(t) — m(t) where m(t) = >, Py (i)w;(t). An example follows.

EXAMPLE 4.2 Let wo(t) and wyi(t) be rectangular pulses with support [0, T] and
[T, 2T, respectively, as shown on the left of Figure 4.2a. Assuming that Pr(0) =
Py (1) = &, we calculate the average m(t) = fwo(t) + swi(t) and see that it is
non-zero (center waveform). Hence we can save energy by using the new signal set
defined by w;(t) = w;(t) —m(t), i = 0,1 (right). In Figure 4.2b we see the signals
in the signal space, where ¥;(t) = ﬁ;’i(j‘),
wWo(t) and w1 (t) are antipodal signals. This is not a coincidence: After we remove
the mean, any two signals become the negative of each other. As an alternative to
representing the elements of W in the signal space, we could have represented the
elements of the codebook C in R?, as we did in Figure 4.1. The two representations

i = 1,2. As we see from the figures,

are equivalent. O
wo(t) Wo ()
t t
w1 (t) m(t) 1211 (t)
A A A
> 1 > > 1

(a) Waveform viewpoint.

b2 P2 Y2

1I]1 °
U1 Y1 Y1

°®
Wo

Se

(b) Signal space viewpoint.

Figure 4.2. Energy minimization by translation.
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Isometric transformations applied to the waveform set

The definition of isometry is based on the notion of distance, which is defined in
every inner product space: the distance between a@ € V and § € V is the norm
18— all.

Let V be the inner product space spanned by W = {wq(t), ..., wn—1(¢)} and let
a:V — V be an isometry. If we apply this isometry to VW, we obtain a new signal
set W = {wo(t), ..., Wm_1(t)} C V. Let B={t1(t),...,1,(t)} be an orthonormal
basis for V and let C = {co,...,cm—1} be the codebook associated to W via B.
Could we have obtained W by applying some isometry to the codebook C?

Yes, we could. Through B, we obtain the codebook C = {C0y..-,Cm—1} asso-
ciated to W. Through the composition that sends ¢; — w;(t) — w;(t) — &, we
obtain a map from C to C. It is easy to see that this map is an isometry of the
kind considered in Section 4.2.

Are there other kinds of isometries applied to W that cannot be obtained simply
by applying an isometry to C? Yes, there are. The easiest way to see this is to
keep the codebook the same and substitute the original orthonormal basis B =
{41(t),...,¢n(t)} with some other orthonormal basis B = {¢1(t),...,¢n(t)}. In
so doing, we obtain an isometry from V to some other subspace V of the set of
finite-energy signals.

The new signal set YW might not bear any resemblance to W, yet the resulting
error probability will be identical since the codebook is unchanged. This sort of
transformation is implicit in Example 3.7 of Section 3.4.

Building intuition about scalability: n versus £

The aim of this section is to sharpen our intuition by looking at a few examples of
signal constellations that contain a large number m of signals. We are interested
in exploring what happens to the probability of error when the number k = log, m
of bits carried by one signal becomes large. In doing so, we will let the energy grow
linearly with & so as to keep constant the energy per bit &, which seems to be fair.
The dimensionality of the signal space will be n = 1 for the first example (single-
shot PAM) and n = 2 for the second (single-shot PSK). In the third example
(bit-by-bit on a pulse train) n will be equal to k. In the final example (block-
orthogonal signaling) we will let n = 2*. These examples will provide us with
useful insight on the asymptotic relationship between the number of transmitted
bits and the dimensionality of the signal space.

What matters for all these examples is the choice of codebook. There is no
need, in principle, to specify the waveform signal w;(t) associated to a codeword
¢;. Nevertheless, we will specify w;(t) to make the examples more complete.

4.4.1 Keeping n fixed as k grows

EXAMPLE 4.3 (Single-shot PAM) In this example, we fix n = 1 and consider
PAM (see Example 3.8). We are interested in evaluating the error probability as
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the number m of messages goes to infinity. Recall that the waveform associated to
message i 1§

where Y(t) is an arbitrary unit-energy waveform. (With n = 1 we do not have
any choice other than modulating the amplitude of a pulse.) We are totally free to

choose the pulse. For the sake of completeness we arbitrarily choose a rectangular

pulse such as P(t) = %l{t c [—%, %]}

We have already computed the error probability of PAM in FEzxzample 2.5 of

Section 2.4.3, namely
2 a
Fe= (2%)@(;)7

where 0 = Ny /2. Following the instructions in Ezercise 77, it is straightforward to
prove that the average energy of the above constellation when signals are uniformly
distributed is

20,2
-1
g= =1 (4.1)
3
Equating to & = k&y and using the fact that k = logy m yields

o 3& logym

) m? 1)
which goes to 0 as m goes to oco. Hence P, goes to 1 as m goes to co. O

EXAMPLE 4.4 (Single-shot PSK) In this example, we keep n = 2 and consider
PSK (see Example 3.9). In Example 2.15, we have derived the following lower
bound to the error probability of PSK

where 0% = % is the variance of the noise in each coordinate. If we insert &€ = k&,
and m = 2F, we see that the lower bound goes to 1 as k goes to infinity. This
happens because the circumference of the PSK constellation grows as vk whereas
the number of points grows as 2F. Hence, the minimum distance between points
goes to zero (indeed exponentially fast). O

As they are, the signal constellations used in the above two examples are not
suitable to transmit a large amount k of bits by letting the constellation size
m = 2F grow exponentially with k. The problem with the above two examples
is that, as m grows, we are trying to pack an exponentially increasing number of
points into a space that also grows in size but not fast enough. The space becomes
“crowded” as m grows, meaning that the minimum distance becomes smaller and
the probability of error increases.



4.4. Building intuition about scalability: n versus k 137

We should not conclude that PAM and PSK are not useful to send many bits.
On the contrary, these signaling methods are widely used. In the next chapter we
will see how. (See also the comment after the next example.)

4.4.2 Growing n linearly with &

EXAMPLE 4.5 (Bit-by-bit on a pulse train) The idea is to use a different dimen-
sion for each bit. Let (b;1,bi2,...,bi k) be the binary sequence corresponding to
message i. For mathematical convenience, we assume these bits to take value in
{£1} rather than {0,1}. We let the associated codeword c; = (¢i1,¢iz2, .- ekt
be defined by

Ciyj = bij V&b,
E

where & = 1 is the energy per bit. The transmitted signal is

k
wi(t) = eijib(t), teER. (4.2)
j=1

As already mentioned, the choice of orthonormal basis is immaterial for the
point we are making, but in practice some choices are more convenient than others.
Specifically, if we choose 1;(t) = Y(t — jTs) for some waveform ¥(t) that fulfills
(i, ) = 1{i = j}, then the n-tuple former is drastically simplified because a
single matched filter is sufficient to obtain all n projections (see Section 3.5).
For instance, we can choose ¢(t) = J%Tl{t € [-Ts/2,T,/2]}, which fulfills the
mentioned constraints. We can now rewrite the waveform signal as

k
wi(t) =Y et —jT), teR. (4.3)
j=1

The above expression justifies the name bit-by-bit on a pulse train given to this
signaling method (see Figure 4.3). As we will see in Chapter 5, there are many
other possible choices for the pulse ¥(t).

P(t) wi(t)

A

-t | -t

(a) (b)
Figure 4.3. Example of (4.3) for k =4 and ¢; = v/&(1,1,—1,1)T.

The codewords cg,...,cm—1 are the vertices of a k-dimensional hypercube as
shown in Figure 4.4 for k = 1,2,3. For these values of k we immediately see
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from the figure what the decoding regions of an ML decoder are, but let us proceed
analytically and find an ML decoding rule that works for any k. The ML receiver

decides that the constellation point used by the sender is the ¢; € { + m}k that

2

mazimizes (y,c;) — @ Since ||ci||? is the same for all i, the previous expression
is mazimized by the ¢; that mazimizes (y, ¢;) = > y;c¢; j. The mazimum is achieved
for the i for which c; ; = sign(y;)/E, where

. L y=0
S%MM={_1 y <0

X2
A
Ccie e Co
C1 Co
—e ——+ —e —» T > T1
0
CcCoe oC3
(a) k=1 (b) k=2

Cs Cq
—x1
C1 Co /
— g -
Ce cr
C2 C3
\
—x3
(c) k=3.

Figure 4.4. Codebooks for bit-by-bit on a pulse train signaling.

We now compute the error probability. As usual, we first compute the error
probability conditioned on a specific ¢;. From the codebook symmetry, we expect
that the error probability will not depend on i. If ¢; j is positive, Y; = /& +Z; and
a mazimum likelihood decoder will make the correct decision if Z; > —/E,. (The
statement is an “if and only if” if we ignore the zero-probability event that Z; =

—+/&.) This happens with probability 1—Q(@). Based on similar reasoning, it is
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straightforward to verify that the probability of error is the same if c; ; is negative.
Now let C; be the event that the decoder makes the correct decision about the
jth bit. The probability of C; depends only on Z;. The independence of the noise
components implies the independence of C1, Cs, ..., Cx. Thus, the probability that
all k bits are decoded correctly when H =i is

P.(i) = {1—Q(@)r,

which is the same for all i and, therefore, it is also the average P,. Notice that P, —
0 as k — oo. However, the probability that any specific bit be decoded incorrectly
is P, = Q(@), which does not depend on k. O

Although in this example we chose to transmit a single bit per dimension, we
could have chosen to transmit log, m bits per dimension by letting the codeword
components take value in an m-ary PAM constellation. In that case we call the
signaling scheme symbol-by-symbol on a pulse train. Symbol-by-symbol on a pulse
train and variations thereof is the basis for many digital communication systems.
It will be studied in depth in Chapter 5.

The following question seems natural at this point: Is it possible to avoid that
P, — 0 as k — 0o? The next example gives us the answer.

4.4.3 Growing n exponentially with k

EXAMPLE 4.6  (Block-orthogonal signaling) Let n = m = 2F, choose n orthonor-
mal waveforms 1(t), ..., ¥n(t), and define wi(t), ..., wn,(t) to be

w;(t) = VEP;(t).

This is called block-orthogonal signaling. The name stems from the fact that in
practice a block of k bits are collected and then mapped into one of m orthogonal
waveforms (see Figure 4.5). Notice that |w;||> = &€ for all i.

There are many ways to choose the 28 waveforms ;(t). One way is to choose
Y (t) = (t—iT) for some normalized pulse 1 (t) such that ¥ (t—iT) and Y(t—jT)
are orthogonal when i # j. In this case the requirement for ¥ (t) is the same as that
in bit-by-bit on a pulse train, but now we need 2% rather than k shifted versions,
and we send one pulse rather than a train of k weighted pulses. For obvious reasons
this signaling scheme is called pulse position modulation.

Another example is to choose

w;(t) = \/?cos(%rfit)l{t €[0,7]}. (4.4)

This is called m-FSK (m-ary frequency-shift keying). If we choose 2f;T = k; for
some integer k; such that k; # k; if i # j then
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26 (T11 1
(wi, w;) = T/ {5 cos2m(fi + f;)t] + 3 cos[2m(fi — f)t]| dt = E1{i = j},
0
as desired.
x3
T2 C3
c2
> T2
c2
1 C1
C1 1
(a) m=n=2. (b) m=n=23.

Figure 4.5. Codebooks for block-orthogonal signaling.

When m > 3, it is not easy to visualize the decoding regions. However, we can
proceed analytically, using the fact that all coordinates of ¢; are O except for the
ith, which has value V€. Hence,

| Oy

Hri(y) = argmax(y, ci) —
= argmax(y, c;)

= argmaxy;,
1

where y; is the ith component of y. To compute (or bound) the error probability,
we start as usual with a fized ¢;. We choose i =1. When H =1,

V. — \/E-l-Zj ifj=1,
T\ ifj#1.

Then the probability of correct decoding is given by
P.(1) = Pr{iY1 > Z3,Y1 > Z3,..., Y1 > Z,|H = 1}.

To evaluate the right side, we first condition on Y1 = «, where a € R is an
arbitrary number

m—1
Pr{iH=HH=1,Yi=a} = Pr{a> Zo,...,a> Zn}=|1-Q [ — ,
No/2
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and then remove the conditioning on Y1,

m—1
Pe(1) Z/_ fraa(all) [1 -Q (\/;O—/Qﬂ do

e a— ! m
-[merl -t e ()]

where we use the fact that when H =1, Y7 ~ N(VE, %) The above expression
for P.(1) cannot be simplified further, but we can evaluate it numerically. By
symmetry, P.(1) = P.(i) for all i. Hence P, = P.(1) = P.(i).

The fact that the distance between any two distinct codewords is a constant
simplifies the union bound considerably:

Pe:Pea)s(m—l)Q(d)

20
£
=(m-1Q ( m)
< 2 exp {—;TJ

e[ (EE )],

where we used

N,
2 _ No
- = R
d* = |le; — ¢
= lleill® + lleslI* — 2R{(ci, ¢5)}
= lleill® + lles |1
=2¢&,
$2
Q) < exp [—7} x>0,
m—1< 2.

By letting £ = Eyk we obtain

&
P, <exp{—k<m—ln2> }

We see that P, — 0 as k — oo, provided that ]f,—% > 2In2. (1t is possible to prove

that the weaker condition 1{,—2 > In 2 is sufficient. See Exercise 77.) (|

The result of the above example is quite surprising at first. The more bits we
send, the larger is the probability P. that they will all be decoded correctly. Yet
what goes on is quite clear. In setting all but one component of each codeword
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to zero, we can make the non-zero component as large as v/k&. The decoder
looks for the largest component. Because the variance of the noise is the same
in all components and does not grow with k, when k is large it becomes almost
impossible for the noise to alter the position of the largest component.

Duration, bandwidth, and dimensionality

Road traffic regulations restrict the length and width of vehicles that are allowed to
circulate on highways. For similar and other reasons, the duration and bandwidth
of signals that we use to communicate over a shared medium are often subject
to limitations. Hence the question: What are the implications of having to use a
given time and frequency interval? A precise answer to this question is known only
in the limit of large time and frequency intervals, but this is good enough for our
purpose.

First we need to define what it means for a signal to be time- and frequency-
limited. We get a sense that the answer is not obvious by recalling that a signal that
has finite support in the time domain must have infinite support in the frequency
domain (and vice versa).

There are several meaningful options to define the duration and the bandwidth
of a signal in such a way that both are finite for most signals of interest. Typically,
people use the obvious definition for the duration of a signal, namely the length
of the shortest interval that contains the signal’s support and use a “softer”
criterion for the bandwidth. The most common bandwidth definitions are listed in
Appendix 4.9.

In this section we use an approach introduced by David Slepian in his Shannon
Lecture [27]. In essence, Slepian’s approach hinges on the idea that we should not
make a distinction between signals that cannot be distinguished using a measuring
instrument. Specifically, after fixing a small positive number n < 1 that accounts
for the instrument’s precision, we say that two signals are indistinguishable at level
n if their difference has norm less than 7.

We say that s(t) is time-limited to (a,b) if it is indistinguishable at level 5 from
s(t)1{t € (a,b)}. The length of the shortest such interval (a,b) is the signal’s
duration T (at level n).

EXAMPLE 4.7 Consider the signal h(t) = eI, t € R. The norm of h(t) —

h(t)1{t € (-Z,Z)} is Ve~T. Hence h(t) has duration T = —2Inn at level n. O

Similarly, we say that s(t) is frequency-limited to (c,d) if sz(f) and sz (f)1{f €
(¢,d)} are indistinguishable at level n. The signal’s bandwidth W is the width
(length) of the shortest such interval.

! The Shannon Award is the most prestigious award bestowed by the Information
Theory Society. Slepian was the first, after Shannon himself, to receive the award. The
recipient presents the Shannon Lecture at the next IEEE International Symposium on
Information Theory.
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A particularity of these definitions is that if we increase the strength of a
signal, we could very well increase its duration and bandwidth. This makes good
engineering sense. Yet it is in distinct contradiction with the usual (strict) def-
inition of duration and the common definitions of bandwidth (Appendix 4.9).
Another particularity is that all finite-energy signals have finite bandwidth and
finite duration.

The dimensionality of a signal set is modified accordingly.? We say that a set G

of signals has approximate dimension n at level € during the interval (—%7 %) if

there is a fixed collection of n = n(T, €) signals, say {11(t),...,¥n(t)}, such that
over the interval (—Z, L) every signal in G is indistinguishable at level € from some

signal of the form ) . | a;1;(¢). That is, we require for each h(t) € G that there

exists ay,...,a, such that h(t)1{t € (=%, L)} and 37, aibs(t)1{t € (=%, L)}

are indistinguishable at level e. We further require that n be the smallest such
number. We can now state the main result (without proof).

THEOREM 4.8 (Slepian) Let G, be the set of all signals frequency-limited to

(—%, %) and time-limited to (—%, %) at level n. Let n(W,T,n,¢€) be the approx-

imate dimension of G, at level ¢ during the interval (—%7 %) Then, for every
€>1,
i PV Tone)
T—o0 T
. n(W,T,n,e)
Wi W

O

In essence, this result says that for an arbitrary time interval (a,b) of length T
and an arbitrary frequency interval (c,d) of width W, in the limit of large 7" and
W, the set of finite-energy signals that are time-limited to (a,b) and frequency-
limited to (c,d) is spanned by TW orthonormal functions. For later reference we
summarize this by the expression

n=TW, (4.5)

w9

where the on top of the equal sign is meant to remind us that the relationship
holds in the limit of large values for W and T'.

Unlike Slepian’s bandwidth definition, which applies also to complex-valued
signals, the bandwidth definitions of Appendix 4.9 have been conceived with real-
valued signals in mind. If s(¢) is real-valued, the conjugacy constraint implies
that [s=(f)| is an even function.® If, in addition, the signal is baseband, then
it is frequency-limited to some interval of the form (—B, B) and, according to a
well-established practice, we say that the signal’s bandwidth is B (not 2B). To
avoid confusions, we use the letter W for bandwidths that account for positive and

2 We do not require that this signal set be closed under addition and under multiplication
by scalars, i.e. we do not require that it forms a vector space.

3 See Section 7.2 for a review of the conjugacy constraint.
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negative frequencies and use B for so-called single-sided bandwidths. (We may call
W a double-sided bandwidth.)

A result similar to (4.5) can be formulated for other meaningful definitions of
time and frequency limitedness. The details depend on the definitions but the
essence does not. What remains true for many meaningful definitions is that,
asymptotically, there is a linear relationship between WT and n.

Two illustrative examples of this relationship follow. To avoid annoying calcula-
tions, for each example, we take the freedom to use the most convenient definition
of duration and bandwidth.

EXAMPLE 4.9 Let ¢(t) = \/LTf sinc(t/T,) and

vr(f) = VITI{f € [-1/(2T3), 1/ (2T)]}

be a normalized pulse and its Fourier transform. Let () = »(t—1Ts),1 =1,...,n.
The collection B = {¢1(t),...,¥n(t)} forms an orthonormal set. One way to see
that ¥;(t) and v;(t) are orthogonal to each other when i # j is to go to the
Fourier domain and use Parseval’s relationship. (Another way is to evoke Theorem
5.6 of Chapter 5.) Let G be the space spanned by the orthonormal basis B. It
has dimension n by construction. All signals of G are strictly frequency-limited to
(=W/2,W/2) for W = 1/Ts and time-limited (for some n) to (0,T) for T = nTs.
For this example WT = n. O

EXAMPLE 4.10 If we substitute an orthonormal basis {11(t), ..., v¥n(t)} with the
related orthonormal basis {p1(t),...,on(t)} obtained via the relationship ¢;(t) =
\/Ewi(bt) for some b > 1,4 =1,...,n, then all signals are time-compressed and
frequency-expanded by the same factor b. This example shows that we can trade W
for T without changing the dimensionality of the signal space, provided that WT
is kept constant. O

Note that, in this section, n is the dimensionality of the signal space that may
or may not be related to a codeword length (also denoted by n).

The relationship between n and WT establishes a fundamental relationship
between the discrete-time and the continuous-time channel model. It says that
if we are allowed to use a frequency interval of width W Hz during T seconds,
then we can make approximately (asymptotically exactly) up to WT uses of the
equivalent discrete-time channel model. In other words, we get to use the discrete-
time channel at a rate of up to W channel uses per second.

The symmetry of (4.5) implies that time and frequency are on an equal footing
in terms of providing the degrees of freedom exploited by the discrete-time channel.
It is sometimes useful to think of 7" and W as the width and height of a rectangle
in the time—frequency plane, as shown in Figure 4.6. We associate such a rectangle
with the set of signals that have the corresponding time and frequency limitations.
Like a piece of land, such a rectangle represents a natural resource and what
matters for its exploitation is its area.

The fact that n can grow linearly with WT and not faster is bad news for block-
orthogonal signaling. This means that n cannot grow exponentially in k& unless
WT does the same. In a typical system, W is fixed by regulatory constraints



4.6

4.6. Bit-by-bit versus block-orthogonal 145

T

Figure 4.6. Time—frequency plane.

and T grows linearly with k. (T is essentially the time it takes to send k bits.)
Hence WT cannot grow exponentially in k, which means that block-orthogonal
is not scalable. Of the four examples studied in Section 4.4, only bit-by-bit on
a pulse train seems to be a viable candidate for large values of k, provided that
we can make it more robust to additive white Gaussian noise. The purpose of
the next section is to gain valuable insight into what it takes to achieve this
goal.

Bit-by-bit versus block-orthogonal

We have seen that the message error probability goes to 1 in bit-by-bit on a pulse
train and goes to 0 (exponentially fast) in block-orthogonal signaling. The union
bound is quite useful for understanding what goes on.

In computing the error probability when message i is transmitted, the union
bound has one term for each j # i. The dominating terms correspond to the signals
c;j that are closest to c;. If we neglect the other terms, we obtain an expression of
the form

P.(i) = NdQ<§—:>7

where Ny is the number of dominant terms, i.e. the number of nearest neigh-
bors to ¢;, and d,, is the minimum distance, i.e. the distance to a nearest
neighbor.

For bit-by-bit on a pulse train, there are k closest neighbors, each neighbor
obtained by changing ¢; in exactly one component, and each of them is at distance
2/& from c;. As k increases, N, increases and Q(é—’;) stays constant. The increase
of N4 makes P,(i) increase.

Now consider block-orthogonal signaling. All signals are at the same distance
from each other. Hence there are N; = 25— 1 nearest neighbors to ¢;, all at distance
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dm = V2E = /2kE&,. Hence

2 ) 29PN T 82 ) TP T2 )
Ng=2"—1=exp(kln2) — 1.

We see that the probability that the noise carries a signal closer to a specific

neighbor decreases as exp (—%), whereas the number of nearest neighbors

increases as exp(k In 2). For 4’%’2 > In 2 the product decreases, otherwise it increases.

In essence, to reduce the error probability we need to increase the minimum
distance. If the number of dimensions remains constant, as in the first two examples
of Section 4.4, the space occupied by the signals becomes crowded, the minimum
distance decreases, and the error probability increases. For block-orthogonal signal-
ing, the signal’s norm increases as v/k&, and, by Pythagoras, the distance is a factor
/2 larger than the norm — hence the distance grows as /2k&. In bit-by-bit on a
pulse train, the minimum distance remains constant. As we will see in Chapter 6,
sophisticated coding techniques in conjunction with a generalized form of bit-by-bit
on a pulse train can reduce the error probability by increasing the distance profile.

Summary

In this chapter we have introduced new design parameters and performance meas-
ures. The ones we are mostly concerned with are as follows.

e The cardinality m of the message set . Since in most cases the message consists
of bits, typically we choose m to be a power of 2. Whether m is a power of 2
or not, we say that a message carries k = log, m bits of information (assuming
that all messages are equiprobable).

e The message error probability P. and the bit error rate P,. The former, also
called block error probability, is the error probability we have considered so
far. The latter can be computed, in principle, once we specify the mapping
between the set of k-bit sequences and the set of messages. Until then, the
only statement we can make about P, is that % < P, < P.. The right bound
applies with equality if a message error always translates into 1-out-of-k bits
being incorrectly reproduced. The left is an equality if all bits are incorrectly
reproduced each time that there is a message error. Whether we care more
about P, or P, depends on the application. If we send a file that contains a
computer program, every single bit of the file has to be received correctly in
order for the transmission to be successful. In this case we clearly want P, to be
small. However, there are sources that are more tolerant to occasional errors.
This is the case of a digitized voice signal. For voice it is sufficient to have P,
small. To appreciate the difference between P, and Py, consider the hypothetical
situation in which one message corresponds to k = 103 bits and 1 bit of every
message is incorrectly reconstructed. Then the message error probability is 1
(every message is incorrectly reconstructed), whereas the bit-error probability
is 1073,
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e The average signal’s energy £ and the average energy per bit &, where & = %
We are typically willing to double the energy to send twice as many bits. In
this case we fix & and let £ be a function of k.

The transmission rate R, = & = % [bits/second].
The single-sided bandwidth B and the two-sided bandwidth W. There are
several meaningful criteria to determine the bandwidth.

e Scalability, in the sense that we ought to be able to communicate bit sequences
of any length (provided we let WT scale in a sustainable way).

e The implementation cost and computational complexity. To keep the discussion
as simple as possible, we assume that the cost is determined by the number of
matched filters in the n-tuple former and the complexity is that of the decoder.

Clearly we desire scalability, high transmission rate, little energy spent per
bit, small bandwidth, small error probability (message or bit, depending on the
application), low cost and low complexity. As already mentioned, some of these
goals conflict. For instance, starting from a given codebook we can trade energy
for error probability by scaling down all the codewords by some factor. In so
doing the average energy will decrease and so will the distance between codewords,
which implies that the error probability will increase. Alternatively, once we have
reduced the energy by scaling down the codewords we can add new codewords at
the periphery of the codeword constellation, choosing their location in such a way
that new codewords do not further increase the error probability. We keep doing
this until the average energy has returned to the original value. In so doing we
trade bit rate for error probability. By removing codewords at the periphery of the
codeword constellation we can trade bit rate for energy. All these manipulations
pertain to the encoder. By acting inside the waveform former, we can boost the
bit rate at the expense of bandwidth. For instance, we can substitute 1;(¢t) with
bi(t) = Vbip; (bt) for some b > 1. This scales the duration of all signals by 1/b with
two consequences. First, the bit rate is multiplied by b. (It takes a fraction b of
time to send the same number of bits.) Second, the signal’s bandwidth expands
by b. (The scaling property of the Fourier transform asserts that the Fourier
transform of ¥ (bt) is Ti‘@b;(%).) These examples are meant to show that there
is considerable margin for trading among bit rate, bandwidth, error probability,
and average energy.

We have seen that, rather surprisingly, it is possible to transmit an increasing
number k of bits at a fixed energy per bit & and to make the probability that even
a single bit is decoded incorrectly go to zero as k increases. However, the scheme
we used to prove this has the undesirable property of requiring an exponential
growth of the time-bandwidth product. Such a growth would make us quickly
run out of time and/or bandwidth even with moderate values of k. In real-world
applications, we are given a fixed bandwidth and we let the duration grow linearly
with k. It is not a coincidence that most signaling methods in use today can be
seen one way or another as refinements of bit-by-bit on a pulse train. This line of
signaling technique will be pursued in the next two chapters.

Information theory is a field that searches for the ultimate trade-offs, regardless
of the signaling method. A main result from information theory is the famous
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formula

w 2P
=—1 14+ —— 4.
¢ =5 toes (14 5 (1.6

P
:Blog2 (].-‘rm) .

It gives a precise value to the ultimate rate C' bps at which we can transmit reliably
over a waveform AWGN channel of noise power spectral density Ny/2 watts/Hz
if we are allowed to use signals of power not exceeding P watts and absolute
(single-sided) bandwidth not exceeding B Hz.

This is a good time to clarify our non-standard use of the words coding, encoder,
codeword, and codebook. We have seen that no matter which waveform signals
we use to communicate, we can always break down the sender into a block that
provides an n-tuple and one that maps the n-tuple into the corresponding wave-
form. This view is completely general and serves us well, whether we analyze or
implement a system. Unfortunately there is no standard name for the first block.
Calling it an encoder is a good name, but the reader should be aware that the
current practice is to say that there is coding when the mapping from bits to
codewords is non-trivial, and to say that there is no coding when the map is trivial
as in bit-by-bit on a pulse train. Making such a distinction is not a satisfactory
solution in our view. An example of a non-trivial encoder will be studied in depth
in Chapter 6.

Calling the second block a waveform former is definitely non-standard, but we
find this name to be more appropriate than calling it a modulator, which is the
most common name used for it. The term modulator has been inherited from the
old days of analog communication techniques such as amplitude modulation (AM)
for which it was an appropriate name.

Appendix: Isometries and error probability

Here we give a formal proof that if we apply an isometry to a codebook and its

decoding regions, then the error probability associated to the new codebook and

the new regions is the same as that of the original codebook and original regions.
Let

()= b exp (- ), 7R
g ’Y - (27TO'2)n/2 exp 20_2 9 ’7 9

so that for Z ~ N(0,021,,) we can write fz(2) = g(||z||). Then for any codebook
C = {co,...,Cm—-1}, decoding regions Ry, ..., Rm—1, and isometry a : R — R"
we have

P.(i) = Pr{Y € R;|codeword ¢; is transmitted}

=/ o(ly = cill)dy
YER;
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(@) aly) — alcs

2 [ allats) ot

®)

- a(y) —a(e;)l)d
/yia(y)éa(Ri)g(H (y) — alei)ll)dy

(c)
=/‘ o(lle - afe:))da
aca(R;)

= Pr{Y € a(R;)|codeword a(c;) is transmitted},

where in (a) we use the distance-preserving property of an isometry, in (b) we use
the fact that y € R; if and only if a(y) € a(R;), and in (c) we make the change
of variable & = a(y) and use the fact that the Jacobian of an isometry is +1. The
last line is the probability of decoding correctly when the transmitter sends a(c;)
and the corresponding decoding region is a(R;).

Appendix: Bandwidth definitions

There are several widely accepted definitions of bandwidth, which we summarize
in this appendix. They are all meant for real-valued baseband functions h(t) that
represent either a signal or an impulse response. Because h(t) is real-valued, |hx(f)]
is an even function. This is a consequence of the conjugacy constraint (see Section
7.2). Baseband means that |hz(f)| is negligible outside an interval of the form
(=B, B), where the meaning of “negligible” varies from one bandwidth definition to
another. Extending to passband signals is straightforward. Here we limit ourselves
to baseband signals because passband signals are treated in Chapter 7.

Since these bandwidth definitions were meant for functions h(t) for which the
essential support of |hx(f)| has the form (—B, B), the common practice is to
say that their bandwidth is B rather than 2B. An exception is the definition of
bandwidth that we have given in Section 4.5, which applies also to complex-valued
signals. As already mentioned, we avoid confusion by using B and W for single-
sided and double-sided bandwidths, respectively.

For each bandwidth definition given below, the reader can find an example in
Exercise 77.

o Absolute bandwidth This is the smallest positive number B such that (—B, B)
is the support of hx(f). As mentioned in the previous paragraph, for signals
that we use in practice the absolute bandwidth is infinite. The signals used in
practice have finite (time-domain) support, which implies that their absolute
bandwidth is co. However, in examples we sometimes use signals that do have
a finite absolute bandwidth.

e 3-dB bandwidth The 3-dB bandwidth, if it exists, is the positive number B

such that [hr(f)2 > BZOL iy the interval T = (~B, B) and |[hz(f)? <

w outside Z. In other words, outside Z the value of |hx(f)| is at least

3-dB smaller than at f = 0.
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n-bandwidth For any number n € (0,1), the n-bandwidth is the smallest
positive number B such that

B 0o
| e = 0= [ R
It defines the interval (—B, B) that contains a fraction (1 — ) of the signal’s
energy. Reasonable values for n are n = 0.1 and n = 0.01. (Recall that, by
Parseval’s relationship, the integral on the right equals the squared norm |[|h|2.)
o First zero-crossing bandwidth The first zero-crossing bandwidth, if it exists,
is that B for which |hz(f)]| is positive in Z = (—B, B) and vanishes at =B.
e FEquivalent noise bandwidth This is B if

[ nerPdr = 251200
The name comes from the fact that if we feed with white noise a filter of
impulse response h(t) and we feed with the same input an ideal lowpass filter
of frequency response |hz(0)|1{f € [—B, B]}, then the output power is the
same in both situations.

e Root-mean-square (RMS) bandwidth ~This is defined if [ |hr(f)[*df < oo,
in which case it is

J7o PPz (f )2dr]*
b= 2
S Ihr (f)[2df
To understand this definition, notice that the function g(f) := %

non-negative, even, and integrates to 1. Hence it is the density of some zero-

mean random variable and B = /[ f2g(f)df is the standard deviation of that

random variable.

4.10 Exercises

Note: The exercises are available only in the official copy provided by the editor.

wo(t) w1 (t)
1 1 -
or
-t -t
T 2T
A

Figure 4.7.
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Symbol-by-symbol on a pulse
train: Second layer revisited

Introduction

In this and the following chapter, we focus on the signal design problem. This
chapter is devoted to the waveform former and its receiver-side counterpart, the
n-tuple former. In Chapter 6 we focus on the encoder/decoder pair.

In principle, the results derived in this chapter can be applied to both baseband
and passband communication. However, for reasons of flexibility, hardware costs,
and robustness, we design the waveform former for baseband communication and
assign to the up-converter, discussed in Chapter 7, the task of converting the
waveform-former output into a signal suitable for passband communication.

Symbol-by-symbol on a pulse train will emerge as a natural signaling technique.
To keep the notation to the minimum, we write

w(t) =Y st — j7T) (5.1)
j=1

n

instead of w;(t) = > ;_; ¢;j9(t — jT'). We drop the message index i from w;(t)
because we will be studying properties of the pulse 1(t), as well as properties of
the stochastic process that models the transmitter output signal, neither of which
depends on a particular message choice. Following common practice, we refer to
s; as a symbol.

EXAMPLE 5.1 (PAM signaling) PAM signaling (PAM for short) is indeed symbol-
by-symbol on a pulse train, with the symbols taking value in a PAM alphabet as
described in Figure 2.9. It depends on the encoder whether or not all sequences
with symbols taking value in the given PAM alphabet are allowed. As we will see
in Chapter 6, we can decrease the error probability by allowing only a subset of the
sequences. O

We have seen the acronym PAM in three contexts that are related but should
not be confused. Let us review them. (i) PAM alphabet as the constellation of

! The two chapters are essentially independent and could be studied in the reverse order,
but the results of Section 5.3 (which is independent of the other sections) are needed
for a few exercises in Chapter 6. The chosen order is preferable for continuity with the
discussion in Chapter 4.

159
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points of Figure 2.9. (ii) Single-shot PAM as in Example 3.8. We have seen that
this signaling method is not appropriate for transmitting many bits. Therefore we
will not discuss it further. (iii) PAM signaling as in Example 5.1. This is symbol-
by-symbol on a pulse train with symbols taking value in a PAM alphabet. Similar
comments apply to QAM and PSK, provided that we view their alphabets as
subsets of C rather than of R?. The reason it is convenient to do so will become
clear in Chapter 7.

As already mentioned, most modern communication systems rely on PAM,
QAM, or PSK signaling. In this chapter we learn the main tool to design the
pulse ¥(t).

The chapter is organized as follows. In Section 5.2, we develop an instructive
special case where the channel is strictly bandlimited and we rediscover symbol-
by-symbol on a pulse train as a natural signaling technique for that situation.
This also forms the basis for software-defined radio. In Section 5.3 we derive the
expression for the power spectral density of the transmitted signal for an arbitrary
pulse when the symbol sequence constitutes a discrete-time wide-sense stationary
process. As a preview, we discover that when the symbols are uncorrelated, which
is frequently the case, the spectrum is proportional to [#(f)|?. In Section 5.4, we
derive the necessary and sufficient condition on |x(f)[? in order for {¢;(t)};jez
to be an orthonormal set when t;(t) = ¢(t — jT'). (The condition is that [z (f)|?
fulfills the so-called Nyquist criterion.)

The ideal lowpass case

Suppose that the channel is as shown in Figure 5.1, where N(t) is white Gaussian
noise of spectral density Ny/2 and the filter has frequency response

hf<f>={1’ nes

0, otherwise.

This is an idealized version of a lowpass channel.

Because the filter blocks all the signal’s components that fall outside the fre-
quency interval [—B, B], without loss of optimality we consider signals that are
strictly bandlimited to [—B, B]. The sampling theorem, stated below and proved
in Appendix 5.12, tells us that such signals can be described by a sequence of

2

t)
AWGN, o

Figure 5.1. Lowpass channel model.
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numbers. The idea is to let the encoder produce these numbers and let the wave-
form former do the “interpolation” that converts the samples into the desired w(t).

THEOREM 5.2 (Sampling theorem) Let w(t) be a continuous Lo function (possi-
bly complez-valued) and let its Fourier transform wr(f) vanish for f ¢ [-B, B].
Then w(t) can be reconstructed from the sequence of T-spaced samples w(nT),
n € Z, provided that T < ﬁ, Specifically,

oo

w(t) = Z w(nT) sinc (% - n), (5.2)

n=—oo

sin(7t) ] 0O

where sinc(t) = =7

In the sampling theorem, we assume that the signal of interest is in L£o. Essen-
tially, Lo is the vector space of finite-energy functions, and this is all you need
to know about Lo to get the most out of this text. However, it is recommended
to read Appendix 5.9, which contains an informal introduction of Lo, because we
often read about L5 in the technical literature. The appendix is also necessary
to understand some of the subtleties related to the Fourier transform (Appendix
5.10) and Fourier series (Appendix 5.11). Our reason for referring to Lo is that it
is necessary for a rigorous proof of the sampling theorem. All finite-energy signals
that we encounter in this text are Lo functions. It is safe to say that all finite-energy
functions that model real-world signals are in Lo.

In the statement of the sampling theorem, we require continuity. Continuity
does not follow from the condition that w(t) is bandlimited. In fact, if we take a
nice (continuous and £5) function and modify it at a single point, say at t = T/2,
then the original and the modified functions have the same Fourier transform.
In particular, if the original is bandlimited, then so is the modified function.
The sequence of samples is identical for both functions; and the reconstruction
formula (5.2) will reconstruct the original (continuous) function. This eventuality
is not a concern to practising engineers, because physical signals are continuous.
Mathematically, when the difference between two Lo functions is a zero-norm
function, we say that the functions are Lo equivalent (see Appendix 5.9).

To see what happens when we omit continuity in the sampling theorem, consider
the situation where a continuous signal that fulfills the conditions of the sampling
theorem is set to zero at all sampling points. Once again, the Fourier transform of
the modified signal is identical to that of the original one. Yet, when we sample the
modified signal and use the samples in the “reconstruction formula”, we obtain
the all-zero signal.

The sinc pulse used in the statement of the sampling theorem is not normalized

to unit energy. If we normalize it, specifically define 3 (t) = ﬁ sinc(%), then
{¥(t—4T)}52 _  forms an orthonormal set. (This is implied by Theorem 5.6. The

impatient reader can verify it by direct calculation, using Parseval’s relationship.
Useful facts about the sinc function and its Fourier transform are contained in
Appendix 5.10.) Thus (5.2) can be rewritten as

(oo}

wi) = 3 wu(t=iT) i) = s

t

T)’ (5.3)

j=—o0
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53 ;9 (t —47T) R(t) Y;

— () ? wret) b

Waveform N(t) n-tuple
Former Former

Figure 5.2. Symbol-by-symbol on a pulse train obtained naturally
from the sampling theorem.

where s; = w(jT)VT. Hence a signal w(t) that fulfills the conditions of the
sampling theorem is one that lives in the inner product space spanned by {4 (¢t —
JT)}32 _ - When we sample such a signal, we obtain (up to a scaling factor) the
coefficients of its orthonormal expansion with respect to the orthonormal basis
{0t = JT))E .

Now let us go back to our communication problem. We have just seen that any
physical (continuous and L9) signal w(t) that has no energy outside the frequency
range [—B, B] can be synthesized as w(t) =}, s;9(t—jT'). This signal has exactly
the form of symbol-by-symbol on a pulse train. To implement this signaling method
we let the jth encoder output be s; = w(jT)VT, and let the waveform former be
defined by the pulse ¥(t) = % sinc(£). The waveform former, the channel, and
the n-tuple former are shown in Figure 5.2.

It is interesting to observe that we use the sampling theorem somewhat back-
wards, in the following sense. In a typical application of the sampling theorem,
the first step consists of sampling the source signal, then the samples are stored or
transmitted, and finally the original signal is reconstructed from the samples. To
the contrary, in the diagram of Figure 5.2, the transmitter does the (re)construction
as the first step, the (re)constructed signal is transmitted, and finally the receiver
does the sampling.

Notice also that *(—t) = ¥(t) (the sinc function is even and real-valued) and
its Fourier transform is

vr(f) = {ﬁ 1< o

0, otherwise

(Appendix 5.10 explains an effortless method for relating the rectangle and the sinc
as Fourier pairs). Therefore the matched filter at the receiver is a lowpass filter.
It does exactly what seems to be the right thing to do — remove the out-of-band
noise.

EXAMPLE 5.3 (Software-defined radio) The sampling theorem is the theoretical
underpinning of software-defined radio. No matter what the communications stan-
dard is (GSM, CDMA, EDGE, LTE, Bluetooth, 802.11, etc.), the transmitted
signal can be described by a sequence of numbers. In a software-defined-radio
implementation of a transmitter, the encoder that produces the samples is a com-
puter program. Only the program is aware of the standard being implemented.
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The hardware that converts the sequence of numbers into the transmitted signal
(the waveform former of Figure 5.2) can be the same off-the-shelf device for all
standards. Similarly, the receiver front end that converts the received signal into
a sequence of numbers (the n-tuple former of Figure 5.2) can be the same for
all standards. In a software-defined-radio receiver, the decoder is implemented in
software. In principle, any past, present, and future standard can be implemented
by changing the encoder/decoder program. The sampling theorem was brought to
the engineering community by Shannon [24] in 1948, but only recently we have the
technology and the tools needed to make software-defined radio a viable solution.
In particular, computers are becoming fast enough, real-time operating systems
such as RT Linux make it possible to schedule critical events with precision, and
the prototyping is greatly facilitated by the availability of high-level programming-
languages for signal-processing such as MATLAB. O

In the rest of the chapter we generalize symbol-by-symbol on a pulse train. The
goal is to understand which pulses 1 (t) are allowed and to determine their effect
on the power spectral density of the communication signal they produce.

Power spectral density

A typical requirement imposed by regulators is that the power spectral density
(PSD) (also called power spectrum) of the transmitter’s output signal be below
a given frequency-domain “mask”. In this section we compute the PSD of the
transmitter’s output signal modeled as

o0

X(t)= Y Xi(t—il -o), (5.4)

i=—00

where {X;}32_ is a zero-mean wide-sense stationary (WSS) discrete-time pro-
cess, £(t) is an arbitrary Lo function (not necessarily normalized or orthogonal to
its T-spaced time translates), and © is a random dither (or delay) independent
of {X;}32_ . and uniformly distributed in the interval [0, T). (See Appendix 5.13
for a brief review on stochastic processes.)

The insertion of the random dither ©, not considered so far in our signal’s model,
needs to be justified. It models the fact that a transmitter is switched on at a time
unknown to an observer interested in measuring the signal’s PSD. For this reason
and because of the propagation delay, the observer has no information regarding
the relative position of the signal with respect to his own time axis. The dither
models this uncertainty. Thus far, we have not inserted the dither because we did
not want to make the signal’s model more complicated than necessary. After a
sufficiently long observation time, the intended receiver can estimate the dither
and compensate for it (see Section 5.7). From a mathematical point of view, the
dither makes X (t) a WSS process, thus greatly simplifying our derivation of the
power spectral density.
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In the derivation that follows we use the autocovariance
Kxli] == E[(Xj4: — E[X;4:))(X; — E[X;])"] = E[X; 1. X]],

which depends only on 4 since, by assumption, {X;}5° is WSS. We use also

]7 oo

the self-similarity function of the pulse £(7), defined as

)= /:)O Ela+ 1) (a)da. (5.5)

(Think of the definition of an inner product if you tend to forget where to put the
* in the above definition.)

The process X(t) is zero-mean. Indeed, using the independence between
X; and © and the fact that E[X;] = 0, we obtain E[X(¢)] = Y ;= _ E[X]]
E[§(t —iT - ©)] =

The autocovariance of X (t) is

Kx(t+7,t)=E[(X(t+7) - E[X(t+7)]) (X(t) — E[X(8)])"]
=E[X(t+7)X*(t)]

E[ i Xt +1—iT —©) i X7 (t—jT - 0)

1=—00 j=—o00

- [i i X, XE(t+ 7 —iT — ©)&*(t — jT — ©)

1=—00 j=—00

= i i E[X;XJ|E[E(t +7 —iT — ©)¢*(t — jT — O)]

1=—00 j=—00

= > > Kx[i—jIB[EEt+7—iT — ©)&*(t — jT - ©)]
i—fooj—foo

© Z Kx[k Z /§t+T—zT 0)e* (t — iT + kT — 0)do
k=—o0 i1=—00

(©) k_ZOOKX[k]%/_ €t +7 — O (t+ kT — 0)do

where in (a) we use the fact that X;X; and © are independent random variables,
in (b) we make the change of variable k =i — j, and in (c) we use the fact that
for an arbitrary function u : R — R, an arbitrary number a € R, and a positive
(interval length) b,

Z / w(z + ib)dz = /OO w(z)da. (5.6)

1=—00 -0
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(If (5.6) is not clear to you, picture integrating from a to a+ 2b by integrating first
from a to a + b, then from a + b to a 4+ 2b, and summing the results. This is the
right-hand side. Now consider integrating both times from a to a + b, but before
you perform the second integration you shift the function to the left by b. This is
the left-hand side.)

We see that Kx(t + 7,t) depends only on 7. Hence we simplify notation and
write K x(7) instead of Kx(t + 7,t). We summarize:

ZKX Rg T — kT). (5.7)

The process X (t) is WSS because neither its mean nor its autocovariance
depend on t.

For the last step in the derivation of the power spectral density, we use the
fact that the Fourier transform of Re(7) is |££(f)|?. This follows from Parseval’s

relationship,
= [ &a+ g (ada

- [ e ez

- / Ex()? exp(3207 f)df.

Now we can take the Fourier transform of Kx(7) to obtain the power spectral
density

Sx(f) |ff Z Kx[k] exp(—j2nkfT). (5.8)

The above expression is in a form that suits us. In many situations, the infinite
sum has only a small number of non-zero terms. Note that the summation in (5.8)
is the discrete-time Fourier transform of {Kx[k]}72 __, evaluated at f7. This is
the power spectral density of the discrete-time process {X;}5° If we think of

% as being the power spectral density of £(t), we can interpret Sx(f) as
being the product of two PSDs, that of £(t) and that of {X;}52_ .

In many cases of interest, Kx[k] = E1{k = 0}, where £ = E[|X;|?]. In this case
we say that the zero-mean WSS process {X;}2° is uncorrelated. Then (5.7) and
(5.8) simplify to

i=—00"

i=—00

Kx(r)=¢& T (5.9)
Sx(f) = 57|ff§f)|2. (5.10)

EXAMPLE 5.4  Suppose that {X;}°__ is an independent and uniformly dis-
tributed sequence taking values in {£VE}, and &(t) = \/1/Tsinc(%). Then
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Kx[k] =E€1{k =0} and

Sx(f) = €{f € [-B, B},

where B = =

57+ This is consistent with our intuition. When we use the pulse
sinc(%), we expect a flat power spectrum over [—B, B] and no power outside this
interval. The energy per symbol is €, hence the power is %, and the power spectral

density s % =¢. O

In the next example, we work out a case where Kx[k] # £1{k = 0}. In this
case, we say that the zero-mean WSS process {X;}2_ _ is correlated.
EXAMPLE 5.5 (Correlated symbol sequence) Suppose that the pulse is as in
Example 5.4, but the symbol sequence is now the output of an encoder described
by X; = V2E(B; — Bi_s), where {B;}32_ . is a sequence of independent random
variables that are uniformly distributed over the alphabet {0,1}. After verifying
that the symbol sequence is zero-mean, we insert X; = \/%(BZ — B;_2) into

Kx[k] = E[X; £ X}] and obtain

g, k=0,
Kxlk] =1 —=&/2, k=42,
0, otherwise,

Sx(f) = %5(1 - %ej‘*ﬂfT - %e*j‘*ﬂfT) = 2 sin® (27 fT) 11— 1 (f).
(5.11)

When we compare this example to Example 5.4, we see that this encoder shapes
the power spectral density from a rectangular shape to a squared sinusoid. Notice
that the spectral density vanishes at f = 0. This is desirable if the channel blocks
very low frequencies, which happens for instance for a cable that contains ampli-
fiers. To avoid amplifying offset voltages and leaky currents, amplifiers are AC
(alternating current) coupled. This means that amplifiers have a highpass filter at
the input, often just a capacitor, that blocks DC (direct current) signals. Notice
that the encoder is a linear time-invariant system (with respect to addition and
multiplication in R). Hence the cascade of the encoder and the pulse forms a
linear time-invariant system. It is immediate to verify that its impulse response is
E(t) = &(t) — &(t — 2T"). Hence in this case we can write

X() =Y Xig(t—1T) = > BiE(t—IT).
l l

The technique described in this example is called correlative encoding or partial
response signaling. O

The encoder in Example 5.5 is linear with respect to (the field) R and this is
the reason its effect can be incorporated into the pulse but this is not the case in
general (see Exercise 7?7 and see Chapter 6).
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Nyquist criterion for orthonormal bases

In the previous section we saw that symbol-by-symbol on a pulse train with
uncorrelated symbols — a condition often met — generates a stochastic process of
power spectral density &5 WF s , where & is the symbol’s average energy. This
is progress, because it tellb us how to choose ¥(t) to obtain a desired power
spectral density. But remember that v (¢) has another important constraint: it
must be orthogonal to its T-spaced time translates. It would be nice to have
a characterization of |¢=(f)|? that is simple to work with and that guarantees
orthogonality between ¢ (t) and ¢ (t — IT) for all I € Z. This seems to be asking
too much, but it is exactly what the next result is all about.
So, we are looking for a frequency-domain equivalent of the condition

/jo Wt — nT)* (t)dt = 1{n = 0}. (5.12)

The form of the left-hand side suggests using Parseval’s relationship. Doing so
yields

I{n =10} = / Yt —nT)Y*(t)dt = / VrE(HVE(f)e —ﬂmdef

[ Py

/ S (S — ey

7r keZ

(b)/ Z|w}_ f_ n —j27'randf

7 kEZ

-

O[T gpe iy

N
'ﬁ""

where in (a) we use again (5.6) (but in the other direction), in (b) we use the fact
that e~327T(f~1) = ¢=327nTf and in (c) we introduce the function

o) =3 |or (1-7)

kEZ
Notice that g(f) is a periodic function of period 1/7 and the right-hand side of (c)
is 1/T times the nth Fourier series coefficient A,, of the periodic function g(f). (A
review of Fourier series is given in Appendix 5.11.) Because Ay = T and Ay = 0 for
k # 0, the Fourier series of g(f) is the constant T. Up to a technicality discussed
below, this proves the following result.

2

THEOREM 5.6 (Nyquist’s criterion for orthonormal pulses) Let 9(t) be an Lo
function. The set {¢(t—jT)}2 consists of orthonormal functions if and only if

j=—00
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Lim |¢;(f—§)|2:T7 FER. (5.13)

k=—o00

O

A frequency-domain function arz(f) is said to satisfy Nyquist’s criterion with
parameter p if, for all f € R, Lim.> 2 ar(f— %) = p. Theorem 5.6 says that
{i(t — jT)}52_ ., is an orthonormal set if and only if [)7(f)|* satisfies Nyquist’s
criterion with parameter 7.

The lL.i.m. in (5.13) stands for limit in Lo norm. It means that as we add
more and more terms to the sum on the left-hand side of (5.13) it becomes Lo
equivalent to the constant on the right-hand side. The 1.i. m. is a technicality due
to the Fourier series. To see that the l.i.m. is needed, take a 1z (f) such that
|7 (f)|? fulfills (5.13) without the l i.m. An example of such a function is the

rectangle |t (f)[* = T for f € [~55, 57) and zero elsewhere. Now, take a copy
|¢;( )|? of |¥=(f)|? and modify it at an arbitrary isolated point. For instance, we
set 17(0) = 0. The inverse Fourier transform of 4 (f) is still 1(t). Hence 9(t) is
orthogonal to its T-spaced time translates. Yet (5.13) is no longer fulfilled if we
omit the l.i.m. For our specific example, the left and the right differ at exactly
one point of each period. Equality still holds in the 1.i.m. sense. In all practical
applications, ¥ £(f) is a smooth function and we can ignore the l.i.m. in (5.13).

Notice that the left side of the equality in (5.13) is periodic with period 1/7.
Hence to verify that [1)#(f)|? fulfills Nyquist’s criterion with parameter T, it is
sufficient to verify that (5.13) holds over an interval of length 1/T.

EXAMPLE 5.7 The following functions satisfy Nyquist’s criterion with param-
eter T'.

(a) |¢J"( )| T]l{ 2T <f< QT}( )
(b) T2 =Teos?(3/T) -7 < f < 7}(f
(c) [br(f)? T(l—TIfI)Il{ + < f< 7}

The following comments are in order.

(f)-
f)- O

(a) (Constant but not T') 1(t) is orthogonal to its T-spaced time translates even
when the left-hand side of (5.13) is £5 equivalent to a constant other than T,
but in this case ||1(#)]|? # 1. This is a minor issue, we just have to scale the
pulse to make it unit-norm.

(b) (Minimum bandwidth) A function |7 (f)|? cannot fulfill Nyquist’s criterion
with parameter T if its support is contained in an interval of the form [ B, B]
with 0 < B < % Hence, the minimum bandwidth to fulfill Nyquist’s
criterion is %

(c) (Test for bandwidths between 5= and %) If [ (f)|* vanishes outside [—%, 7],
the Nyquist crlterlon is satisfied if and only if [ (57 —€) 2+ [Yr(— 57 —¢€)|* =
T for € € [— 5, 5| (see Figure 5.3). If, in addition, ¢( ) is real- valued which
is typically the case, then |7=(—f)|? = [¢#(f)|?. In this case, it is sufficient
that we check the positive frequencies, i.e. Nyquist’s criterion is met if
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1 2

2
+ ‘lbf(— +e)

1
‘%f(ﬁ —€) 5T

1
=T — 1.
’ EG{O’QT}

This means that |[¢r(55)|> = £ and the amount by which the function
[v7(f)|? varies when we go from f = % to f = % — € is compensated by
the function’s variation in going from f = % to f = % + e. For examples
of such a band-edge symmetry see Figure 5.3, Figure 5.6a, and the functions
(b) and (c) in Example 5.7. The bandwidth By = 5 is sometimes called the

Nyquist bandwidth.

r [Wr(gr — O + Wr(—gp )P =T

lr(f)I? >< lpr(f — )1
| !

1
L
2T

Sl

Figure 5.3. Band-edge symmetry for a pulse |1)7(f)|? that vanishes outside

[— %, %] and fulfills Nyquist’s criterion.

(d) (Test for arbitrary finite bandwidths) When the support of [1x(f)|? is wider
than %, it is harder to see whether or not Nyquist’s criterion is met with
parameter T. A convenient way to organize the test goes as follows. Let Z
be the set of integers ¢ for which the frequency interval of width % centered
at fi = 5 + i intersects with the support of [¢x(f)[?. For the example of
Figure 5.4, T = {—3,—2,1,2}, and the frequencies f;, i € Z are marked with
a “x”. For each i € T, we consider the function [¢x(f; + €)[?, € € [~ 55, 37),
as shown in Figure 5.5. Nyquist’s criterion is met if and only if the sum of
these functions,

90 =Sl + s <€ | gr 7]

is Lo equivalent to the constant 7. From Figure 5.5, it is evident that the
test is passed by the [ 7(f)|? of Figure 5.4.

lr(f)I?
T
' ﬁ
! I S — | -/
1 3 1 2 1 1 1 1 1 2
3T T T 3T T T -z 0 3T st T a7 T T

Figure 5.4. A |[¢x(f)[? of support wider than =+ that fulfills
Nyquist’s criterion.
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[WF(fi + o) [y (fi + o)
r l r
3 3
T f Y > € > €
L 0 L L 0 L
2T 2T 2T 2T
(a) i=-3 (b) i=—2
[r(fi + ) [Y7(fi + )|
r ‘ r
3 3
T T T € > €
_ L 0 L __L 0 1
2T 2T 2T T
(c)i=1 (d)i=

Figure 5.5. Functions of the form [¢#(f; +¢€)[* for € € [~ 5=, 5]
and i € T = {-3,—-2,1,2}. The sum-function g(e) is the constant

function T for € € [— 55, 5]

Root-raised-cosine family

For every 8 € (0,1), and every T' > 0, the raised-cosine function

T, fl < L2
(AP =3 % (1+eos [ (111-52)]). SE<IfI<%f
0, otherwise

fulfills Nyquist’s criterion with parameter T (see Figure 5.6a for a raised-cosine
function with g = %) The expression might look complicated at first, but one can
easily derive it by following the steps in Exercise 77.

By using the relationship %(1 + cos ) = cos? 3, we can take the square root of
|¥7(f)|? and obtain the root-raised-cosine function (also called square-root raised-
cosine function)

VT, If| <8
Ur(f) = VTeos |[Z5(If - 52) |, 52 <Ifl <52
0, otherwise.

The inverse Fourier transform of ¢ z(f), derived in Appendix 5.14, is the root-
raised-cosine impulse response (also called root-raised-cosine pulse or impulse
response of a root-raised cosine filter)?

2 A root-raised-cosine impulse response should not be confused with a root-raised-cosine
function.
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lx ()
T
i f

(a)

Y(t)
N— t
T

(b)

Figure 5.6. (a) Raised-cosine function |[¢)#(f)|? with 8 = 1;
(b) corresponding pulse ().

_4p cos[(1+B)mk] + U8 sine [(1 - B)£]
Y(t) = T L (a6L) 7 (5.14)

where sinc(z) = % The pulse #(t) is plotted in Figure 5.6b for 8 = 3.

At ¢t = :&:%, both the numerator and the denominator of (5.14) vanish. Using
L’Hospital’s rule we determine that

tiiin% b(t) = % ((w +2)sin (f) + (7 — 2) cos (f)) .

The root-raised-cosine method is the most popular way of constructing pulses
¥(t) that are orthogonal to their T-spaced time translates. When 8 = 0, the pulse
becomes ¥ (t) = 1/1/T sinc(7).

Figure 5.7a shows a train of root-raised-cosine impulse responses, with each pulse
scaled by a symbol taking value in {£1}. Figure 5.7b shows the corresponding
sum-signal.

A root-raised-cosine impulse response (t) is real-valued, even, and of infinite
support (in the time domain). In practice, such a pulse has to be truncated to
finite length and to make it causal, it has to be delayed. In general, as 8 increases
from 0 to 1, the pulse 1 (t) decays faster. The faster a pulse decays, the shorter
we can truncate it without noticeable difference in its main property, which is to
be orthogonal to its shifts by integer multiples of T'. The eye diagram, described
next, is a good way to visualize what goes on as we vary the roll-off factor 5. The
drawback of increasing f is that the bandwidth increases as well.
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(a) (b)

Figure 5.7. (a) Superimposed sequence of scaled root-raised-cosine impulse
responses of the form s;9(t —4i7T'), i =0,...,3, with symbols s; taking value
in {£1}, and (b) corresponding sum-signal. The design parameters are

B =0.5 and T = 10. The abscissa is the time.

Eye diagrams

The fact that ¢ (¢) has unit-norm and is orthogonal to (¢ — ¢T") for all non-zero
integers ¢, implies that the self-similarity function Ry (7) satisfies

1, i=0

. . (5.15)
0, ¢ non-zero integer.

Ry (iT) = {

This is important for the following reason. The noiseless signal w(t) = >, s;(t —
iT) applied at the input of the matched filter of impulse response 1*(—t) produces
the noiseless output

y(t) = siRy(t —iT) (5.16)
that, when sampled at ¢t = j7T, yields

y(iT) = Z siBRy ((j —1)T) = s;.

Figure 5.8 shows the matched filter outputs obtained when the functions of
Figure 5.7 are applied at the filter’s input. Specifically, Figure 5.8a shows the
train of symbol-scaled self-similarity functions. From the figure we see that (5.15)
is satisfied. (When a pulse achieves its maximum, which has value 1, the other
pulses vanish.) We see it also from Figure 5.8b, in that the signal y(t) takes values
in the symbol alphabet {£1} at the sampling times ¢ = 0, 10, 20, 30.

If ¢ (¢) is not orthogonal to ¢ (t—iT"), which can happen for instance if a truncated
pulse is made too short, then Ry (¢1") will be non-zero for several integers i. If we
define I; = Ry (iT"), then we can write
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(a) (b)

Figure 5.8. Each pulse in (a) has the form s;Ry(t —4T),7i=0,...,3.
It is the response of the matched filter of impulse response *(—t) to
the input s;o(t —iT'). Part (b) shows y(¢). The parameters are as in

Figure 5.7.

y(T) = Z Silj—i-

The fact that the noiseless y(jT) depends on multiple symbols is referred to as
inter-symbol interference (ISI).

There are two main causes to ISI. We have already mentioned one, specifically
when Ry (7) is non-zero for more than one sample. IST happens also if the matched-
filter output is not sampled at the correct times. In this case, we obtain y(jT+A) =
>8Ry ((j —9)T + A), which is again of the form Y, s;ilj_; for [; = Ry(iT + A).

The eye diagram is a technique that allows us to visualize if there is IST and to
see how critical it is that the sampling time be precise. The eye diagram is obtained
from the matched-filter output before sampling. Let y(t) = Y, siRy (t — iT) be
the noiseless matched filter output, with symbols taking value in some discrete set
S. For the example that follows, S = {£1}. To obtain the eye diagram, we plot
the superposition of traces of the form y(¢t —T"), t € [T, T, for various integers
i. Figure 5.9 gives examples of eye diagrams for various roll-off factors and pulse
truncation lengths. Parts (a), (c), and (d) show no sign of ISI. Indeed, all traces
go through +1 at ¢ = 0, which implies that y(iT) € S. We see that truncating
the pulse to length 207 does not lead to ISI for either roll-off factor. However,
IST is present when 8 = 0.25 and the pulse is truncated to 4T (part (b)). We
see its presence from the fact that the traces go through various values at ¢ = 0.
This means that y(i7) takes on values outside S. These examples are meant to
illustrate the point made in the last paragraph of the previous section.

Note also that the eye, the untraced space in the middle of the eye diagram, is
wider in (c) than it is in (a). The advantage of a wider eye is that the system is more
tolerant to small variations (jitter) in the sampling time. This is characteristic of
a larger 8 and it is a consequence of the fact that as § increases, the pulse decays
faster as a function of |¢|. For the same reason, a pulse with larger beta can be
truncated to a shorter length, at the price of a larger bandwidth.
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—10 -5 0 5 10 —10 -5 0 5 10

Figure 5.9. Eye diagrams of Y, s;Ry (t — iT) for s; € {#1} and pulse of the
root-raised-cosine family with 7" = 10. The abscissa is the time. The roll-off
factor is 8 = 0.25 for the top figures and 8 = 0.9 for the bottom ones. The

pulse is truncated to length 207 for the figures on the left, and to length 47T
for those on the right. The eye diagram of part (b) shows the presence of ISI.

The MATLAB program used to produce the above plots can be downloaded from
the book web page.

The popularity of the eye diagram lies in the fact that it can be obtained quite
easily by looking at the matched-filter output with an oscilloscope triggered by
the clock that produces the sampling time. The eye diagram is very informative
even if the channel has attenuated the signal and/or has added noise.

Symbol synchronization

The n-tuple former for symbol-by-symbol on a pulse train contains a matched filter
with the output sampled at 6 + [T, for some 8 and all integers [ in some interval.
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Without loss of essential generality, we can assume that 6 € [0,T). In general, 6 is
not known to the receiver when the communication starts. This is obviously the
case for a cell phone after a flight during which the phone was switched off (or in
“airplane mode”). The n-tuple former is unable to produce the sufficient statistics
until it has a sufficiently accurate estimate of §. (The eye diagram gives us an
indication of how accurate the estimate needs to be.) Finding the correct sampling
times at the matched-filter output goes under the topic of symbol synchronization.

Estimating a parameter 6 is a parameter estimation problem. Parameter esti-
mation, like detection, is a well-established field. The difference between the two
is that — in detection — the hypothesis takes values in a discrete set and — in
estimation — it takes values in a continuous set. In detection, typically we are
interested in the error probability under various hypotheses or in the average error
probability. In estimation, the decision is almost always wrong, so it does not make
sense to minimize the error probability, yet a maximum likelihood (ML) approach
is a sensible choice. We discuss the ML approach in Section 5.7.1 and, in Section
5.7.2, we discuss a more pragmatic approach, the delay locked loop (DLL). In both
cases, we assume that the transmitter starts with a training sequence.

5.7.1 Maximum likelihood approach

Suppose that the transmission starts with a training signal s(¢) known to the
receiver. For the moment, we assume that s(¢) is real-valued. Extension to a
complex-valued s(t) is done in Section 7.5.

The channel output signal is

R(t) = as(t — 0) + N(t),

where N (t) is white Gaussian noise of power spectral density %, « is an unknown
scaling factor (channel attenuation and receiver front-end amplification), and 8 is
the unknown parameter to be estimated. We can assume that the receiver knows
that 6 is in some interval, say [0, 0,,42], for some possibly large constant 6,4

To describe the ML estimate of 8, we need a statistical description of the received
signal as a function of # and a. Towards this goal, suppose that we have an
orthonormal basis ¢ (), ¢ (t), . . ., ¢ (t) that spans the set {s(t—0) : § € [0, Opmas]}.
To simplify the notation, we assume that the orthonormal basis is finite, but an
infinite basis is also a possibility. For instance, if s(¢) is continuous, has finite
duration, and is essentially bandlimited, then the sampling theorem tells us that
we can use sinc functions for such a basis.

Fori=1,...,n,let Y; = (R(t), ¢i(t)) and let y; be the observed sample value of
Y;. The random vector Y = (Y1, ..., Yn)T consists of independent random variables
with V; ~ N (am;(0),0?), where m;(0) = (s(t — 6), ¢;(t)) and 02 = 2. Hence,
the density of Y parameterized by 6 and « is

1 TR (s —am;(9)?
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A maximum likelihood (ML) estimate é]\,{ 1 is a value of 6 that maximizes the
likelihood function f(y;6,c). This is the same as maximizing > ., (y;iom;(6) —

ML obtained by taking the natural log of (5.17), removing terms that do

not depend on 6, and multiplying by o2.

Because the collection ¢ (t), da(t),...,dn(t) spans the set {s(t — 0) : 6 €
[0,0mas]}, additional projections of R(t) onto normalized functions that are
orthogonal to ¢1(¢),...,dn(t) lead to zero-mean Gaussian random variables of
variance No/2. Their inclusion in the likelihood function has no effect on the
maximizer frr,. Furthermore, 3, m?(6) equals [ s%(t — 8)dt = ||s||* (see (2.32)).
Finally, [ R(t)s(t — 0)dt equals Do Y;m;(6). (If this last step is not clear to you,
substitute s(t—0) with > mi(0)¢i(t) and swap the sum and the integral.) Putting
everything together, we obtain that the maximum likelihood estimate Oprr is the
0 that maximizes

[ st~ dyar (5.18)

where r(t) is the observed sample path of R(t).

This result is intuitive. If we write 7(t) = as(t — 6) + n(t), where n(t) is the
sample path of N (t), we see that we are maximizing a R, (6 — ) + [ n(t)s(t — 0)dt,
where Rj(-) is the self-similarity function of s(t) and [ n(t)s(t — )dt is a sample
of a zero-mean Gaussian random variable of variance that does not depend on 0.
The self-similarity function of a real-valued function achieves its maximum at the
origin, hence Ry(0 — ) achieves its maximum at = 6.

Notice that we have introduced an orthonormal basis for an intermediate step
in our derivations, but it is not needed to maximize (5.18).

The ML approach to parameter estimation is a well-established method but it is
not the only one. If we model 6 as the sample of a random variable © and we have
a cost function c¢(6, é) that quantifies the “cost” of deciding that the parameter
is @ when it is 6, then we can aim for the estimate that minimizes the expected
cost. This is the Bayesian approach to parameter estimation. Another approach
is the least-squares estimation (LSE). It seeks the § for which > iy — am;(0))?
is minimized. In words, the LSE approach chooses the parameter that provides
the most accurate description of the measurements, where accuracy is measured
in terms of squared distance. This is a different objective than that of the ML
approach, which chooses the parameter for which the measurements are the most
likely. When the noise is additive and Gaussian, as in our case, the ML approach
and the LSE approach lead to the same estimate. This is due to the fact that the

likelihood function f(y;6,a) depends on the squared distance Y, (y; — am;(6))?.

5.7.2 Delay locked loop approach

The shape of the training signal did not matter for the derivation of the ML
estimate, but it does matter for the delay locked loop approach. We assume that
the training signal takes the same form as the communication signal, namely
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0+1T
% -t
Figure 5.10. Shape of M ().
L—1
s(t) =Y ap(t —IT),
1=0
where cg, ..., cr—1 are training symbols known to the receiver. The easiest way to

see how the delay locked loop works is to assume that v (¢) is a rectangular pulse

w(t):\/;]l{OStST}

and let the training symbol sequence ¢y, . . ., ¢z _1 be an alternating sequence of /&,
and —/&;. The corresponding received signal R(t) is « Zf;ol ay(t —IT —0) plus
white Gaussian noise, where « is the unknown scaling factor. If we neglect the noise
for the moment, the matched filter output (before sampling) is the convolution of
R(t) with ¢*(—t), which can be written as

L-1

M(t)=a ) aRy(t—1T -0),
=0

where
Ry(r) = (1 - |TL|> H{-T<7<T}

is the self-similarity function of 1 (t). Figure 5.10 plots a piece of M(t).

The desired sampling times of the form 6 + [T, [ integer, correspond to the
maxima and minima of M (¢). Let t; be the kth sampling point. Until symbol
synchronization is achieved, M(tx) is not necessarily near a maximum or a
minimum of M (t). For every sample point tx, we also collect an early sample
at tf = t, — A and a late sample at t£ = t; + A, where A is some small
positive value (smaller than 7'/2). The dots in Figure 5.11 are examples of sample
values. Consider the cases when M (tj) is positive (parts (a) and (b)). We see that
M(tk) — M(tF) is negative when t; is late with respect to the target, and it is
positive when ¢ is early. The opposite is true when M (¢;) is negative (parts (c)
and (d)). Hence, in general, (M (tk) — M(tF))M(t;) can be used as a feedback
signal to the clock that determines the sampling times. A positive feedback signal
is a sign for the clock to speed up, and a negative value is a sign to slow down. This
can be implemented via a wvoltage-controlled oscillator (VCO), with the feedback
signal as the controlling voltage.

Now consider the effect of noise. The noise added to M (t) is zero-mean. Intu-
itively, if the VCO does not react too quickly to the feedback signal, or equivalently
if the feedback signal is lowpass filtered, then we expect the sampling point to settle
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Figure 5.11. DLL sampling points. The three consecutive dots of each part
are examples of M (tF), M(t;), and M (tL), respectively.

at the correct position even when the feedback signal is noisy. A rigorous analysis
is possible but it is outside the scope of this text. For a more detailed introduction
on synchronization we recommend [14, Chapters 14-16], [15, Chapter 4], and the
references therein.

Notice the similarity between the ML and the DLL solution. Ultimately they
both make use of the fact that a self-similarity function achieves its maximum at
the origin. It is also useful to think of a correlation such as

[r(t)s(t — )dt
[r@®lls@)]

as a measure for the degree of similarity between two functions, where the denom-
inator serves to make the result invariant to a scaling of either function. In this

case the two functions are r(t) = as(t — 0) + n(t) and s(t — ¢) and the maximum
is achieved when s(t — @) lines up with s(t — ). The solution to the ML approach
correlates with the entire training signal s(t), whereas the DLL correlates with
the pulse v (¢); but it does so repeatedly and averages the results. The DLL is
designed to work with a VCO, and together they provide a complete and easy-to-
implement solution that tracks the sampling times.? It is easy to see that the DLL
provides valuable feedback even after the transition from the training symbols
to the regular symbols, provided that the symbols change polarity sufficiently
often. To implement the ML approach, we still need a good way to find the
maximum of (5.18) and to offset the clock accordingly. This can easily be done
if the receiver is implemented in a digital signal processor (DSP) but could be
costly in terms of additional hardware if the receiver is implemented with analog
technology.

3 The DLL can be interpreted as a stochastic gradient descent method that seeks the ML
estimate of 6.
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Summary

The signal design consists of choosing the finite-energy signals wq(t), . . ., Wy—1(t)
that represent the messages. Rather than choosing the signal set directly, we choose
an orthonormal basis {11 (t), ..., ¥, (t)} and a codebook {cg,...,cm—1} C R™ and,
fori=0,...,m —1, we define

wi(t) =Y e ().
j=1

In doing so, we separate the signal design problem into two subproblems: finding
an appropriate orthonormal basis and codebook. In this chapter, we have focused
on the choice of the orthonormal basis. The choice of the codebook will be the
topic of the next chapter.

Particularly interesting are those orthonormal bases that consist of an appropri-
ately chosen unit-norm function v (t) and its T-spaced translates. Then the generic
form of a signal is

w(t) =Y s (t = 7).

In this case, the n inner products performed by the n-tuple former can be obtained
by means of a single matched filter with the output sampled at n time instants.

We call s; the jth symbol. In theory, a symbol can take values in R or in C; in
practice, the symbol alphabet is some discrete subset S of R or of C. For instance,
PAM symbols are in R, and QAM or PSK symbols, viewed as complex-valued
numbers, are standard examples of symbol in C (see Chapter 7).

If the symbol sequence is a realization of an uncorrelated WSS process, then the
power spectral density of the transmitted signal is Sx (f) = E|vx(f)|?/T, where £
is the average energy per symbol. The pulse ¥ (¢) has a unit norm and is orthogonal
to its T-spaced translates if and only if |[¢)=(f)[? fulfills Nyquist’s criterion with
parameter 7' (Theorem 5.6).

Typically 1 (t) is real-valued, in which case |¢=(f)|* is an even function. To save
bandwidth, we often choose |17 (f)|? in such a way that it vanishes for f & [, 7].
When these two conditions are satisfied, Nyquist’s criterion is fulfilled if and only
if |17 (f)|? has the so-called band-edge symmetry.

It is instructive to compare the sampling theorem to the Nyquist criterion.
Both are meant for signals of the form ), s;4(t — ¢T'), where 1 (t) is orthogonal
to its T-spaced time translates. Without loss of generality, we can assume that
¥(t) has a unit norm. In this case, [y#(f)|? fulfills the Nyquist criterion with
parameter T'. Typically we use the Nyquist criterion to select a pulse that leads
to symbol-by-symbol on a pulse train of a desired power spectral density. In the
sampling theorem, we choose (t) = sinc(%)/v/T because the orthonormal basis
B = {sinc[(t — iT)/T)/VT}icz spans the inner product space of continuous Ls
functions that have a vanishing Fourier transform outside [—%7 %] Any signal
in this space can be represented by the coefficients of its orthonormal expansion
with respect to B.

| 2
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Figure 5.12. Equivalent discrete-time channel used at the rate of one channel
use every T seconds. The noise is iid.

The eye diagram is a field test that can easily be performed to verify that the
matched filter output at the sampling times is as expected. It is also a valuable
tool for designing the pulse 9 (t).

Because the matched filter output is sampled at a rate of one sample every T
seconds, we say that the discrete-time AWGN channel seen by the top layer is used
at a rate of one symbol every T seconds. This channel is depicted in Figure 5.12.

Questions that pertain to the encoder/decoder pair (such as the number of bits
per symbol, the average energy per symbol, and the error probability) can be
answered assuming that the top layer communicates via the discrete-time channel.
Questions that pertain to the signal’s time/frequency characteristics need to take
the waveform former into consideration. Essentially, the top two layers can be
designed independently.

Appendix: £,, and Lebesgue integral: A primer

A function g : R — C belongs to L, if it is Lebesgue measurable and has a
finite Lebesgue integral ffooo lg(t)|?dt. Lebesgue measure, Lebesgue integral, and
Lo are technical terms, but the ideas related to these terms are quite natural.
In this appendix, our goal is to introduce them informally. The reader can skip
this appendix and read “Ls functions” as “finite-energy functions” and “Lebesgue
integral” as “integral”.

We can associate the integral of a non-negative function ¢ : R — R to the
area between the abscissa and the function’s graph. We attempt to determine this
area via a sequence of approximations that — we hope — converges to a quantity
that can reasonably be identified with the mentioned area. Both the Riemann
integral (the one we learn in high school) and the Lebesgue integral (a more general
construction) obtain approximations by adding up the area of rectangles.

For the Riemann integral, we think of partitioning the area between the abscissa
and the function’s graph by means of vertical slices of some width (typically the
same width for each slice), and we approximate the area of each slice by the area
of a rectangle, as shown in Figure 5.13a. The height of the rectangle can be any
value taken by the function in the interval defined by the slice. Hence, by adding
up the area of the rectangles, we obtain a number that can underestimate or
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(a) Riemann integration. (b) Lebesgue integration.

Figure 5.13. Integration.

overestimate the area of interest. We obtain a sequence of estimates by choosing
slices of decreasing width. If the sequence converges for any such construction
applied to the function being integrated, then the Riemann integral of that function
is defined to be the limit of the sequence. Otherwise the function is not Riemann
integrable.

The definition of the Lebesgue integral starts with equally spaced horizontal
lines as shown in Figure 5.13b. From the intersection of these lines with the
function’s graph, we obtain vertical slices that, unlike for the Riemann’s integral,
have variable widths. The area of each slice between the abscissa and the function’s
graph is under-approximated by the area of the highest rectangle that fits under
the function’s graph. By adding the areas of these rectangles, we obtain an under-
estimate of the area of interest. If we refine the horizontal partition (a new line
halfway between each pair of existing lines) and repeat the construction, we obtain
an approximation that is at least as good as the previous one. By repeating the
operation, we obtain an increasing — thus convergent — sequence of approximations,
the limit of which is the Lebesgue integral of the positive function.

Every non-negative Riemann-integrable function is Lebesgue integrable; and the
values of the two integrals agree whenever they are both defined.

Next, we give an example of a function that is Lebesgue integrable but not
Riemann integrable, and then we define the Lebesgue integral of general real-
valued and complex-valued functions.

EXAMPLE 5.8 The Dirichlet function f :[0,1] — {0,1} is 0 where its argument
is irrational and 1 otherwise. Its Lebesgue integral is well defined and equal to 0.
But to see why, we need to introduce the notion of measure. We will do so shortly.
The Riemann integral of the Dirichlet function is undefined. The problem is that
in each interval of the abscissa, no matter how small, we can find both rational and
wrrational numbers. So to each approrimating rectangle, we can assign height 0 or
1. If we assign height 0 to all approrimating rectangles, the integral is approximated
by 0; if we assign height 1 to all rectangles, the integral is approzimated by 1. And
we can choose, no matter how narrow we make the vertical slices. Clearly, we can
create approximation sequences that do not converge. This could not happen with
a continuous function or a function that has a finite number of discontinuities, but
the Dirichlet function is discontinuous everywhere. O

In our informal construction of the Lebesgue integral, we have implicitly
assumed that the area under the function can be approximated using rectangles
of a well defined width, which is not necessarily the case with bizarre functions.
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The Dirichlet is such a function. When we apply the Lebesgue construction to the
Dirichlet function, we effectively partition the domain of the function, namely the
unit interval [0, 1], into two subsets, say the set A that contains the rationals and
the set B that contains the irrationals. If we could assign a “total length” L(.A)
and L(B) to these sets as we do for countable unions of disjoint intervals of the
real line, then we could say that the Lebesgue integral of the Dirichlet function
is 1 x L(A) + 0 x L(B) = L(A). The Lebesgue measure does precisely this. The
Lebesgue measure of A is 0 and that of B is 1. This is not surprising, given that
[0,1] contains a countable number of rationals and an uncountable number of
irrationals. Hence, the Lebesgue integral of the Dirichlet function is 0.

Note that it is not possible to assign the equivalent of a “length” to every subset
of R. Every attempt to do so leads to contradictions, whereby the measure of the
union of certain disjoint sets is not the sum of the individual measures. The subsets
of R to which we can assign the Lebesgue measure are called Lebesgue measurable
sets. It is hard to come up with non-measurable sets; for an example see the end of
Appendix 4.9 of [2]. A function is said to be Lebesgue measurable if the Lebesgue’s
construction partitions the abscissa into Lebesgue measurable sets.

We would not mention the Lebesgue integral if it were just to integrate bizarre
functions. The real power of Lebesgue integration theory comes from a number
of theorems that give precise conditions under which a limit and an integral
can be exchanged. Such operations come up frequently in the study of Fourier
transforms and Fourier series. The reader should not be alarmed at this point.
We will interchange integrals, swap integrals and sums, swap limits and integrals,
all without a fuss: but we do this because we know that the Lebesgue integration
theory allows us to do so, in the cases of interest to us.

In introducing the Lebesgue integral, we have assumed that the function being
integrated is non-negative. The same idea applies to non-positive functions. (In
fact, we can integrate the negative of the function and then take the negative of
the result.) If the function takes on positive as well as negative values, we split
the function into its positive and negative parts, we integrate each part separately,
and we add the two results. This works as long as the two intermediate results
are not +oo and —oo, respectively. If they are, the Lebesgue integral is undefined;
otherwise the Lebesgue integral is defined.

A complex-valued function g : R — C is integrated by separately integrating its
real and imaginary parts. If the Lebesgue integral over both parts is defined and
finite, the function is said to be Lebesgue integrable. The set of Lebesgue-integrable
functions is denoted by L£;. The notation £; comes from the easy-to-verify fact
that for a Lebesgue measurable function g, the Lebesgue integral is finite if and
only if [*_|g(z)|dz < oo. This integral is the £1 norm of g(z).

Every bounded Riemann-integrable function of bounded support is Lebesgue
integrable and the values of the two integrals agree. This statement does not extend
to functions that are defined over the real line. To see why, consider integrating
sinc(t) over the real line. The Lebesgue integral of sinc(t) is not defined, because
the integral of the positive part of sinc(¢) and that over the negative part are
+o0o and —oo, respectively. The Riemann integral of sinc(t) exists because, by
definition, Riemann integrates from —7" to T" and then lets T" go to infinity.
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All functions that model physical processes are finite-energy and measurable,
hence L5 functions. All finite-energy functions that we encounter in this text are
measurable, hence Lo functions. There are examples of finite-energy functions that
are not measurable, but it is hard to imagine an engineering problem where such
functions would arise.

The set of Lo functions forms a complex vector space with the zero vector being
the all-zero function. If we modify an £, function in a countable number of points,
the result is also an Lo function and the (Lebesgue) integral over the two functions
is the same. (More generally, the same is true if we modify the function over a set
of measure zero.) The difference between the two functions is an Lo function £(t)
such that the Lebesgue integral [ |¢(¢)[?dt = 0. Two Ly functions that have this
property are said to be Lo equivalent.

Unfortunately, Lo with the (standard) inner product that maps a(t), b(t) € L2 to

(a,b) = /a(t)b*(t)dt (5.19)

does not form an inner product space because axiom (c) of Definition 2.36 is not
fulfilled. In fact, (a,a) = 0 implies that a(t) is Lo equivalent to the zero function,
but this is not enough: to satisfy the axiom, a(t) must be the all-zero function.

There are two obvious ways around this problem if we want to treat finite-
energy functions as vectors of an inner product space. One way is to consider
only subspaces V of Lo such that there is only one vector £(t) in V that has the
property [ |£(¢)]*dt = 0. This will always be the case when V is spanned by a set
W of waveforms that represent electrical signals.

EXAMPLE 5.9 The set V that consists of the continuous functions of Lo is a
vector space. Continuity is sufficient to ensure that there is only one function
&(t) €V for which the integral [ |£(t)|?dt = 0, namely the zero function. Hence V
equipped with the standard inner product is an inner product space.* O

Another way is to form equivalence classes. Two signals that are Lo equivalent
cannot be distinguished by means of a physical experiment. Hence the idea of
partitioning Lo into equivalence classes, with the property that two functions
are in the same equivalence class if and only if they are Lo equivalent. With an
appropriately defined vector addition and multiplication of a vector by a scalar,
the set of equivalence classes forms a complex vector space. We can use (5.19)
to define an inner product over this vector space. The inner product between two
equivalence classes is the result of applying (5.19) with an element of the first class
and an element of the second class. The result does not depend on which element
of a class we choose to perform the calculation. This way Lo can be transformed
into an inner product space denoted by Ly. As a “sanity check”, suppose that we
want to compute the inner product of a vector with itself. Let a(t) be an arbitrary
element of the corresponding class. If {(a,a) = 0 then a(t) is in the equivalence class
that contains all the functions that have 0 norm. This class is the zero vector.

4 However, one can construct a sequence of continuous functions that converges to a
discontinuous function. In technical terms, this inner product space is not complete.



5.10

184 5. Second layer revisited

For a thorough treatment of measurability, Lebesgue integration, and Lo func-
tions we refer to a real-analysis book (see e.g. [9]). For an excellent introduction
to the Lebesgue integral in a communication engineering context, we recommend
the graduate-level text [2, Section 4.3]. Even more details can be found in [3]. A
very nice summary of Lebesgue integration can be found on Wikipedia (July 27,
2012).

Appendix: Fourier transform: A review

In this appendix, we review a few facts about the Fourier transform. They belong
to two categories. One category consists of facts that have an operational value.
You should know them as they help us in routine manipulations. The other
category consists of mathematical subtleties that you should be aware of, even
though they do not make a difference in engineering applications. We mention
them for awareness, and because in certain cases they affect the language we use
in formulating theorems. For an in-depth discussion of this second category we
recommend [2, Section 4.5] and [3].

The following two integrals relate a function g : R — C to its Fourier transform
gr:R—=>C

g(u) = /:)O gr(a)el?™da (5.20)
i) = [ glayema, (5:21)

where j = /1.

Some books use capital letters for the Fourier transform, such as G(f) for
the Fourier transform of g(t). Other books use a hat, like in §(f). We use the
subscript F because, in this text, capital letters denote random objects (random
variables and random processes) and hats are used for estimates in detection-
related problems.

Typically we take the Fourier transform of a time-domain function and the
inverse Fourier transform of a frequency-domain function. However, from a math-
ematical point of view it does not matter whether or not there is a physical meaning
associated to the variable of the function being transformed. To underline this fact,
we use the unbiased dummy variable a in (5.20) and (5.21).

Sometimes the Fourier transform is defined using w instead of 27 f in (5.20)
and (5.21), but (5.21) also inherits the factor 5, which breaks the nice symmetry
between (5.20) and (5.21). Most books on communication define the Fourier trans-
form as we do, because it makes the formulas easier to remember. Lapidoth [3,
Section 6.2.1] gives five “good reasons” for defining the Fourier transform as we do.

When we say that the Fourier transform of a function exists, we mean that the
integral (5.21) is well defined. It does not imply that the inverse Fourier transform
exists. The Fourier integral (5.21) exists and is finite for all £o functions defined
over a finite-length interval. The technical reason for this is that an £, function
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f(t) defined over a finite-length interval is also an £; function, i.e. [|f(¢)|dt is
finite, which excludes the co — oo problem mentioned in Appendix 5.9. Then also
[1f(t)ed* | dt = [|f(t)|dt is finite. Hence (5.21) is finite.

If the L5 function is defined over R, then the co — oo problem mentioned in
Appendix 5.9 can arise. This is the case with the sinc(¢) function. In such cases,
we truncate the function to the interval [—T,T], compute its Fourier transform,
and let T' go to infinity. It is in this sense that the Fourier transform of sinc(t)
is defined. An important result of Fourier analysis says that we are allowed to do
so (see Plancherel’s theorem, [2, Section 4.5.2]). Fortunately we rarely have to do
this, because the Fourier transform of most functions of interest to us is tabulated.

Thanks to Plancherel’s theorem, we can make the sweeping statement that the
Fourier transform is defined for all £, functions. The transformed function is in
Lo, hence also its inverse is defined. Be aware though, when we compute the
transform and then the inverse of the transformed, we do not necessarily obtain
the original function. However, what we obtain is Lo equivalent to the original. As
already mentioned, no physical experiment will ever be able to detect the difference
between the original and the modified function.

EXAMPLE 5.10 The function g(t) that has value 1 at t = 0 and 0 everywhere
else is an Lo function. Its Fourier transform gr(f) is 0 everywhere. The inverse
Fourier transform of gz(f) is also 0 everywhere. O

One way to remember whether (5.20) or (5.21) has the minus sign in the
exponent is to think of the Fourier transform as a tool that allows us to write
a function g(u) as a linear combination of complex exponentials. Hence we are
writing g(u) = [ gr(a)d(a, u)da with ¢(a, u) = exp(j2nua) viewed as a function
of u with parameter a. Technically this is not an orthonormal expansion, but
it looks like one, where gr(«) is the coefficient of the function ¢(«,u). Like for
an orthonormal expansion, the coefficient is obtained from an expression that
takes the form gr(u) = (g(a), (o, u)) = [g(a)p*(a,u)do. It is the complex
conjugate in the computation of the inner product that brings in the minus sign in
the exponent. We emphasize that we are working by analogy here. The complex
exponential has infinite energy — hence not a unit-norm function (at least not with
respect to the standard inner product).

A useful formula is Parseval’s relationship

/a(t)b*(t)dt = /a;(f)bjr(f)df, (Parseval) (5.22)

which states that (a(t),b(t)) = (ax(f),br(f))-

Rectangular pulses and their Fourier transforms often show up in examples and
we should know how to go back and forth between them. Two tricks make it easy
to relate the rectangle and the sinc as Fourier transform pairs. First, let us recall
how the sinc is defined: sinc(z) = SI’QTE—;":) (The 7 makes sinc(z) vanish at all integer
values of x except for z = 0 where it is 1.)

The first trick is well known: the value of a (time-domain) function at (time) 0
equals the area under its Fourier transform. Similarly, the value of a (frequency-
domain) function at (frequency) 0 equals the area under its inverse Fourier
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transform. These properties follow directly from the definition of Fourier transform,
namely

gm%:/mngMa (5.23)

— 0o

gﬂmzfmwwm. (5.24)

— 00

Everyone knows how to compute the area of a rectangle. But how do we compute
the area under a sinc? Here is where the second and not-so-well-known trick comes
in handy. The area under a sinc is the area of the triangle inscribed in its main
lobe. Hence the integral under the two curves of Figure 5.14 is identical and equal
to ab, and this is true for all positive values a, b.

Let us consider a specific example of how to use the above two tricks. It does
not matter if we start from a rectangle or from a sinc and whether we want to
find its Fourier transform or its inverse Fourier transform. Let a, b, ¢, and d be as
shown in Figure 5.15.

We want to relate a,b to ¢, d (or vice versa). Since b must equal the area under
the sinc and d the area under the rectangle, we have

b=-cd
d = 2ab,

which may be solved for a,b or for ¢, d.

bsinc(Z)

8

N a

Figure 5.14. ffooo bsinc(£)dx equals the area under the triangle on the right.

a

bl{—a <z < a} dsinc(%)

d
b
- /\\/\x
N | A

Figure 5.15. Rectangle and sinc to be related as Fourier transform pairs.
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Table 5.1 Fourier transform (right-hand column) for a few
L functions (left-hand column), where a > 0.

el = TR
e t>0 ~ m
et < eI’
I{-a<t<a} PR 2a sinc(2af)

EXAMPLE 5.11  The Fourier transform of b1{—a < t < a} is a sinc that has
height 2ab. Its first zero crossing must be at % so that the area under the sinc
becomes b. The result is 2absinc(2af). O

EXAMPLE 5.12 The Fourier transform of bsinc(ﬁ) is a rectangle of height ab.

Its width must be 2 so that its area is b. The result is abl{f € [—5=, 3=]}. O

See Exercise 77 for a list of useful Fourier transform relations and see Table 5.1
for the Fourier transform of a few Lo functions.

Appendix: Fourier series: A review

We review the Fourier series, focusing on the big picture and on how to remember
things. Let f(x) be a periodic function, z € R. It has period p if f(z) = f(z + p)
for all z € R. Its fundamental period is the smallest positive such p. We are using
the “physically unbiased” variable = instead of ¢, because we want to emphasize
that we are dealing with a general periodic function, not necessarily a function of
time.

The main idea is that a sufficiently well-behaved function f(z) of fundamental
period p can be written as a linear combination of all the complex exponentials of
period p. Hence

fl@) =" A;ed>meilr (5.25)

i1€Z

for some sequence of coefficients ... A_1, Ag, A1, ... with values in C.

Two functions of fundamental period p are identical if and only if they coincide
over a period. Hence to check if a given series of coefficients ... A_1, Ag, A1, ... is
the correct series, it suffices to verify that

j2mxi/
fion{ -3 e <2} - DU S e
€L

N3

)
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where we have multiplied and divided by /p to make ¢;(z) = <" ]1{ —r<

Tz < g} of unit norm, 7 € Z. Thus we can write

fen{-L<a<tl =3 paiiw). (5.26)

i€

The right-hand side of the above expression is an orthonormal expansion. The
coefficients of an orthonormal expansion are always computed according to the
same expression. The ith coefficient /pA; equals (f, ¢;). Hence,

1 (% o
A; = ’ f(x)e 32 @i/p g, (5.27)

Notice that the right-hand side of (5.25) is periodic, and that of (5.26) has finite
support. In fact we can use the Fourier series for both kind of functions, periodic
and finite-support. That Fourier series can be used for finite-support functions is
an obvious consequence of the fact that a finite-support function can be seen as
one period of a periodic function. In communication, we are more interested in
functions that have finite support. (Once we have seen one period of a periodic
function, we have seen them all: from that point on there is no information being
conveyed.)

In terms of mathematical rigor, there are two things that can go wrong in what
we have said. (1) For some 4, the integral in (5.27) might not be defined or might
not be finite. We can show that neither is the case if f(ac)IL{ -f<x< g} is

an Lo function. (2) for a specific z, the truncated series 22:71 VPAidi(x) might
not converge as [ goes to infinity or might converge to a value that differs from
f(@)1{ =5 <z < &}. It is not hard to show that the norm of the function

!
f(l‘)]l{ —g <z< g} - Z VPAidi(x)
i——1

goes to zero as [ goes to infinity. Hence the two functions are Lo equivalent. We
write this as follows

f(x)]l{ - g <z< g} = l.i.m.z\/ﬁAidy(a}),
€L
where 1. 1. m. means limit in mean-square: it is a short-hand notation for

lim

l
jm [ f@) - > \/13141'@(33)‘26133 =0.

2 i=—1

We summarize with the following rigorous statement. The details that we have
omitted in our “proof” can be found in [2, Section 4.4].
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THEOREM 5.13 (Fourier series) Let g(x) : [=§, 5] — C be an Ly function. Then
for each k € Z, the (Lebesgue) integral

1 [p/2 )
Ay = —/ g(x)e 32ke/p gy

p —p/2

exists and is finite. Furthermore,

g(z) =Lim. ;Akej%“/”l{ — g <z

IA
[Nl
Y

Appendix: Proof of the sampling theorem

In this appendix, we prove Theorem 5.2. By assumption, for any b > B, wx(f) =0
for f ¢ [—b,b]. Hence we can write wx(f) as a Fourier series (Theorem 5.13):

wr(f) =Lim. ZAkej”fk/b]l{ _b<f< b}.
k

Note that wr(f) is in Lo (it is the Fourier transform of an Lo function) and
vanishes outside [—b, b], hence it is £1 (see e.g. [2, Theorem 4.3.2]). The inverse
Fourier transform of an £; function is continuous (see e.g. [2, Lemma 4.5.1]). Hence
it must be identical to w(t), which is also continuous.

Even though wr(f) and 3°, Aped™*/*1{ —b < f < b} might not agree at every
point, they are L5 equivalent. Hence they have the same inverse Fourier transform
which, as argued above, is w(t). Thus

w(t) = ZAka sinc (2bt + k) = Z % sine (% + k) 7

k k

where T = 4.

We still need to determine %. It is straightforward to determine Ay from the
definition of the Fourier series, but it is even easier to plug ¢t = nT in both sides
of the above expression to obtain w(nT) = %. This completes the proof. To see
that we can easily obtain Ay from the definition (5.27), we write

b 0
A= g [ wrne g =T [ (e =T af = Tu(=kT),

where the first equality is the definition of the Fourier coefficient Ay, the second
uses the fact that wz(f) = 0 for f ¢ [—b,b], and the third is the inverse Fourier
transform evaluated at ¢t = —kT. O
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Appendix: A review of stochastic processes

In the discussion of Section 5.3, we assume familiarity with the following facts
about stochastic processes.

Let (Q, F, P) be a probability space: Q is the sample space, which consists of all
possible outcomes of a random experiment; F is the set of events, which is the
set of those subsets of 2 on which a probability is assigned; P is the probability
measure that assigns a probability to every event. There are technical conditions
that F and P must satisfy to ensure consistency. F must be a o-algebra, i.e. it
must satisfy the following conditions: it contains the empty set @; if A € F, then
A€ € F; the union of every countable collection of sets of F must be in F.

The probability measure is a function P : F — [0, 1] with the properties that
P(Q) =1 and P(U2,A;) = 32, P(A;) whenever Ay, A, ... is a collection of
disjoint events.

A random variable X, defined over a probability space (2, F, P), is a function
X : Q — R, such that for every = € R, the set {w € Q : X(w) < z} is contained
in F. This ensures that the cumulative distribution function Fx(z) := P({w :
X (w) < z}) is well defined for every z € R.

A stochastic process (also called random process) is a collection of random
variables defined over the same probability space (2, F, P). The stochastic process
is discrete-time if the collection of random variables is indexed by Z or a subset
thereof, such as in {X; : ¢ € Z}. It is continuous-time if the collection of random
variables is indexed by R or a continuous subset thereof, such as in {X; : t € R}.
Engineering texts often use the short-hand notations X (¢) and X|[i] to denote
continuous-time and discrete-time stochastic processes, respectively.

We continue this review, assuming that the process is a continuous-time process,
trusting that the reader can make the necessary changes for discrete-time processes.

Let t1,ts,...,tr be an arbitrary finite collection of indices. The technical condi-
tion about F mentioned above ensures that the cumulative distribution function

Fx, ..x, (@1, 7)== Plw: Xp, (w) <21, Xy (W) < )

is defined for all (z1,...,2;) € R¥. In words, the statistic is defined for every finite
collection X;,, X4,,..., Xy, of samples of {X; : ¢t € R}.

The mean mx(t), the autocorrelation Rx (s,t), and the autocovariance Kx(s,t)
of a continuous-time stochastic process {X; : t € R} are, respectively,

mx (t) :=E[X{] (5.28)
Rx(s,t) := B[ X X]] (5.29)
Kx(s,t) := E[(Xs - E[X,)(Xi = E[Xi])*] = Rx(s,t) —mx(s)mx (t), (5.30)

where the “*” denotes complex conjugation and can be omitted for real-valued

stochastic processes.” For a zero-mean process, which is usually the case in our
applications, Kx(s,t) = Rx(s,t).

® To remember that the “*” in (5.29) goes on the second random variable, it helps to
observe the similarity between the definition of Rx (s,¢) and that of an inner product
such as (a(t),b(t)) = [ a(t)b*(t)dt.
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A continuous-time stochastic process { X, : t € R} is said to be stationary if, for
every finite collection of indices t1, s, ..., tg, the statistic of

Xt1+77Xt2+T7"'7th+T and that of Xt17Xt23---aXt

i
are the same for all 7 € R, i.e. for every (z1,x2,...,2;) € RF,
Fxy e Xy yrrXoyir (z1,22,...,2k)
is the same for all 7 € R.
EXAMPLE 5.14  For a stationary process {X; : t € R},

mx(t) =E [Xt] =E [X()] = mx(O)
Rx(s,t) = E[X,X}] = E[X,_¢X] = Rx(s — t,0). O

We see that a stationary stochastic process has a constant mean mx(¢) and
has an autocorrelation Rx(s,t) that depends only on the difference 7 = s — .
This is a property that simplifies many results. A stochastic process that has this
property is called wide-sense stationary (WSS). (An equivalent condition is that
mx (t) does not depend on ¢t and Kx(s,t) depends only on s — t.) In this case we
can use the short-hand notation Rx (1) instead of Rx (t+7,t), and Kx (7) instead
of Kx(t+ 7,t). A stationary process is always WSS, but a WSS process is not
necessarily stationary. For instance, the process X (¢) of Section 5.3 is WSS but
not stationary.

The Fourier transform of the autocovariance Kx(7) of a WSS process is the
power spectral density (or simply spectral density) Sx(f). To understand why this
name makes sense, suppose for the moment that the process is zero-mean, and
recall that the value of a function at the origin equals the integral of its Fourier
transform (see (5.23)). Hence,

/_ " Sx(f)df = Kx(0) = Rx(0) = E[|X,”]

If the process {X; : ¢ € R} represents an electrical signal (voltage or current),
then E [|Xt|2] is associated with an average power (see the discussion in Example
3.2), and so is the integral of Sx (f). This partially justifies calling Sx (f) a power
spectral density. For the full justification, we need to determine how the spectral
density at the output of a linear time-invariant system depends on the spectral
density of the input.

Towards this goal, let X (¢) be a zero-mean WSS process at the input of a linear
time-invariant system of impulse response h(t) and let Y (¢) = [h(a)X (t — a)da
be the output. It is straightforward to determine the mean of Y'(¢):

my (1) = E [ / h(a) X (1 — a)da} - / h@)E[X (¢ — a)] da = 0.

With slightly more effort we determine

Ky (t+78) = /jo /jo h(a)h* () K x (7 + B — a)dadB.
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We see that Y'(t) is a zero-mean WSS process. If we write h(S8) in terms of its
Fourier transform h(8) = ffooo hr(f)ed?™fBdf and substitute into Ky (t + T,t),
henceforth denoted by Ky (7), after a few standard manipulations we obtain

Kr(r) = [ BrnPSx(ner iy

— 00

This proves that Ky (7) is the inverse Fourier transform of |hz(f)|2Sx (f). Hence,

Sy (f) = [hr(f)I*Sx(f)-

To understand the physical meaning of Sx (f), we let X (¢) be the input to a
filter that cuts off all the frequencies of X (t), except for those contained in a
small interval Z = [f, — %, fet+ %] of width Af around f.. Suppose that Af is
sufficiently small that Sx(f) is constant over Z. Then

Sy(f) = [hr(f)PSx (f) = Sx(f)L{f € T}

and the power of Y (¢) is [ Sy (f)df = Sx(fc)Af. We conclude that Sx(f.)Af is
associated with the power of X (¢) contained in a frequency interval of width Af
centered around f., which explains why Sx (f) is called the power spectral density
of X ().

Sx(f) is well-defined and is called the power spectral density of X (¢) even when
X(t) is a WSS process with a non-vanishing mean mx (t), but in this case the
integral of Sx (f) is the power of the zero-mean process X (t) = X (t) — m, where
m = mx(t). For this reason, one could argue that spectral density is a better
name than power spectral density. This is not a big issue, because most processes
of interest to us are indeed zero-mean. Alternatively, we could be tempted to define
Sx(f) as the Fourier transform of Rx (7), thinking that in so doing, the integral
of Sx(f) is the average power of X (t), even when X (¢) has a non-vanishing mean.
But this would create a technical problem, because when X (¢) has a non-vanishing
mean, Ry (7) = Kx(7)+ |m|? is not an Ly function. (We have defined the Fourier
transform only for £o functions.)

Appendix: Root-raised-cosine impulse response

In this appendix, we derive the inverse Fourier transform of the root-raised-cosine
pulse

VT, If] < £
vr(f) = VTeos | ZL(If| - 52) |, 52 <Ifl < 57
0, otherwise.

We write ©7(f) = ar(f) + br(f) where ax(f) = VTL{f € [- £, L]} is the
central piece of the root-raised-cosine impulse response and bx(f) accounts for the
two root-raised-cosine edges.
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The inverse Fourier transform of az(f) is

VT G (LI;W) .

Write br(f) = bz(f) + 05(f), where bL(f) = br(f)1{f > 0}. Let cx(f) =
bE(f + 55). Specifically,

- o 512 )] e ]

The inverse Fourier transform of ¢z (f) is

c(t) = 25? {ejz sinc (g — i) + eI % sine (g + i)} .

Now we use the relationship b(t) = 2R{c(t)e32" 27t} to obtain

b(t) = % [Sinc (g - i) cos (%t — %) + sinc (% + i) cos (%t + 2)} .

After some manipulations of 1(t) = a(t) + b(t) we obtain the desired expression

o(t) = 28 (1 +B)yrdt] + U5 sine [(1 - B) £]
= W\/T 1— (46%)2 .

Appendix: The picket fence “miracle”

In this appendix, we “derive” the picket fence miracle, which is a useful tool for
informal derivations related to sampling (see Example 5.15 and Exercises 77 and
??). The “derivation” is not rigorous in that we “handwave” over convergence
issues.

Recall that §(¢) is the (generalized) function defined through its integral against
a function f(t) (assumed to be continuous at ¢t = 0):

1 " f06wdt = £(0).

It follows that [*°_§(t)dt = 1 and that the Fourier transform of 6(¢) is 1 for all
feRr
The T'-spaced picket fence is the train of Dirac delta functions

i o(t —nT).

n=—oo
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The picket fence miracle refers to the fact that the Fourier transform of a picket
fence is again a (scaled) picket fence. Specifically,

[Z 5(t - nT) Z(S(f——)

n=—oo
where F[] stands for the Fourier transform of the enclosed expression. The above
relationship can be derived by expanding the periodic function ) (¢t —nT') as a
Fourier series, namely:

Z 5 t— TLT Z eJ27TtTL/T

n=—oo n=—oo

(The careful reader should wonder in which sense the above equality holds. We
are indeed being informal here.)
Taking the Fourier transform on both sides yields

[Z 5(t —nT) Zé(f——)

n=—oo n=—oo

which is what we wanted to prove.
It is convenient to have a notation for the picket fence. Thus we define®

Z d(x —nT).

Using this notation, the relationship that we just proved can be written as
1
FEr@)] = FEL(f).

The picket fence miracle is a practical tool in engineering and physics, but in
the stated form it is not appropriate to obtain results that are mathematically
rigorous. An example follows.

EXAMPLE 5.15 We give an informal proof of the sampling theorem by using
the picket fence miracle. Let s(t) be such that sz(f) = 0 for f ¢ [-B,B] and

let T < %, We want to show that s(t) can be reconstructed from the T-spaced
samples {s(nT')}nez. Define
sl(t) = Z s(nT)o(t —nT).

(Note that s| is just a name for the expression on the right-hand side of the
equality.) Using the fact that s(t)6(t —nT) = s(nT)o(t — nT'), we can also write

s|(t) = s(t)Ep(t).

5 The choice of the letter E is suggested by the fact that it looks like a picket fence when
rotated 90 degrees.
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Taking the Fourier transform on both sides yields

FUl0) = s20)» ($8,(10) = 7 3 52 (1-2).

n=—oo

The relationship between sz(f) and F|s|(t)] is depicted in Figure 5.16.

1
s7(f)
- f
-B 0 B
1
T
720857 (f = %) x p
. .
+—B—-%+B -B 0 B t—-B ++B

Figure 5.16. Fourier transform of a function s(t) (top) and of
s|(t) =3, s(nT)o(t — nT') (bottom).

From the figure, it is obvious that we can reconstruct the original signal s(t) by
filtering s|(t) with a filter that scales (1/T)sz(f) by T and blocks (1/T)sr (f — %)
for n # 0. Such a filter exists if, like in the figure, the support of sy(f) does not
intersect with the support of sr (f — %) for n # 0. This is the case if T < %.
(We allow equality because the output of a filter is unchanged if the filter’s input is
modified at a countable number of points.) If h(t) is the impulse response of such

a filter, the filter output y(t) when the input is s|(t) satisfies

yr(f) = (% > sr (f— %)) hr(f) = sr(f).

n=-—oo
After taking the inverse Fourier transform, we obtain the reconstruction (also
called interpolation) formula

o0 o0

y(t) = ( > s(nT)a(t—nT)> wh(t)= > s(nT)h(t — nT) = s(t).

n=—oo n=—oo

A specific filter that has the desired properties is the lowpass filter of frequency
response

hr(f) = {T’ S €1ar o

0, otherwise.

Its impulse response is sinc(%). Inserting into the reconstruction formula yields

oo

s(t) = Z s(nT") sinc (% - n)7 (5.31)

n=—oo

which matches (5.2). O
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The picket fence miracle is useful for computing the spectrum of certain signals
related to sampling. Examples are found in Exercises 7?7 and ?7.

5.16 Exercises

Note: The exercises are available only in the official copy provided by the editor.



6.1

6.2

Convolutional coding
and Viterbi decoding:
First layer revisited

Introduction

In this chapter we shift focus to the encoder/decoder pair. The general setup is
that of Figure 6.1, where N (¢) is white Gaussian noise of power spectral density
Np/2. The details of the waveform former and the n-tuple former are immaterial
for this chapter. The important fact is that the channel model from the encoder
output to the decoder input is the discrete-time AWGN channel of noise variance
O'2 = N0/2

The study of encoding/decoding methods has been an active research area
since the second half of the twentieth century. It is called coding theory. There
are many coding techniques, and a general introduction to coding can easily
occupy a one-semester graduate-level course. Here we will just consider an example
of a technique called convolutional coding. By considering a specific example,
we can considerably simplify the notation. As seen in the exercises, applying
the techniques learned in this chapter to other convolutional encoders is fairly
straightforward. We choose convolutional coding for two reasons: (i) it is well
suited in conjunction with the discrete-time AWGN channel; (ii) it allows us to
introduce various instructive and useful tools, notably the Viterbi algorithm to
do maximum likelihood decoding and generating functions to upper bound the
bit-error probability.

The encoder

The encoder is the device that takes the message and produces the codeword. In
this chapter the message consists of a sequence (b1,ba,...,bx) of binary source
symbols. For comparison with bit-by-bit on a pulse train, we let the codewords
consist of symbols that take value in {£/Es}. To simplify the description of the
encoder, we let the source symbols take value in {£1} (rather than in {0,1}). For
the same reason, we factor out /& from the encoder output. Hence we declare
the encoder output to be the sequence (1,22, ..., 2,) with components in {£1}
and let the codeword be V& (x1,...,z,).

205
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(b1,...,by) (ba,...,by)
Encoder Decoder
\/(?(11’1,...,1’71) \/é_:xj /—-'_\ Yj (y17---7yn)
N
Waveform I Baseband
Former Front End
Z~N(0,2%)
R(t
@ .
U

Figure 6.1. System view for the current chapter.

The source symbols enter the encoder sequentially, at regular intervals deter-
mined by the encoder clock. During the jth epoch, j = 1,2, ..., the encoder takes
b; and produces two output symbols, x9;_1 and xaj, according to the encoding

1
map

T2j—-1 = bjbj_g
€25 = bjbj_lbj_g.

To produce z; and x5 the encoder needs b_; and bg, which are assumed to be 1
by default.

The circuit that implements the convolutional encoder is depicted in Figure 6.2,
where “x” denotes multiplication in R. A shift register stores the past two inputs.
As implied by the indices of @21, z2;, the two encoder outputs produced during
an epoch are transmitted sequentially.

Notice that the encoder output has length n = 2k. The following is an example of
a source sequence of length k = 5 and the corresponding encoder output sequence
of length n = 10.

b 1 -1 -1 1 1
X251, 25 1,1 —1,—1 —1,1 —1,1 —1,—1
j 1 2 3 4 5

1 'We are choosing this particular encoding map because it is the simplest one that is
actually used in practice.
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Toj—1 = bjbj_2

x]
bj
bj—1 i‘ bj—2
X |i| T2j = b]'bjflbj72

Figure 6.2. Convolutional encoder.

—1J1, -1

State Labels
t=(-1,-1)
l=(-1,1)

r=(1,-1)
b=(1,1)

11,1

Figure 6.3. State diagram description of the convolutional encoder.

Because the n = 2k encoder output symbols are determined by the k& input
bits, only 2% of the 2" sequences of {£+1/E}" are codewords. Hence we use only a
fraction 2% /2" = 27F of all possible n-length channel input sequences. Compared
with bit-by-bit on a pulse train, we are giving up a factor two in the bit rate to
make the signal space much less crowded, hoping that this significantly reduces
the probability of error.

We have already seen two ways to describe the encoder (the encoding map and
the encoding circuit). A third way, useful in determining the error probability, is
the state diagram of Figure 6.3. The diagram describes a finite state machine. The
state of the convolutional encoder is what the encoder needs to know about past
inputs so that the state and the current input determine the current output. For
the convolutional encoder of Figure 6.2 the state at time j can be defined to be
(bj—1,b;—2). Hence we have four states.

As the diagram shows, there are two possible transitions from each state. The
input symbol b; decides which of the two transitions is taken during epoch j.
Transitions are labeled by bj|ac2j,1, x2j. To be consistent with the default b_; =
by = 1, the state is (1,1) when b; enters the encoder.
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The choice of letting the encoder input and output symbols be the elements
of {1} is not standard. Most authors choose the input/output alphabet to be
{0,1} and use addition modulo 2 instead of multiplication over R. In this case, a
memoryless mapping at the encoder output transforms the symbol alphabet from
{0,1} to {£+/&}. The notation is different but the end result is the same. The
choice we have made is better suited for the AWGN channel. The drawback of
this choice is that it is less evident that the encoder is linear. In Exercise 7?7 we
establish the link between the two viewpoints and in Exercise 7?7 we prove from
first principles that the encoder is indeed linear.

In each epoch, the convolutional encoder we have chosen has ky = 1 symbol
entering and ng = 2 symbols exiting the encoder. In general, a convolutional
encoder is specified by (i) the number kq of source symbols entering the encoder in
each epoch; (ii) the number ng of symbols produced by the encoder in each epoch,
where ng > ko; (iii) the constraint length mg defined as the number of input
ko-tuples used to determine an output ng-tuple; and (iv) the encoding function,
specified for instance by a kg x mg matrix of 1s and Os for each component of the
output ng-tuple. The matrix associated to an output component specifies which
inputs are multiplied to obtain that output. In our example, kg = 1, ng = 2,
mo = 3, and the encoding function is specified by [1,0, 1] (for the first component
of the output) and [1,1, 1] (for the second component). (See the connections that
determine the top and bottom output in Figure 6.2.) In our case, the elements of
the output ng tuple are serialized into a single sequence that we consider to be
the actual encoder output, but there are other possibilities. For instance, we could
take the pair x2;_1,22; and map it into an element of a 4-PAM constellation.

The decoder

A maximum likelihood (ML) decoder for the discrete-time AWGN channel decides
for (one of) the encoder output sequence z that maximizes

]2
(c,y) 5

where y is the channel output sequence and ¢ = /&, is the codeword associated to
x. The last term in the above expression is irrelevant as it is n€,/2, thus the same
for all codewords. Furthermore, finding an x that maximizes {(c,y) = (V/Esz,y) is
the same as finding an z that maximizes (z,y).

Up to this point the inner product and the norm have been defined for vectors
of C™ written in column form, with n being an arbitrary but fixed positive integer.
Considering n-tuples in column form is a standard mathematical practice when
matrix operations are involved. (We have used matrix notation to express the
density of Gaussian random vectors.) In coding theory, people find it more useful
to write n-tuples in row form because it saves space. Hence, we refer to the encoder
input and output as sequences rather than as k and n-tuples, respectively. This is
a minor point. What matters is that the inner products and norms of the previous
paragraph are well defined.
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To find an z that maximizes (x,y), we could in principle compute (x, ) for all 2"
sequences that can be produced by the encoder. This brute-force approach would
be quite unpractical. As already mentioned, if & = 100 (which is a relatively modest
value for k), 2¥ = (219)10 which is approximately (103)!° = 103°. A VLSI chip that
makes 10° inner products per second takes 10%! seconds to check all possibilities.
This is roughly 4 x 10'3 years. The universe is “only” roughly 2 x 109 years old!

We wish for a method that finds a maximizing  with a number of operations
that grows linearly (as opposed to exponentially) in k. We will see that the so-called
Viterbi algorithm achieves this.

To describe the Viterbi algorithm (VA), we introduce a fourth way of describing
a convolutional encoder, namely the trellis. The trellis is an unfolded transition
diagram that keeps track of the passage of time. For our example, if we assume
that we start at state (1,1), that the source sequence is by, ba,...,bs, and that
we complete the transmission by feeding the encoder with two “dummy bits”
bg = b7 = 1 that make the encoder stop in the initial state, we obtain the trellis
description shown on the top of Figure 6.4, where an edge (transition) from a state
at depth j to a state at depth j+1 is labeled with the corresponding encoder output
Z2j—1,%2;. The encoder input that corresponds to an edge is the first component
of the next state.

There is a one-to-one correspondence between an encoder input sequence b, an
encoder output sequence x, and a path (or state sequence) that starts at the initial
state (1,1) (left state) and ends at the final state (1,1) (right state) of the trellis.
Hence we can refer to a path by means of an input sequence, an output sequence
or a sequence of states.

To decode using the Viterbi algorithm, we replace the label of each edge with
the edge metric (also called branch metric) computed as follows. The edge with
Z2;—1 = a and x2; = b, where a,b € {+£1}, is assigned the edge metric ay2j—1+bya;.
Now if we add up all the edge metrics along a path, we obtain the path metric
(z,y).

EXAMPLE 6.1 Consider the trellis on the top of Figure 6.4 and let the decoder
input sequence be y = (1,3),(—2,1),(4,-1),(5,5),(—3,-3),(1,—6),(2,—4). For
convenience, we chose the components of y to be integers, but in reality they are
real-valued. Also for convenience, we use parentheses to group the components of y
into pairs (y2j—1,Y2;) that belong to the same trellis section. The edge metrics are
shown on the second trellis (from the top) of Figure 6.4. Once again, by adding the
edge metric along a path, we obtain the path metric (x,y), where x is the encoder
output associated to the path. O

The problem of finding an 2 that maximizes (x,y) is reduced to the problem of
finding a path with the largest path metric. The next example illustrates how the
Viterbi algorithm finds such a path.

EXAMPLE 6.2 Qur starting point is the second trellis of Figure 6.4, which has
been labeled with the edge metrics. We construct the third trellis in which every
state is labeled with the metric of the surviving path to that state obtained as
follows. We use j =0,1,...,k+2 to run over the trellis depth. Depth j = 0 refers



210 6. First layer revisited

STATE

Figure 6.4. The Viterbi algorithm. Top figure: Trellis representing the encoder
where edges are labeled with the corresponding output symbols. Second figure:
Edges are re-labeled with the edge metric corresponding to the received
sequence (1,3),(-2,1), (4, —-1),(5,5), (—3,-3),(1,—6), (2, —4) (parentheses have
been inserted to facilitate parsing). Third figure: Each state has been labeled
with the metric of a survivor to that state and non-surviving edges are pruned
(dashed). Fourth figure: Tracing back from the end, we find the decoded path
(bold); it corresponds to the source sequence 1,1,1,1,—1,1,1.
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to the initial state (leftmost) and depth j = k + 2 to the final state (rightmost)
after sending the k bits and the 2 “dummy bits”. Let j = 0 and to the single state
at depth j assign the metric 0. Let j = 1 and label each of the two states at depth
J with the metric of the only subpath to that state. (See the third trellis from the
top.) Let j = 2 and label the four states at depth j with the metric of the only
subpath to that state. For instance, the label to the state (—1,—1) at depth j =2 is
obtained by adding the metric of the single state and the single edge that precedes
it, namely —1 = —4 + 3. From j = 3 on the situation is more interesting, because
now every state can be reached from two previous states. We label the state under
consideration with the largest of the two subpath metrics to that state and make
sure to remember to which of the two subpaths it corresponds. In the figure, we
make this distinction by dashing the last edge of the other path. (If we were doing
this by hand we would not need a third trellis. Rather we would label the states on
the second trellis and cross out the edges that are dashed in the third trellis.) The
subpath with the highest edge metric (the one that has not been dashed) is called
survivor. We continue similarly for j = 4,5,...,k+2. At depth j = k+ 2 there is
only one state and its label mazximizes (x,y) over all paths. By tracing back along
the non-dashed path, we find the mazimum likelihood path. From it, we can read
out the corresponding bit sequence. The mazimum likelihood path is shown in bold
on the fourth and last trellis of Figure 6.4. O

From the above example, it is clear that, starting from the left and working
its way to the right, the Viterbi algorithm visits all states and keeps track of the
subpath that has the largest metric to that state. In particular, the algorithm finds
the path that has the largest metric between the initial state and the final state.

The complexity of the Viterbi algorithm is linear in the number of trellis sections,
i.e. in k. Recall that the brute-force approach has complexity exponential in k. The
saving of the Viterbi algorithm comes from not having to compute the metric of
non-survivors. When we dash an edge at depth j, we are in fact eliminating 257
possible extensions of that edge. The brute-force approach computes the metric of
all those extensions but not the Viterbi algorithm.

A formal definition of the VA (one that can be programmed on a computer) and
a more formal argument that it finds the path that maximizes (z,y) is given in
the Appendix (Section 6.6).

Bit-error probability

In this section we derive an upper bound to the bit-error probability P,. As usual,
we fix a signal and we evaluate the error probability conditioned on this signal
being transmitted. If the result depends on the chosen signal (which is not the
case here), then we remove the conditioning by averaging over all signals.

Each signal that can be produced by the transmitter corresponds to a path in
the trellis. The path we condition on is referred to as the reference path. We are
free to choose the reference path and, for notational convenience, we choose the
all-one path: it is the one that corresponds to the information sequence being
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start end start end

1st detw detour 2nd detour 2nd detour

reference path

Figure 6.5. Detours.

a sequence of k ones with initial encoder state (1,1). The encoder output is a
sequence of 1s of length n = 2k.

The task of the decoder is to find (one of) the paths in the trellis that has the
largest (x,y), where x is the encoder output that corresponds to that path. The
encoder input b that corresponds to this x is the maximum likelihood message
chosen by the decoder.

The concept of a detour plays a key role in upper-bounding the bit-error
probability. We start with an analogy. Think of the trellis as a road map,
of the path followed by the encoder as the itinerary you have planned for a
journey, and of the decoded path as the actual route you follow on your journey.
Typically the itinerary and the actual route differ due to constructions that
force you to take detours. Similarly, the detours taken by the Viterbi decoder
are those segments of the decoded path that share with the reference path
only their initial and final state. Figure 6.5 illustrates a reference path and two
detours.

Errors are produced when the decoder follows a detour. To the trellis path
selected by the decoder, we associate a sequence wq, w1, . . ., wg—1 defined as follows.
If there is a detour that starts at depth j, j = 0,1,...,k — 1, we let w; be the
number of bit errors produced by that detour. It is determined by comparing the
corresponding segments of the two encoder input sequences and by letting w; be
the number of positions in which they differ. If depth j does not correspond to

the start of a detour, then w; = 0. Now Zf;é wj is the number of bits that are

incorrectly decoded and % Zf;é wj is the fraction of such bits (kg=1 in our

running example; see Section 6.2).

EXAMPLE 6.3 Consider the example of Figure 6.4 where k = 5 bits are transmit-
ted (followed by the two dummy bits 1,1). The reference path is the all-one path
and the decoded path is the one marked by the solid line on the bottom trellis. There
is one detour, which starts at depth 4 in the trellis. Hence w; =0 for j =0,1,2,3
whereas wy # 0. To determine the value of wy, we need to compare the encoder
input bits over the span of the detour. The input bits that correspond to the detour
are —1,1,1 and those that correspond to the reference path are 1,1,1. There is
one disagreement, hence wy = 1. The fraction of bits that are decoded incorrectly
is 300wy =1/5. O

Over the ensemble of all possible noise processes, w; is modeled by a random
variable §); and the bit-error probability is
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A 1 k—1 1 k—1
P=E |— Q| =— E[Q
b kO J kko Z [ ]]
J=0 Jj=0

To upper bound the above expression, we need to learn how many detours of a
certain kind there are. We do so in the next section.

6.4.1 Counting detours

In this subsection, we consider the infinite trellis obtained by extending the finite
trellis in both directions. Each path of the infinite trellis corresponds to an infinite
encoder input sequence b = ...b_1,bg,b1,b2,... and an infinite encoder output
sequence x = ...x_1,Tg,x1,Ta,.... These are sequences that belong to {£1}°°.
Given any two paths in the trellis, we can take one as the reference and consider
the other as consisting of a number of detours with respect to the reference. To
each of the two paths there corresponds an encoder input and an encoder output
sequence. For every detour we can compare the two segments of encoder output
sequences and count the number of positions in which they differ. We denote this
number by d and call it the output distance (over the span of the detour). Similarly,
we can compare the segments of encoder input sequences and call input distance
(over the span of the detour) the number ¢ of positions in which they differ.

EXAMPLE 6.4 Consider again the example of Figure 6.4 and let us choose the
all-one path as the reference. Consider the detour that starts at depth j = 0 and
ends at j = 3. From the top trellis, comparing labels, we see that d = 5. (There are
two disagreements in the first section of the trellis, one in the second, and two in
the third.) To determine the input distance i we need to label the transitions with
the corresponding encoder input. If we do so and compare we see thati = 1. As
another example, consider the detour that starts at depth 7 = 0 and ends at j = 4.
For this detour, d =6 and i = 2. O

We seek the answer to the following question: For any given reference path and
depth j € {0,1,...}, what is the number a(i,d) of detours that start at depth
j and have input distance ¢ and output distance d, with respect to the reference
path? This number depends neither on j nor on the reference path. It does not
depend on j because the encoder is a time-invariant machine, i.e. all the sections
of the infinite trellis are identical. (This is the reason why we are considering the
infinite trellis in this section.) We will see that it does not depend on the reference
path either, because the encoder is linear in a sense that we will discuss.

EXAMPLE 6.5 Using the top trellis of Figure 6.4 with the all-one path as the
reference and j = 0, we can verify by inspection that there are two detours that
have output distance d = 6. One ends at j = 4 and the other ends at j = 5. The
input distance is i = 2 in both cases. Because there are two detours with parameters
d=06 andi=2, a(2,6) = 2. O
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I

Figure 6.6. Detour flow graph.

To determine a(i,d) in a systematic way, we arbitrarily choose the all-one path
as the reference and modify the state diagram into a diagram that has a start and
an end and for which each path from the start to the end represents a detour with
respect to the reference path. This is the detour flow graph shown in Figure 6.6.
It is obtained from the state diagram by removing the self-loop of state (1,1) and
by split opening the state to create two new states denoted by s (for start) and
e (for end). For every j, there is a one-to-one correspondence between the set of
detours to the all-one path that starts at depth j and the set of paths between
state s and state e of the detour flow graph.

The label I°D? (where i and d are non-negative integers) on an edge of the
detour flow graph indicates that the input and output distances (with respect to
the reference path) increase by i and d, respectively, when the detour takes this
edge.

In terms of the detour flow graph, a(i,d) is the number of paths between s and
e that have path label I’ D?, where the label of a path is the product of all labels
along that path.

EXAMPLE 6.6 In Figure 6.6, the shortest path that connects s to e has length 3.
It consists of the edges labeled ID?, D, and D?, respectively. The product of these
labels is the path label ID®. This path tells us that there is a detour withi = 1 (the
exponent of I) and d =5 (the exponent of D). There is no other path with path
label ID5. Hence, as we knew already, a(1,5) = 1. O

Our next goal is to determine the generating function T (I, D) of a(i, d) defined as

T(I,D) =Y I'D%f(i.d).
i,d

The letters I and D in the above expression should be seen as “place holders” with-
out any physical meaning. It is like describing a set of coefficients ag, a1, ..., an—1
by means of the polynomial p(z) = ag + ajx + -+ + an,_12" L. To determine
T(I,D), we introduce auxiliary generating functions, one for each intermediate
state of the detour flow graph, namely
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T(I,D) =Y _I'Da(i,d),
i,d
Ty(I,D) =Y I'D%a(i,d),
i,d
T,(I,D) =Y I'Da,(i,d),
i,d
T.(I,D) =Y I'D%a(i,d),
i,d

where in the first line we define a;(4, d) as the number of paths in the detour flow
graph that start at state s, end at state [, and have path label I*D?. Similarly, for
x =t,r e, ay(i,d) is the number of paths in the detour flow graph that start at
state s, end at state z, and have path label I*D?. Notice that T.(I, D) is indeed
the T'(I, D) of interest to us.

From the detour flow graph, we see that the various generating functions are
related as follows, where to simplify notation we drop the two arguments (I and
D) of the generating functions:

T, =ID*+1T,I
T, =T, ID+T,ID
T.=T1D+TyD
T, =T, D?.

To write down the above equations, the reader might find it useful to apply
the following rule. The T, of a state x is the sum of a product: the sum is over
all states y that have an edge into x and the product is T, times the label on the
edge from y to x. The reader can verify that this rule applies to all of the above
equations except the first. When used in an attempt to find the first equation, it
yields T; = T,ID?+ T, I, but T, is not defined because there is no detour starting
at s and ending at s. If we define Ts = 1 by convention, the rule applies without
exception.

The above system can be solved for T, (hence for T') by pure formal manipula-
tions, like solving a system of equations. The result is

1D
TI,D) = —.
(I, D) 1-2ID
As we will see shortly, the generating function T'(I, D) of a(i, d) is more useful than
a(i, d) itself. However, to show that we can indeed obtain a(i,d) from T'(I, D) we

use the expansion? liz =1l4+az+22+23 4+ to write

2 We do not need to worry about convergence issues at this stage, because for now, «* is
just a “place holder”. In other words, we are not adding up the powers of x for some
number z.
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1D

LD =155

= ID°(1+ 2ID + (2ID)* + (2ID)? + - - -
=ID°+2I°D® +2°1°D" + 2°I*D® + ...

This means that there is one path with parameters i = 1, d = 5, that there are

two paths with ¢ = 2, d = 6, etc. The general expression for ¢ = 1,2,... is
201 d=i+4
ali, d) = o
0, otherwise.

By means of the detour flow graph, it is straightforward to verify this expression
for small values of ¢ and d.

It remains to be shown that a(i,d) (the number of detours that start at any
given depth j and have parameter ¢ and d) does not depend on which reference
path we choose. We do this in Exercise 77.

6.4.2 Upper bound to P,

We are now ready to upper bound the bit-error probability. We recapitulate.

We fix an arbitrary encoder input sequence, we let = (z1,x2,...,2,) be the
corresponding encoder output and let ¢ = v/Esx be the codeword. The waveform
signal is

w(t) = VEY  aji;(t),

j=1

where 11 (t),...,%,(t) forms an orthonormal collection. We transmit this signal
over the AWGN channel with power spectral density No/2. Let r(¢) be the received
signal, and let

y= (y1,...,Yn), wherey; = /r(t)w;‘(t)dt,

be the decoder input.

The Viterbi algorithm labels each edge in the trellis with the corresponding edge
metric and finds the path through the trellis with the largest path metric. An edge
from depth j — 1 to j with output symbols x2;_1, 22, is labeled with the edge
metric Y2j—1%25—1 + Y2225

The maximum likelihood path selected by the Viterbi decoder could contain
detours. For j = 0,1,...,k — 1, if there is a detour that starts at depth j, we
set w; to be the number of information-bit errors made on that detour. In all
other cases, we set w; = 0. Let Q; be the corresponding random variable (over all
possible noise realizations).

For the path selected by the Viterbi algorithm, the total number of incorrect
bits is E;:é wj and 7= Z;:é w; is the fraction of errors with respect to the kkqg
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source bits. Hence the bit-error probability is
=
Py=— E[Q,]. 6.1
b kko J:ZO [ J] ( )

The expected value E[Q;] can be written as follows

E[Q] = 3 ih)n(h), (6.2)

h

where the sum is over all detours h that start at depth j with respect to the
reference path, 7(h) stands for the probability that detour h is taken, and i(h) for
the input distance between detour h and the reference path.

Next we upper bound 7(h). If a detour starts at depth j and ends at depth
l = j 4+ m, then the corresponding encoder-output symbols form a 2m tuple
u € {£1}*™. Let u = xj41,...,29 € {£1}*™ and p = y2j41,...,Y2 be the
corresponding sub-sequence of the reference path and of the channel output,
respectively, see Figure 6.7.

A necessary (but not sufficient) condition for the Viterbi algorithm to take a
detour is that the subpath metric along the detour is at least as large as the
corresponding subpath metric along the reference path. An equivalent condition is
that p is at least as close to /& as it is to v/Esu. Observe that p has the statistic
of /Esu+ Z where Z ~ N (0, %Igm) and 2m is the common length of u, @, and p.
The probability that p is at least as close to v/&u as it is to /Esu is Q (£2), where
dp = 2/&sd is the Euclidean distance between /Esu and v/&u. Using dg(h) to
denote the Euclidean distance of detour & to the reference path, we obtain

W(h)SQ<dg—(h)>:Q< &d_(h)>,

o o2

where the inequality sign is needed because, as mentioned, the event that p is at
least as close to /&, as it is to v/Esu is only a necessary condition for the Viterbi
decoder to take detour @. Inserting the above bound into (6.2) we obtain the first
inequality in the following chain.

detour starts at depth
i u

detour ends at depth
l=7+m

Figure 6.7. Detour and reference path, labeled with the corresponding
output subsequences.
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To obtain equality (a) we group the terms of the sum that have the same i and
d and introduce a(i,d) to denote the number of such terms in the finite trellis.
Note that a(i,d) is the finite-trellis equivalent to a(i,d) introduced in Section
6.4.1. As the infinite trellis contains all the detours of the finite trellis and more,
a(i,d) < a(i,d). This justifies (b). In (c) we use

Esd _Esd _ £
Q< 32 <e 22 =2 for z=¢ 2.2,

g

For the final step towards the upper bound to P,, we use the relationship

oo

. O = i e
> if(i) =5 ;I £(@)

=1

)

I=1

which holds for any function f and can be verified by taking the derivative of
ooy I f(i) with respect to I and then setting I = 1. Hence

iz%a(i,d) (6.3)

=
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Plugging into (6.1) and using the fact that the above bound does not depend on
J yields

0
577 D)

(6.4)

0 I=1,D=z



6.5

6.5. Summary 219

In our specific example we have kg = 1 and T(I,D) = —1£§;D7 hence —‘?97; =
D5
=D Thus
P, < 725 (6.5)
P22 '

The bit-error probability depends on the encoder and on the channel. Bound
(6.4) nicely separates the two contributions. The encoder is accounted for by
T(I,D)/ko and the channel by z. More precisely, z¢ is an upper bound to the
probability that a maximum likelihood receiver makes a decoding error when the
choice is between two encoder output sequences that have Hamming distance d.
As shown in Exercise 7?(??) of Chapter 2, we can use the Bhattacharyya bound to
determine z for any binary-input discrete memoryless channel. For such a channel,

2= /Plyla)P(ylb), (6.6)

where a and b are the two letters of the input alphabet and y runs over all the
elements of the output alphabet. Hence, the technique used in this chapter is
applicable to any binary input discrete memoryless channel.

It should be mentioned that the upper bound (6.5) is valid under the condition
that there is no convergence issue associated to the various sums following (6.3).
This is the case when 0 < z < %7 which is the case when the numerator and
the denominator of (6.5) are non-negative. The z from (6.6) fulfills 0 < z < 1.
However, if we use the tighter Bhattacharyya bound discussed in Exercise 7?7 of

Chapter 2 (which is tighter by a factor 1) then it is guaranteed that 0 < z < 3.

Summary

To assess the impact of the convolutional encoder, let us compare two situations.
In both cases, the transmitted signal looks identical to an observer, namely it has
the form

21

w(t) = 3 sas(t —iT)

=1

for some positive integer [ and some unit-norm pulse ¢ (¢) that is orthogonal to
its T-space translates. In both cases, the symbols take values in {£+/&,} for some
fixed energy-per-symbol &, but the way the symbols are obtained differs in the two
cases. In one case, the symbols are obtained from the output of the convolutional
encoder studied in this chapter. We call this the coded case. In the other case, the
symbols are simply the source bits, which take value in {41}, scaled by /E. We
call this the uncoded case.

For the coded case, the number of symbols is twice the number of bits. Hence,
letting Ry, Rs, and &, be the bit rate, the symbol rate, and the energy per bit,
respectively, we obtain
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R, L.
Ry = 5 =57 [bits/symbol],
& = 28,
5
z
P, <
=1 =222

where z = 6725052 . As 2‘252 becomes large, the denominator of the above bound for
P, becomes essentially 1 and the bound decreases as z°.

For the uncoded case, the symbol rate equals the bit rate and the energy per bit
equals the energy per symbol. For this case we have an exact expression for the
bit-error probability. However, for comparison with the coded case, it is useful to

upper bound also the bit-error probability of the uncoded case. Hence,

Ry =Rs = % [bits/symbol],

gb = 837
& 5
Pb:Q< —;> <emaeT =z,
o
where we have used Q(z) < exp{ — %} Recall that o2 is the noise variance

of the discrete-time channel, which equals the power spectral density % of the
continuous-time channel.

Figure 6.8 plots various bit-error probability curves. The dots represent simu-
lated results. From right to left, we see the simulation results for the uncoded
system, for the system based on the convolutional encoder, and for a system
based on a low-density parity-check (LDPC) code, which is a state-of-the-art code
used in the DVB-S2 (Digital Video Broadcasting — Satellite — Second Generation)
standard. Like the convolutional encoder, the LDPC encoder produces a symbol
rate that is twice the bit rate. For the uncoded system, we have plotted also
the exact expression for the bit-error probability (dashed curve labeled by the @
function). We see that this expression is in perfect agreement with the simulation
results. The upper bound that we have derived for the system that incorporates the
convolutional encoder (solid curve) is off by about 1 dB at P, = 10~ with respect
to the simulation results. The dashed curve, which is in excellent agreement with
the simulated results for the same code, is the result of a more refined bound (see
Exercise 77).

Suppose we are to design a system that achieves a target error probability P,
say P, = 1072, From the plots in Figure 6.8, we see that the required &/0? is
roughly 7.3 dB for the uncoded system, whereas the convolutional code and the
LDPC code require about 2.3 and 0.75 dB, respectively. The gaps become more
significant as the target P, decreases. For P, = 10~7, the required &,/0? is about
14.3, 7.3, and 0.95 dB, respectively. (Recall that a difference of 13 dB means a
factor 20 in power.)

Instead of comparing &£;/0?, we might be interested in comparing &,/02. The
conversion is straightforward: for the uncoded system &, /02 = £,/0?, whereas for
the two coded systems & /0% = 2E,/0>.
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Figure 6.8. Bit-error probabilities.

From a high-level point of view, non-trivial coding is about using only selected
sequences to form the codebook. In this chapter, we have fixed the channel-input
alphabet to {£+/E;}. Then our only option to introduce non-trivial coding is to
increase the codeword length from n = k to n > k. For a fixed bit rate, increasing n
implies increasing the symbol rate. To increase the symbol rate we time-compress
the pulse 1 (t) by the appropriate factor and the bandwidth expands by the same
factor. If we fix the bandwidth, the symbol rate stays the same and the bit rate
has to decrease.

It would be wrong to conclude that non-trivial coding always requires reducing
the bit rate or increasing the bandwidth. Instead of keeping the channel-input
alphabet constant, for the coded system we could have used, say, 4-PAM. Then
each pair of binary symbols produced by the encoder can be mapped into a single
4-PAM symbol. In so doing, the bit rate, the symbol rate, and the bandwidth
remain unchanged.

The ultimate answer comes from information theory (see e.g. [19]). Information
theory tells us that, by means of coding, we can achieve an error probability as
small as desired, provided that we send fewer bits per symbol than the channel
capacity C, which for the discrete-time AWGN channel is C' = Llog,(1 + )
bits/symbol. According to this expression, to send 1/2 bits per symbol as we do in
our example, we need £ /02 = 1, which means 0 dB. We see that the performance



6.6

222 6. First layer revisited

of the LDPC code is quite good. Even with the channel-input alphabet restricted
to {£+/Es} (no such restriction is imposed in the derivation of C), the LDPC code
achieves the kind of error probability that we typically want in applications at an
Es/ o2 which is within 1 dB from the ultimate limit of 0 dB required for reliable
communication.

Convolutional codes were invented by Elias in 1955 and have been used in many
communication systems, including satellite communication, and mobile communi-
cation. In 1993, Berrou, Glavieux, and Thitimajshima captured the attention of
the communication engineering community by introducing a new class of codes,
called turbo codes, that achieved a performance breakthrough by concatenating
two convolutional codes separated by an interleaver. Their performance is not far
from that of the low-density parity-check codes (LDPC) — today’s state-of-the-art
in coding.

Thanks to its tremendous success, coding is in every modern communication
system. In this chapter we have only scratched the surface. Recommended books
on coding are [22] for a classical textbook that covers a broad spectrum of coding
techniques and [23] for the reference book on LDPC coding.

Appendix: Formal definition of the Viterbi algorithm

Let T = {(1,1),(1,-1),(-1,1),(—1,—1)} be the state space and define the edge
metric p;j—1,;(a, B) as follows. If there is an edge that connects state o € I' at
depth j — 1 to state g € T" at depth j let

pi—1,5(a, B) = x2j_1y2j—1 + T25y25,

where z2;_1,22; is the encoder output of the corresponding edge. If there is no
such edge, we let p1;_1 (o, f) = —o0.

Since p;—1,;(cx, B) is the jth term in (z,y) for any path that goes through state
a at depth j — 1 and state 8 at depth j, (z,y) is obtained by adding the edge
metrics along the path specified by z.

The path metric is the sum of the edge metrics taken along the edges of a path.
A longest path from state (1,1) at depth j = 0, denoted (1,1)o, to a state a at
depth j, denoted ¢, is one of the paths that has the largest path metric. The
Viterbi algorithm works by constructing, for each j, a list of the longest paths
to the states at depth j. The following observation is key to understanding the
Viterbi algorithm. If path * o;_1 * B; is a longest path to state 8 of depth j, where
path € T2 and * denotes concatenation, then path * aj—1 must be a longest path
to state a of depth j — 1, for if another path, say alternatepath * ocj_1 were shorter
for some alternatepath € T772, then alternatepath * a;j_1 * 3; would be shorter
than path * a;j_1 * B;. So the longest depth j path to a state can be obtained by
checking the extension of the longest depth (5 — 1) paths by one edge.

The following notation is useful for the formal description of the Viterbi algo-
rithm. Let pj(a) be the metric of a longest path to state «; and let B;(a) €
{£1}7 be the encoder input sequence that corresponds to this path. We call
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Bj(a) € {£1}/ the survivor because it is the only path through state «; that
will be extended. (Paths through «; that have a smaller metric have no chance of
extending into a maximum likelihood path.) For each state, the Viterbi algorithm
computes two things: a survivor and its metric. The formal algorithm follows,
where B(8, «) is the encoder input that corresponds to the transition from state
[ to state « if there is such a transition and is undefined otherwise.

(1) 1Initially set po(1,1)=0, po(a)=—o0 for all a# (1,1), Bo(l,1)=
(), and j=1.

(2) For each a €I, find one of the § for which
wi—1(B) + pj—1,;(B,) is a maximum. Then set

() < pj—1(B) + pj—1,5(8; @),
Bj(a) < Bj_1(B) * B(f, ).

(3) If j=Fk + 2, output the first k bits of B,;(1,1) and stop. Other-
wise increment j by one and go to Step 2.

The reader should have no difficulty verifying (by induction on j) that u;(«) as
computed by Viterbi’s algorithm is indeed the metric of a longest path from (1,1)
to state o at depth j and that B;(«) is the encoder input sequence associated to it.

Exercises

Note: The exercises are available only in the official copy provided by the editor.
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Passband communication
via up/down conversion:

Third layer

Introduction

We speak of baseband communication when the signals have their energy in some
frequency interval [—B, B] around the origin (Figure 7.1a). Much more common
is the situation where the signal’s energy is concentrated in [f. — B, f. + B] and
[—fc — B,—fc + B] for some carrier frequency f. greater than B. In this case,
we speak of passband communication (Figure 7.1b). The carrier frequency f. is
chosen to fulfill regulatory constraints, to avoid interference from other signals, or
to make the best possible use of the propagation characteristics of the medium
used to communicate.

- W >
' f
—-B 0 B
(a)
—fo-B —f. —f4B O  fo=B  fo  fo+B

(b)

Figure 7.1. Baseband (a) versus passband (b).

The purpose of this chapter is to introduce a third and final layer responsible for
passband communication. With this layer in place, the upper layers are designed
for baseband communication even when the actual communication happens in
passband.

EXAMPLE 7.1 (Regulatory constraints) Figure 7.2 shows the radio spectrum allo-
cation for the United States (October 2003). To get an idea about its complexity, the
chart is presented in its entirety even if it is too small to read. The interested reader
can find the original on the website of the (US) National Telecommunications and
Information Administration. O
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Electromagnetic waves are subject to reflection, refraction, polarization, diffrac-
tion and absorption, and different frequencies experience different amounts of
these phenomenons. This makes certain frequency ranges desirable for certain
applications and not for others. A few examples follow.

EXAMPLE 7.2 (Reflection/diffraction) Radio signals reflect and/or diffract off
obstacles such as buildings and mountains. For our purpose, we can assume that
the signal is reflected if its wavelength is much smaller than the size of the obstacle,
whereas it is diffracted if its wavelength is much larger than the obstacle’s size.
Because of their large wavelengths, very low frequency (VLF) radio waves (see
Table 7.1) can be diffracted by large obstacles such as mountains, thus are not
blocked by mountain ranges. By contrast, in the UHF range signals propagate
mainly by line of sight. O

Table 7.1 The radio spectrum

Range Name Frequency Range Wavelength Range

Extremely Low Frequency (ELF
Ultra Low Frequency (ULF
Very Low Frequency (VLF

) 3 Hz to 300 Hz 100000 km to 1,000 km
) 300 Hz to 3 kHz 1000 km to 100 km
) 3 kHz to 30 kHz 100 km to 10 km
Low Frequency (LF) 30 kHz to 300 kHz 10 km to 1 km
Medium Frequency (MF) 300 kHz to 3 MHz 1 km to 100 m
High Frequency (HF) 3 MHz to 30 MHz 100 m to 10 m
Very High Frequency (VHF) 30 MHz to 300 MHz 10 m to 1 m
Ultra High Frequency (UHF) 300 MHz to 3 GHz 1 m to 10 cm
Super High Frequency (SHF) 3 GHz to 30 GHz 10 ¢cm to 1 cm
Extremely High Frequency (EHF) 30 GHz to 300 GHz 1 cm to 1 mm

Visible Spectrum 400 THz to 790 THz 750 nm to 390 nm
X-Rays 3 x10'® to 3 x 10 Hz 10 nm to 10 pm

EXAMPLE 7.3 (Refraction) Radio signals are refracted by the ionosphere sur-
rounding the Farth. Different layers of the ionosphere have different ionization
densities, hence different refraction indices. As a result, signals can be bent by a
layer or can be trapped between layers. This phenomenon concerns mainly the MF
and HF range (300 kHz to 30 MHz) but can also affect the MF through the LF and
VLF range. As a consequence, radio signals emitted from a ground station can be
bent back to Earth, sometimes after traveling a long distance trapped between layers
of the ionosphere. This mode of propagation, called sky wave (as opposed to ground
wave) is exploited, for instance, by amateur radio operators to reach locations on
Earth that could not be reached if their signals traveled in straight lines. In fact,
under particularly favorable circumstances, the communication between any two
regions on Earth can be established via sky waves. Although the bending caused by
the ionosphere is desirable for certain applications, it is a nuisance for Earth-to-
satellite communication. This is why satellites use higher frequencies for which the
ionosphere is essentially transparent (typically GHz range). O
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EXAMPLE 7.4 (Absorption) Because of absorption, electromagnetic waves do
not go very far under sea. The lower the frequency the better the penetration. This
explains why submarines use the ELF through the VLF range. Because of the very
limited bandwidth, communication in the ELF range is limited to a few characters
per minute. For this reason, it is mainly used to order a submarine to rise to a
shallow depth where it can be reached in the VLF range. Similarly, long waves
penetrate the Farth better than short waves. For this reason, communication in
mines is done in the ULF band. On the Earth’s surface, VLF waves have very
little path attenuation (2—3 dB per 1000 km), so they can be used for long-distance
communication without repeaters. O

The baseband-equivalent of a passband signal

In this section we show how a real-valued passband signal x(t) can be represented
by a baseband-equivalent xg(t), which is in general complex-valued. The relation-
ship between these two signals is established via the analytic-equivalent &(t).

Recall two facts from Fourier analysis. If z(t) is a real-valued signal, then its
Fourier transform xz(f) is conjugate symmetric, that is

v7=(f) =xr(—f), (7.1)

where x%(f) is the complex conjugate of zx(f).! If x(t) is a purely imaginary
signal, then its Fourier transform is conjugate anti-symmetric, i.e.

#5(f) = —ar(~f).

The symmetry and anti-symmetry properties can easily be verified from the
definition of the Fourier transform and the fact that the complex conjugate
operator commutes with both the integral and the product. For instance, the
proof of the symmetry property is

xx(f) = [/ac(t)e_j%ftdt}
_ / [(t)e—3274]"
/x*(t)ejzﬁftdt

/x(t)e*j%(*f)tdt
zr(=

f)-

*

! In principle, the notation z%(f) could mean (zx)*(f) or (z*)#(f), but it should be
clear that we mean the former because the latter is not useful when x(t) is real-valued,
in which case (z*)=(f) = z#(f).
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The symmetry property implies that the Fourier transform xz(f) of a real-valued
signal x(t) has redundant information: If we know x#(f) for f > 0, then we know
it also for f < 0.

If we remove the negative frequencies from z(t) and scale the result by v/2,
we obtain the complex-valued signal Z(t) called the analytic-equivalent of x(t).
Intuitively, by removing the negative frequencies of a real-valued signal we reduce
its norm by v/2. The scaling by v/2 in the definition of Z(t) is meant to make the
norm of Z(t) identical to that of x(t) (see Corollary 7.6 for a formal proof).

To remove the negative frequencies of z(t) we use the filter of impulse response
h~(t) that has Fourier transform?

mr={ o miZ0 (72

Hence,

27 (f) = V2ur(f)hs 7 (), :
E(t) = V2(x * hs (1) (7.4)
It is straightforward to go from #(¢) back to z(¢). We claim that

a(t) = V2R{i(t)}, (7.5)

where, once again, we remember the factor v/2 as being the one that compensates
for halving the signal’s energy by removing the signal’s imaginary part. To prove
(7.5), we use the fact that the real part of a complex number is half the sum of
the number and its complex conjugate, i.e.

1
V2R {2(t)} = —= (&(t) + &% (1)) .
{2(t)} \/5( (t) +2"(t))
To complete the proof, it suffices to show that the Fourier transform of the right-
hand side, namely

vr(f)hs 7(f) + 2% (= )R #(—f)

is indeed zx(f). For non-negative frequencies, the first term equals zx(f) and
the second term vanishes. Hence the Fourier transform of v/2R {#(¢)} and that
of z(t) agree for non-negative frequencies. As they are the Fourier transform of
real-valued signals, they must agree everywhere. This proves that /2R {2(¢)} and
x(t) have the same Fourier transform, hence they are Lo equivalent.

To go from &(t) to the baseband-equivalent xg(t) we use the frequency-shifting
property of the Fourier transform that we rewrite for reference:

z(t)e?™ et s wx (f — f.).

2 Note that hs, #(f) is not an Lo function, but it can be made into one by setting it to
zero at all frequencies that are outside the support of z#(f). Note also that we can
arbitrarily choose the value of h~, #(f) at f = 0, because two functions that differ at a
single point are L2 equivalent.
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lzx(f)]
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0

Figure 7.3. Fourier-domain relationship between a real-valued signal, and the
corresponding analytic and baseband-equivalent signals.

The baseband-equivalent of x(t) with respect to the carrier frequency f. is defined
to be

rp(t) = @(t)e 32/t
and its Fourier transform is

rpF(f)=2x(f + feo)

Figure 7.3 depicts the relationship between |z£(f)], |Z£(f)|, and |zg, #(f)]. We
plot the absolute value to avoid plotting the real and the imaginary components.
We use dashed lines to plot |z£(f)| for f < 0 as a reminder that it is completely
determined by |z£(f)|, f > 0.

The operation that recovers z(t) from its baseband-equivalent zg(t) is

a(t) = V2R{zp(t)ed . (7.6)

The circuits to go from z(t) to zg(t) and back to x(t) are depicted in Figure 7.4,
where double arrows denote complex-valued signals. Exercises 7?7 and 7?7 derive
equivalent circuits that require only operations over the reals.

The following theorem and the two subsequent corollaries are important in that
they establish a geometrical link between baseband and passband signals.
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L v —@—

:.®=. VIR{) ——

Figure 7.4. From a real-valued signal z(t) to its baseband-equivalent
zp(t) and back.

THEOREM 7.5 (Inner product of passband signals) Let x(t) and y(t) be (real-
valued) passband signals, let Z(t) and §(t) be the corresponding analytic signals, and
let xp(t) and yg(t) be the baseband-equivalent signals (with respect to a common
carrier frequency f.). Then

(r,y) = R{(2,9)} = R{(zp, yp)}-
(]

Note 1: (x,y) is real-valued, whereas (%, §) and (zg, yg) are complex-valued in gen-
eral. This helps us see/remember why the theorem cannot hold without taking the
real part of the last two inner products. The reader might prefer to remember the
more symmetric (and more redundant) form R{(x, y)} = R{(%,9)} = R{(zE,yr)}

Note 2: From the proof that follows, we see that the second equality holds also for
the imaginary parts, i.e. (Z,9) = (zg,yg).

Proof Let #(t) = xp(t)ed?™/et. Showing that (2, 7)) = (rg,yg) is immediate:
(#,9) = (zp(t)e*™ yp(t)e?™et) = I2Tetem 32Tt (pp (1), yp(t)) = (28, yE).

To prove (z,y) = R{(Z, )}, we use Parseval’s relationship (first and last equality
below), we use the fact that the Fourier transform of z(t) = \/i—[fc( )+ &*(t)] is

zx(f) = %[f]—'(f) + 2% (—f)] (second equality), that Z7(f)yr(—f) = 0 because
the two functions have disjoint support and similarly 2% (—f)9%(f) = 0 (third
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equality), and finally that the integral over a function is the same as the integral
over the time-reversed function (fourth equality):

() = / r (P (f)df
1

=5 [ [+ 850 500 + a1

_1 / (NI (f) + a5 (= fir(—)]df

y
:%{

N =

[&F

(NoF(f) + =gz (f)]df
(ix0)ar |

O
The following two corollaries are immediate consequences of the above theorem.

The first proves that the scaling factor v/2 in (7.4) and (7.5) is what keeps the
norm unchanged. We will use the second to prove Theorem 7.13.

f

COROLLARY 7.6 (Norm preservation) A passband signal has the same norm as
its analytic and its baseband-equivalent signals, i.e.

1> = 121> = [zl
O

COROLLARY 7.7 (Orthogonality of passband signals) Two passband signals are
orthogonal if and only if the inner product between their baseband-equivalent signals
(with respect to a common carrier frequency f.) is purely imaginary (i.e. the real
part vanishes). O

Typically, we are interested in the baseband-equivalent zg(t) of a passband
signal z(t), but from a mathematical point of view, z(¢) need not be passband
for zg(t) to be defined. Specifically, we can feed the circuit of Figure 7.4a with
any real-valued signal z(t) and feed the baseband-equivalent output xg(t) to the
circuit of Figure 7.4b to recover z(t).3

However, if we reverse the order in Figure 7.4, namely feed the circuit of part (b)
with an arbitrary signal ¢g(¢) and feed the circuit’s output to the input of part (a),
we do not necessarily recover g(t) (see Exercise 77), unless we set some restriction
on g(t). The following lemma sets such a restriction on g(t). (It will be used in the
proof of Theorem 7.13.)

LEMMA 7.8 If g(t) is bandlimited to [—b,00) for some b > 0 and f. > b, then
g(t) is the baseband-equivalent of \/2R{g(t)e3* <t} with respect to the carrier
frequency fe. O

3 It would be a misnomer to call zg(t) a baseband signal if 2(t) is not passband.
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Proof 1If g(t) satisfies the stated condition, then g(t)e3?"/<* has no negative fre-
quencies. Hence g(t)e3?™/<t is the analytic signal (t) of x(t) = vV2R{g(t)e?"/<t},
which implies that g(¢) is the baseband-equivalent xg(t) of x(t). O

Hereafter all passband signals are assumed to be real-valued as they represent
actual communication signals. Baseband signals can be signals that we use for
baseband communication on real-world channels or can be baseband-equivalents
of passband signals. In the latter case, they are complex-valued in general.

7.2.1 Analog amplitude modulations: DSB, AM, SSB, QAM

There is a family of analog modulation techniques, called amplitude modulations,
that can be seen as a direct application of what we have learned in this section.
The well-known AM modulation used in broadcasting is the most popular member
of this family.

EXAMPLE 7.9 (Double-sideband modulation with suppressed carrier (DSB-SC))
Let the source signal be a real-valued baseband signal b(t). The arguably easiest
way to convert b(t) into a passband signal x(t) that has the same norm as b(t)
is to let x(t) = v/2b(t) cos(2m fot). This is amplitude modulation in the sense that
the carrier \/2 cos(27 f.t) is being amplitude modulated by the analog information
signal b(t). To see how this relates to what we have learned in the previous section,
we write

z(t) = V/2b(t) cos(2m f.t)
= V2R{b(t)eI? It}

If b(t) is bandlimited to [— B, B] and the carrier frequency satisfies f. > B, which
we assume to be the case, then b(t) is the baseband-equivalent of the passband signal
x(t). Figure 7.5 gives an example of the Fourier-domain relationship between the

bF(f)]

-B 0 B

(a) Information signal.

sl TS

(b) DSB-SC modulated signal.

Figure 7.5. Spectrum of a double-sideband modulated signal.
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baseband information signal b(t) and the modulated signal x(t). The dashed parts
of the plots are meant to remind us that they can be determined from the solid
parts.

This modulation scheme is called “double-sideband” because of the two bands on
the left and right of f., only one is needed to recover b(t). Specifically, we could
eliminate the sideband below f.; and to preserve the conjugacy symmetry required
by real-valued signals, we would eliminate also the sideband above —f. and still
be able to recover the information signal b(t) from the resulting passband signal.
Hence, we could eliminate one of the sidebands and thereby reduce the bandwidth
and the energy by a factor 2. (See Example 7.11.) The SC (suppressed carrier)
part of the name distinguishes this modulation technique from AM (amplitude
modulation, see next example), which is indeed a double-sideband modulation with
carrier (at £ f.). O

EXAMPLE 7.10 (AM modulation) AM modulation is by far the most popular
member of the family of amplitude modulations. Let b(t) be the source signal,
and assume that it is zero-mean and |b(t)] < 1 for all t. AM modulation of
b(t) is DSB-SC modulation of 1 + mb(t) for some modulation index m such that
0 < m < 1. Notice that 1 + mb(t) is always non-negative. By using this fact, the
receiver can be significantly simplified (see Exercise 77 ). The possibility of building
inexpensive receivers is what made AM modulation the modulation of choice in
early radio broadcasting. AM is also a double-sideband modulation but, unlike
DSB-SC, it has a carrier at £f.. We see the carrier by expanding x(t) = (1 +
mb(t))V/2 cos(2m fot) = mb(t)V/2 cos(27 fet) + /2 cos(2m ft). The carrier consumes
energy without carrying any information. It is the “price” that broadcasters are
willing to pay to reduce the cost of the receiver. The trade-off seems reasonable
given that there is one sender and many receivers. O

The following two examples are bandwidth-efficient variants of double-sideband
modulation.

EXAMPLE 7.11 (Single-sideband modulation (SSB)) As in the previous example,
let b(t) be the real-valued baseband information signal. Let b(t) = (bxhs)(t) be the
analytic-equivalent of b(t). We define x(t) to be the passband signal that has b(t) as
its baseband-equivalent (with respect to the desired carrier frequency). Figure 7.6
shows the various frequency-domain signals. A comparison with Figure 7.5 should
suffice to understand why this process is called single-sideband modulation. Single-
sideband modulation is widely used in amateur radio communication. Instead of
removing the negative frequencies of the original baseband signal we could remove
the positive frequencies. The two alternatives are called SSB-USB (USB stands for
upper side-band) and SSB-LSB (lower side-band), respectively. A drawback of SSB
is that it requires a sharp filter to remove the megative frequencies. Amateur radio
people are willing to pay this price to make efficient use of the limited spectrum
allocated to them. O

EXAMPLE 7.12 (Quadrature amplitude modulation (QAM)) The idea consists
of taking two real-valued baseband information signals, say br(t) and br(t), and
forming the signal b(t) = br(t) + jbr(t). As b(t) is complez-valued, its Fourier



242 7. Third layer
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(a) Information signal.
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(b) Analytic-equivalent of b(t) (up to scaling).
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(c) SSB modulated signal.

Figure 7.6. Spectrum of SSB-USB.
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(a) Information signal.
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(b) Modulated signal.

Figure 7.7. Spectrum of QAM.

transform no longer satisfies the conjugacy constraint. Hence the asymmetry of
|br(f)| on the top of Figure 7.7. We let the passband signal x(t) be the one that
has baseband-equivalent b(t) (with respect to the desired carrier frequency). The
spectrum of x(t) is shown on the bottom plot of Figure 7.7. QAM is as bandwidth
efficient as SSB. Unlike SSB, which achieves the bandwidth efficiency by removing
the extra frequencies, QAM doubles the information content. The advantage of
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QAM over SSB is that it does not require a sharp filter to remove one of the two
sidebands. The drawback is that typically a sender has one, not two, analog signals
to send. QAM is not popular as an analog modulation technique. However, it is
a very popular technique for digital communication. The idea is to split the bits
into two streams, with each stream doing symbol-by-symbol on a pulse train to
obtain, say, br(t) and by(t) respectively, and then proceeding as described above.
(See Example 7.15.) O

The third layer

In this section, we revisit the second layer using the tools that we have learned
in Section 7.2. From a structural point of view, the outcome is that the second
layer splits into two, giving us the third layer. The third layer enables us to choose
the carrier frequency independently from the shape of the power spectral density.
It gives us also the freedom to vary the carrier frequency in an easy way without
redesigning the system. Various additional advantages are discussed in Section 7.7.
We assume passband communication over the AWGN channel.

We start with the ML (or MAP) receiver, following the general approach learned
in Chapter 3. Let 11(t),...,%n(t) be an orthonormal basis for the vector space
spanned by the passband signals wq(t), . . ., Wm—1(t). The n-tuple former computes

Y =(Yy,...,Y,)T
Y, = (R(t), (1), 1=1,...,n.
When H =i,
Y=c¢+ 2,

where ¢; € R is the codeword associated to w; (), with respect to the orthonormal
basis 91 (t), ..., ¥, (t) and Z ~ N(0, %In) When Y =y, an ML decoder chooses

H = for one of the 7 that minimizes ||y — ¢;|| or, equivalently, for one of the 7 that
maximizes (y, ¢;) — ||ci]|?/2.

This receiver has the serious drawback that all of its stages depend on the choice
of the passband signals wq(¢), ..., wm—1(t). For instance, suppose that the sender
decides to use a different frequency band. If the signaling method is symbol-by-
symbol on a pulse train based on a pulse 9(t) orthogonal to its T-spaced translates,
i.e. such that [¢=(f)]? fulfills Nyquist’s criterion with parameter T', then one way
to change the frequency band is to use a different pulse @[;(t) that, as the original
pulse, is orthogonal to its T-spaced translates, and such that |1E 7(f)|? occupies the
desired frequency band. Such a pulse @[;(t) exists only for certain frequency offsets
with respect to the original band (see Exercise 7?), a fact that makes this approach
of limited interest. Still, if we use this approach, then the n-tuple former has to
be adapted to the new pulse ¥(t). A much more interesting approach, that applies
to any signaling scheme (not only symbol-by-symbol on a pulse train), consists in
using the ideas developed in Section 7.2 to frequency-translate wo(t), ..., wm—1(%)
into a new set of signals wg(¢),...,Wm—1(t) that occupy the desired frequency
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band. This can be done quite effectively; we will see how. But if we re-design the
receiver starting with a new arbitrarily-selected orthonormal basis for the new
signal set, then we see that the n-tuple former as well as the decoder could end up
being totally different from the original ones. Using the results of Section 7.2, we
can find a flexible and elegant solution to this problem, so that we can frequency-
translate the signal’s band to any desired location without affecting the n-tuple
former and the decoder. (The encoder and the waveform former are not affected
either.)

Let wg,o(t), ..., wr,m—1(t) be the baseband-equivalent signal constellation. We
assume that they belong to a complex inner product space and let 11 (¢), ..., ¥, (t)
be an orthonormal basis for this space. Let ¢; = (ci,17...7ci,n)T € C™ be the
codeword associated to wg (), i.e.

wpi(t) =Y cinh(t),
=1
’U)l(t) = ﬁ%{wE7i(t)€j2ﬂfct}.

The orthonormal basis for the baseband-equivalent signal set can be lifted up to
an orthonormal basis for the passband signal set as follows.

wi(t) = V2R{wg ;(t)eI?™ It}
= V2R{ Z ciath(t)e??mIet}
=1

= \/52 %{C@ﬂ/ll (t)ejzﬂfct}
=1

VIS R R0
=1

— V2 e} (e

=1

=Y Rleidra®) + D Sendvaa), (7.7)
=1 =1

with 41 ;(t) and 1o, (t) in (7.7) defined as

P1,(t) = V2R{t (t)eI?m I, (7.8)
Yo, (t) = —V23{yy(t)eI* I} (7.9)

From (7.7), we see that the set {¢11(t),...,Y1.n(t),Y21(t),...,¥2,(t)} spans
a vector space that contains the passband signals. As stated by the next
theorem, this set forms an orthonormal basis, provided that the carrier frequency
is sufficiently high.
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THEOREM 7.13  Let {¢y(t) : 1 = 1,2,...,n} be an orthonormal set of functions
that are frequency-limited to [—B, B for some B > 0 and let f. > B. Then the set
{11(8),¥2,(t) : 1=1,2,...,n} (7.10)

defined via (7.8) and (7.9) consists of orthonormal functions. Furthermore, if
wg,i(t) =D ciabi(t), then

wi(t) = V2R{wpg i ()Y =Y " Rfcibbri(t) + D e tva(t).
=1 =1

O

Proof The last statement is (7.7). Hence (7.10) spans a vector space that contains
the passband signals. It remains to be shown that this set is orthonormal. From
Lemma 7.8, the baseband-equivalent signal of 11 ;(¢) is ¢;(¢). Similarly, by writing
You(t) = V2R{[ji(t)]e3?"f<'}, we see that the baseband-equivalent of 1 (t) is
Jia(t). From Corollary 7.7, (1 4(6), ¥ra()) = R{(x (D), tn(t)} = 1{k = 1},

showing that the set {¢1,(¢t) : I = 1,...,n} is made of orthonormal functions.
Similarly, (2.x(t),v2,1(t)) = REGUR(), 591(0) } = R{Ww(8), ¥u(8))} = L{k = 1},
showing that also {t2,(t) : I = 1,...,n} is made of orthonormal functions.

To conclude the proof, it remains to be shown that functions from the first
set are orthogonal to functions from the second set. Indeed (11 x(t),v¥2,(t)) =
R{Ww (), J ()} = R{—=3(Wr(t), i (t))} = 0. The last equality holds for k # I
because ¥ and ¢; are orthogonal and it holds for k = [ because (¢ (t), ¥ (t)) =
lvr(t)||? is real. O

From the above theorem, we see that if the vector space spanned by the
baseband-equivalent signals has dimensionality n, the vector space spanned by the
corresponding passband signals has dimensionality 2n. However, the number of
real-valued “degrees of freedom” is the same in both spaces. In fact, the coefficients
used in the orthonormal expansion of the baseband signals are complex, hence
with two degrees of freedom per coeflicient, whereas those used in the orthonormal
expansion of the passband signals are real.

Next we re-design the receiver using Theorem 7.13 to construct an orthonor-
mal basis for the passband signals. The 2n-tuple former now computes Y; =
(Yi1,...,Y1,)" and Yo = (Ya,1,...,Ya,)T, where for = 1,...,n

Y1 = (R(t),¥1,(t)) (7.11)
= (R(t), V2R{yy(t)eI* I}y
= R{(R(t), V2¢ (t)e3?™ 1)}

V2e IZ L R(1), (1)) ], (7.12)

and similarly

Yo = (R(t), ¥2,(1)) (7.13)
= S{(V2e I R(E), (1)} (7.14)
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To simplify notation, we define the complex random vector Y € C™

Y =Y + jYa. (7.15)

The Ith component of Y is
Y=Y+ jYay (7.16)
= (V2e 32 R(1), i(t)). (7.17)

This is an important turning point: it is where we introduce complex-valued
notation in the receiver design.

Figure 7.8 shows the new architecture, where we use double lines for connec-
tions that carry complex-valued quantities (symbols, n-tuples, signals). At the
transmitter, the waveform former decomposes into a waveform former for the
baseband signal, followed by the up-converter. At the receiver, the n-tuple former
for passband decomposes into the down-converter followed by an n-tuple former for
baseband. The significant advantage of this architecture is that f. affects only the
up/down-converter. With this architecture, varying the carrier frequency means
turning the knob that varies the frequency of the oscillators that generate e*327/ct
in the up/down-converter.

The operations performed by the blocks of Figure 7.8 can be implemented in a
digital signal processor (DSP) or with analog electronics. If the operation is done

r— ]
n wE,i(t)
i €Ct = z:d{l,(.t.).,n : @ V2R{} J|_. wi(t)
waveform former | ﬂ |
ej27"fct
L — _— _— _ ]

up-converter

(a) Transmitter back end.

r— — — — 0
t | m | <'7wl(t)> Y n
Rit) )= 12 Y EC
| i |
. n-tuple former
| VEe |
Lo

down-converter

(b) Receiver front end.

Figure 7.8. Baseband waveform former and up-converter at the transmitter
back end (a); down-converter and baseband n-tuple former at the receiver
front end (b).
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V2 cos(2m f.t)
R{ci} € R" w(#) /}(\
l=1,...,n N
wi(t)
Yu(t) ()
S{ci} € R l=1,...,n \T/
—V/2sin (27 f.t)
(a) Transmitter back end.
V2 cos(2m f.t)
fi\ Gty | TR
\Z/ l=1,...,n
R(t)
o (D))
—V2sin(27 fet)

(b) Receiver front end.

Figure 7.9. Real-valued implementation of the diagrams of Figure 7.8
for a real-valued orthonormal basis ¥;(t), [ =1,...,n.

in a DSP, the programmer might be able to rely on functions that can cope with
complex numbers. If done with analog electronics, the real and the imaginary parts
are kept separate. This is shown in Figure 7.9, for the common situation where
the orthonormal basis is real-valued. There is no loss in performance in choosing
a real-valued basis and, if we do so, the implementation complexity using analog
circuitry is essentially halved (see Exercise 77).

We have reached a conceptual milestone, namely the point where working with
complex-valued signals becomes natural. It is worth being explicit about how and
why we make this important transition. In principle, we are only combining two
real-valued vectors of equal length into a single complex-valued vector of the same
length (see (7.15)). Because it is a reversible operation, we can always pack a
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pair of real numbers into a complex number, and we should do so if it provides
an advantage. In our case, we can identify a few benefits by doing so. First, the
expressions are simplified: compare the pair (7.12) and (7.14) to the single and
somewhat simpler (7.17). Similarly, the block diagrams are simplified: compare
Figure 7.8 with Figure 7.9, keeping in mind that the former is general, whereas
the latter becomes more complicated if the orthonormal basis is complex-valued.
(see Exercise ?7). Finally, as we will see, the expression for the density of the
complex random vector Y takes a somewhat simpler form than that of R{Y} (or
of I{Y}), thus simpler than the joint density of R{Y'} and S{Y}, which is what
we need if we keep the real and the imaginary parts separate.

EXAMPLE 7.14 (PSK signaling via complex-valued symbols) Consider the signals

wp(t) = Z sip(t —1T)
l
w(t) = VIR {wE(t)ej2ﬂfct} 7

where Y(t) is real-valued, normalized, and orthogonal to its T-spaced time-
translates, and where symbols take wvalue in a 4-ary PSK alphabet, seen as a
subset of C. So we can write a symbol s; as \/EeI¥t with p; € {0,%,m, 37”} or,
alternatively, as sy = R{s1} + jS{s:1}. We work it out both ways.

If we plug s; = VEeI® into wg(t) we obtain

w(t) = V2R { <Z VESPp(t — lT)) ej%fct}

l

:ﬁ%{z\/gej@ﬂ'fc?H"Pl)w(t—lT)}

l

= V2 Y VER {e3Critteo ) (s —iT)
1
= \/%Z cos(2m fet + @)Y (t —IT).
1

Figure 7.10 shows a sample w(t) with ¢(t) = \/;IL{O <t<7T},T=1, fT=3

(there are three periods in a symbol interval T ), € = %, wo =0, 1=, p2 =7,
and @3 = 37“

If we plug s; = R{si1} + jS{s1} into wg(t) we obtain

l

= V2 R{R{s1} + 3S{s1}) 7ty yo(t — IT)
l

w(t) = \/58%{ (Z (R{si} + 3S{s1}) v(t — m)) ej2ﬂfct}

= V2 (R{s}R{eI¥ !} — S} S{eI21}) ot — IT)
l
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0 0.5 1 15 2 25 3 35 4
¢

Figure 7.10. Sample PSK modulated signal.

=V2> R{si}(t —IT) cos(2r f.1)
l
— V2 S{si}u(t — IT) sin(27 fot). (7.18)
l

For a rectangular pulse ¥(t), /21 (t — IT) cos(2m f.t) is orthogonal to v/2(t —
iT) sin(27 f.t) for all integers | and i, provided that 2f.T is an integer.* From
(7.18), we see that the PSK signal is the superposition of two PAM signals. This
view is not very useful for PSK, because R{s;} and I{s;} cannot be chosen inde-
pendently of each other.® Hence the two superposed signals cannot be decoded
independently. It is more useful for QAM. (See next example.) O

EXAMPLE 7.15 (QAM signaling via complex-valued symbols) Suppose that the
signaling method is as in Example 7.14 but that the symbols take value in a QAM
alphabet. As in Example 7.1/, it is instructive to write the symbols in two ways.
If we write s; = a;e3®t, then proceeding as in Example 7.14, we obtain

w(t) = \/53?{ <Z aeIPap(t — lT)) ej2“fct}
l
= \/53% {Z alej(%fc“rw)w(t _ lT)}
l
= \/52 ai {ej(2ﬂfct+%)} W(t —IT)
l

= \/52 ay cos(2m fot + @) (t —IT).
1

4 See the argument in Example 3.10. In practice, the integer condition can be ignored
because 2f.T is large, in which case the inner product between the two functions is
negligible compared to 1 — the norm of both functions. For a general bandlimited (t),
the orthogonality between /29 (t — IT) cos(27 fot) and /29 (t — iT) sin(27 f.t), for a
sufficiently large f., follows from Theorem 7.13.

5 Except for 2-PSK, for which ${s;} is always 0.
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Figure 7.11 shows a sample w(t) with 1 (t) and f. as in Example 7.14, with so =
143 =v2e3T, 5y =3+ 3j = I0e3ten ') gy = —3 + j = /T0eItan " (=3)+m)
s3=—1+3j =237,

3
0 0.5 1 15 2 2.5 3 3.5 4
t
Figure 7.11. Sample QAM signal.
If we write s; = R{s;} + j{s1}, then we obtain the same expression as in

Ezample 7.1
w(t) = \@Z R{si}(t — IT) cos(2m f.t)
1

— V2 S{si}u(t —IT) sin(2r fet),
l

but unlike for PSK, the R{s;} and the S{s;} of QAM can be selected indepen-
dently. Hence, the two superposed PAM signals can be decoded independently, with
no interference between the two because \/2(t — IT) cos(27 f.t) is orthogonal to
V2 (t —iT) sin(27 fet). Using (5.10), it is straightforward to verify that the band-
width of the QAM signal is the same as that of the individual PAM signals. We con-
clude that the bandwidth efficiency (bits per Hz) of QAM is twice that of PAM. O

Stepping back and looking at the big picture, we now view the physical layer of
the OSI model (Figure 1.1) for the AWGN channel as consisting of the three sub-
layers shown in Figure 7.12. We are already familiar with all the building blocks
of this architecture. The channel models “seen” by the first and second sub-layer,
respectively, still need to be discussed. New in these channel models is the fact
that the noise is complex-valued. (The signals are complex-valued as well, but we
are already familiar with complex-valued signals.)

Under hypothesis H = ¢, the discrete-time channel seen by the first (top) sub-
layer has input ¢; € C™ and output

Y=c¢+7Z2

where, according to (7.16), (7.11) and (7.13), the Ith component of Y is Y3, +
Yo = ¢y + Z; and Z; = Zy; + jZo,, where Zy1,...,Z1,n, 22,15, 22, IS
a collection of iid zero-mean Gaussian random variables of variance Ny/2. We
have all the ingredients to describe the statistical behavior of Y via the pdf of
Ziay oy L1y L2, -, Loy, but it is more elegant to describe the pdf of the
complez-valued random vector Y. To find the pdf of Y, we introduce the random
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Figure 7.12. Sub-layer architecture for passband communication.
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vector Y that consists of the (column) n-tuple ¥; = R{Y'} on top of the (column)
n-tuple Yo = ${Y}. This notation extends to any complex n-tuple: if a € C"
(seen as a column n-tuple), then @ is the element of R?" consisting of R{a} on
top of &{a} (see Appendix 7.8 for an in-depth treatment of the hat operator). By
definition, the pdf of a complex random vector Y evaluated at y is the pdf of Y

at ¢ (see Appendix 7.9 for a summary on complex-valued random vectors).

Hence,

fym(yli) =

Fo 1)

= thYg\H(g%{y}a S{y})
= le|H(m{y}|i)fY2|H(%{y}|i)
exp (_ o Ry} — %{Ci,l}y)

1

(\/ﬂ'No)n
NS (
(VaNg)m P

1 o ( Memal®
(7TNO)" Ny '

No

2 (S{y) = Sed)?

No

(7.19)
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Naturally, we say that Y is a complex-valued Gaussian random vector with
mean ¢; and variance Ny in each (complex-valued) component, and write
Y ~ N¢(ci, Nolp,), where I, is the n x n identity matrix.

In Section 2.4, we assumed that the codebook and the noise are real-valued.
If Y € C™ as in Figure 7.12, the MAP receiver derived in Section 2.4 applies as
is to the observable Y € R2" and codewords ¢; € R?", i =0,...,m —1. But in
fact, to describe the decision rule, there is no need to convert Y € C™ to Y € R2"
and convert ¢; € C" to ¢; € R?". To see why, suppose that we do the conversion.
A MAP (or ML) receiver decides based on ||§ — & or, equivalently, based on

R{(G,¢:)} — w But ||g — ¢ is identical to ||y — ¢;||. (The squared norm of a
complex n-tuple can be obtained by adding the squares of the real components
and the squares of the imaginary components.) Similarly, (7,¢) = R{(y,c)}.
In fact, if y = ygr + jyr and ¢ = cr + jer are (column vectors) in C", then
R{(y,c)} = yLer + yJ e, but this is exactly the same as (7, ¢).5

We conclude that an ML decision rule for the complex-valued decoder-input
y € C" of Figure 7.12 is

Hyply) = arg min ||y — ¢

fleall®

5
Describing the baseband-equivalent channel model, as seen by the second sub-layer
of Figure 7.12, requires slightly more work. We do this in the next section for
completeness, but it is not needed in order to prove that the receiver structure of
Figure 7.12 is completely general (for the AWGN channel) and that it minimizes
the error probability. That part is done.

= argmax R{(y, i)} —

Baseband-equivalent channel model

We want to derive a baseband-equivalent channel that can be used as the channel
model seen by the second layer of Figure 7.12. Our goal is to characterize the
impulse response ho(t) and the noise Ng(t) of the baseband-equivalent channel of
Figure 7.13b, such that the output U has the same statistic as the output of Figure
7.13a. We assume that every wg ;(¢) is bandlimited to [—B, B] where 0 < B < f,.
Without loss of essential generality, we also assume that every ¢;(¢) is bandlimited
to [—B, B]. Except for this restriction, we let g;(¢), I = 1,..., k, be any collection
of L5 functions.
We will use the following result,

[w(t) % h(t)]e™32™et = [w(t)e327Iet]  [h(t)eI2mF), (7.20)

6 For an alternative proof that (7, &) = R{(y, ¢;)}, subtract the two equations ||y—c;|* =

Iyl +lleill* = 2R{(y, ei)} and [|§ — &|1* = [|9]|> + [|&]|* — 2(g, &) and use the fact that
the hat on a vector has no effect on the vector’s norm.
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Figure 7.13. Baseband-equivalent channel.

which says that if a signal w(t) is passed through a filter of impulse response h(t)
and the filter output is multiplied by e~327/<*| we obtain the same as passing the
signal w(t)e~ 327 <t through the filter with impulse response h(t)e =327/t A direct
(time-domain) proof of this result is a simple exercise,” but it is more insightful if
we take a look at what it means in the frequency domain. In fact, in the frequency
domain, the convolution on the left becomes wx(f)hx(f), and the subsequent
multiplication by e~327/<! leads to wx(f + fe)hz(f + f.). On the right side we
multiply wz(f + fc) with hz(f + fe).

The above relationship should not be confused with the following equalities that
hold for any constant ¢ € C

[w(t) « h()]e = [w(t)e] % h(t) = w(t) * [A(t)d]. (7.21)

This holds because the left-hand side at an arbitrary time ¢ is ¢ times the integral
of the product of two functions. If we bring the constant inside the integral and
use it to scale the first function, we obtain the expression in the middle; whereas
we obtain the expression on the right if we use ¢ to scale the second function. In
the derivation that follows, we use both relationships.

The up-converter, the actual channel, and the down-converter perform linear
operations, in the sense that their action on the sum of two signals is the sum of
the individual actions. Linearity implies that we can consider the signal and the
noise separately. We start with the signal part (assuming that there is no noise).

" Relationship (7.20) is a form of distributivity law, like [a 4 b]c = [ac] + [b].
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[wi () % h(8)] V27327, (1)

[(wl ) ] 7gl >

0B 5 k59,0

(wz(t)\/_ Ity s ho( ) 1(1))

(wp,i(t) + w i ()e 1) x ho(t), gi(1))

= (wp,i(t) x ho(t), 9i(1)), (7.22)

where in the second line we use (7.21), in the third we use (7.20), in the fourth we
introduce the notation

e J27ch

(
(
(
(
(

ho(t) = h(t)e 32m/et,
in the fifth we use

1 ) )
(O g (eI,

ﬁ [wE7z

and in the sixth we remove the term

w*E)i(t)e_j“fct * ho(t),

w;(t) =

which is bandlimited to [-2f. — B, —2f. + B] and therefore has no frequencies in
common with g;(¢). By Parseval’s relationship, the inner product of functions that
have disjoint frequency support is zero.

From (7.22), for all wg;(¢) and all g;(¢) that are bandlimited to [—B, B], the
noiseless output of Figure 7.13a is identical to that of Figure 7.13b.

Notice that, not surprisingly, the Fourier transform of h(t) is hx(f+ f.), namely
hx(f) frequency-shifted to the left by f..

The reader might wonder if ho(t) is the same as the baseband-equivalent hg/(t)
of h(t) (with respect to f.). In fact it is not, but we can use h@g) instead of ho(t).
The two functions are not the same, but it is straightforward to verify that their
Fourier transforms agree for f € [-B, B|.

Next we consider the noise alone. To specify Ng(t), we need the following notion
of independent noises.?

DEFINITION 7.16 (Independent white Gaussian noises) Ngr(t) and Ny(t) are
independent white Gaussian noises if the following two conditions are satisfied.

(i) Nrg(t) and Ni(t) are white Gaussian noises in the sense of Definition 3.4.

(i) For any two real-valued functions hi(t) and ho(t) (possibly the same), the
Gaussian random variables [ Ng(t)hi(t)dt and [ Ni(t)ho(t)dt are indepen-
dent. O

The noise at the output of the down-converter has the form

Ng(t) = Nr(t) + jNi(t) (7.23)

8 The notion of independence is well-defined for stochastic processes, but we do not model
the noise as a stochastic process (see Definition 3.4).
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with

Ng(t) = N(t)V2 cos(2 f.t) (7.24)
N (t) = —N(t)V2sin(27 f.t). (7.25)

Ng(t) and Nj(t) are not independent white Gaussian noises in the sense of

Definition 7.16 (as can be verified by setting f. = 0), but we now show that they

do fulfill the conditions of Definition 7.16 when the functions used in the definition

are bandlimited to [-B, B] and B < f..

Let h;i(t), i = 1,2, be real-valued Lo functions that are bandlimited to [—B, B]
and define

Zi = / Nr(t)hi(t)dt.

Z;, i = 1,2, is Gaussian, zero-mean, and of variance %||\/§cos(27rfct)hi(t)||2.

The function v/2 cos(27 f.t)h;(t) is passband with baseband-equivalent h;(t). By
Definition 3.4 and Theorem 7.5,

cov(Z1, Zo) = =2 (/2 cos(2m fot)h (t), V2 cos(2m fot)ha(t))

= —(h1(t), h2(2)).

This proves that under the stated bandwidth limitation, Ng(t) behaves as white
Gaussian noise of power spectral density % The proof that the same is true for
Ni(t) follows similar patterns, using the fact that —v/2sin(2n f.t)h;(t) is passband
with baseband-equivalent jh;(t). It remains to be shown that Ng(t) and N (t) are
independent noises in the sense of Definition 7.16. Let

Zy = / Ni(8)hs (£ dt.

Zs3 is zero-mean and jointly Gaussian with Z, with
N
cov(Za, Z3) = 70 (V2 cos(2m ft)ha(t), —V/2 sin (27 fot) hs(t))

No .
= SOR{(ha(t), 3h5())
=0.
Let us summarize the noise contribution. The noise at the output of the down-
converter has the form (7.23)—(7.25). However, as long as we are taking inner
products of the noise with functions that are bandlimited to [-B, B] for B < f.,

which is the case for ¢;(t), I = 1,...,k, we can model the equivalent noise Ng(t)
of Figure 7.13b as

Np(t) = Nr(t) + 3N1(t) (7.26)
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where Ng(t) and N;(t) are independent white Gaussian noises of spectral density
Ny/2.

This last characterization of Ng(t) suffices to describe the statistic of U € C¥,
even when the g;(t) are complex-valued, provided they are bandlimited as specified.
For the statistical description of a complex random vector, the reader is referred
to Appendix 7.9 where, among other things, we introduce and discuss circularly
symmetric Gaussian random vectors (which are complex-valued) and prove that
the U at the output of Figure 7.13b is always circularly symmetric (even when the
gi(t) are not bandlimited to [—B, B]).

Parameter estimation

In Section 5.7 we have discussed the symbol synchronization problem. The
down-converter should also be (phase) synchronized with the up-converter,
and the attenuation between the transmitter and the n-tuple former should be
estimated.

We assume that the down-converter and the n-tuple former use independent
clocks. This is a valid assumption because it is not uncommon that they be
implemented in independent modules, possibly made by different manufacturers.
The same is true, of course, for the corresponding blocks of the transmitter.

The down-converter uses an oscillator that, when switched on, starts with an
arbitrary initial phase. Hence, the received signal r(¢) is initially multiplied by
e I@rfet=¢) — ¢ive=327fet for some ¢ € [0,27). As a consequence, the n-tuple
former input and output have an extra factor of the form e3¥. Accounting for this
factor goes under the name of phase synchronization.

Finally, there is a scaling by some positive number a due to the channel atten-
uation and the receiver front end amplification. For notational convenience, we
sometimes combine the scaling by a and that by e3¥ into a single complex scaling
factor a = ae¥¥.

This results in the n-tuple former input

Re(t) = asg(t —0) + Ng(t),

where Ng(t) is complex white Gaussian noise of power spectral density Ny (No/2
in both real and imaginary parts) and 0 € [0, 0,,4,] accounts for the channel delay
and the time offset. For this section, the function sg(t) represents a training signal
known to the receiver, used to estimate 6,a,p. Once estimated, these channel
parameters are used as the true values for the communication that follows. Next
we derive the joint ML estimates of 8, a, . The good news is that the solution
to this joint estimation problem essentially decomposes into three separate ML
estimation problems.

The derivation that follows is a straightforward generalization of what we have
done in Section 5.7, with the main difference being that signals are now complex-
valued. Accordingly, let Y = (Yi,...,Y,)" be the random vector obtained by



7.5. Parameter estimation 257

projecting Rg(t) onto the elements of an orthonormal basis? for an inner product
space that contains sg (¢t — 6) for all possible values of 6 € [0, 0pq4]. The likelihood

A~

function with parameters 6, a, ¢ is

fly;0,a,0) =

1 _lly—aeIPm(d))?
N,

e 0 s
(WNo)n

where m(f) is the n-tuple of coefficients of sg(t — 0) with respect to the chosen
orthonormal basis.

A joint maximum likelihood estimation of 6,a,¢ is a choice of 9,&,4,2) that
maximizes the likelihood function or, equivalently, that maximizes any of the
following three expressions

~ ly— aePm (@),
— Iyl + lae*#m@) |2 — 2R {(y. acm(6)}).

A Ge3?|?
R{(y. acsm(d))} - 2

Notice that [|m(0)]|> = ||sp(t—0)||? = ||sz(t)||>. Hence, for a fixed a, the second
term in (7.27) is independent of 8, ¢. Thus, for any fixed @, we can maximize over
0, » by maximizing any of the following three expressions

R{(y, ae3?m(0)) },
R{e™I%(y,m(0))},
R{e™3(rp(t), sp(t — 0))}, (7.28)

where the last line is justified by the argument preceding (5.18). The maximum of
R{e™3(rg(t), sp(t — 0))}

is achieved when @ is such that the absolute value of (rg(t), sp(t—6)) is maximized
and ¢ is such that e 3¢(rg(t),sg(t — #)) is real-valued and positive. The latter
happens when ¢ equals the phase of (rg(t),sg(t — 6)). Thus

0L :argm§X|<rE(t),sE(t—é)>|, (7.29)

lm(@)]°. (7.27)

DML =Z<TE(t),SE(t—éML)>. (7.30)

Finally, for 8 = 65,1 and ¢ = $ar, the maximum of (7.27) with respect to d is

achieved by
|&€j¢ML 2 2
R |

anrr = argmax(y, aed? = m(fOarr)) — [m(arr)
a

9 As in Section 5.7.1, for notational simplicity we assume that the orthonormal basis has
finite dimension n. The final result does not depend on the choice of the orthonormal
basis.
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| Oy

28

= argmax ae IPML(rg(t), sp(t — Orrr)) — a*
a
27

= argmﬁax&KTE(t), sp(t—0ypr))| —a
where & is the energy of sg(t), and in the last line we use the fact that

3 (), 5t~ )

is real-valued and positive (by the choice of $psp). Taking the derivative of
al(re(t),sp(t —Oar))| — a*4 with respect to @ and equating to zero yields

[(re(t), se(t — 0uw))|
: .

Until now we have not used any particular signaling method. Now assume that
the training signal takes the form

ayr =

T

spt) =S et —IT), (7.31)
l

I
<

where the symbols ¢y, . .., cx—1 and the pulse ¥ (t) can be real- or complex-valued
and v (t) has unit norm and is orthogonal to its T-spaced translates.

The essence of what follows applies whether the n-tuple former incorporates
a correlator or a matched filter. For the sake of exposition, we assume that it
incorporates the matched filter of impulse response ¢*(—t).

Once we have determined 67, according to (7.29), we sample the matched filter
output at times t = 9ML + kT, k integer. The kth sample is

yr = (re(t),Y(t — kT — Or)) (7.32)

K-1

= (o Z ap(t — 1T — 0) + Np(t),(t — kT — Opr1))
1=0
K-1 A

=« CKi/)(t—lT—G),’lﬂ(t—kT—GML)>+Zk
1=0
K1 A

=« ClRw(QML—e—‘r(k—l)T)—‘er
1=0
K-1

= Z cthy— + Zy,
1=0

where {Z;} is iid ~ N¢ (0, No) and we have defined h; = R¢(9ML —0+1iT), where
Ry is ¢’s self-similarity function. In particular, if 6,7, = 6, then h; = 1{i = 0}
and

Yk = ack + Zy. (7.33)
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If Ny is not too large compared to the signal’s power, sz, should be sufficiently
close to 6 for (7.33) to be a valid model.

Next we re-derive the ML estimates of ¢ and a in terms of the matched filter
output samples. We do so because it is easier to implement the estimator in a
DSP that operates on the matched filter output samples rather than by analog
technology operating on the continuous-time signals. Using (7.31) and the linearity
of the inner product, we obtain (rg(t), sp(t—0y)) = Zfigl cf(re(t), vt —1T —
0xr1)), and using (7.32) we obtain

K—1
(re(t),se(t —0mL)) = > uc.
=0
Thus, from (7.30),
K—1
oML =2 Z yic]
=0

It is instructive to interpret @7, without noise. In the absence of noise, éML =40
and y, = acy. Hence Zl[igl yic; = aed? Zl[igl cicf = aed®E, where € is the energy
of the training sequence. From (7.30), we see that @,y is the angle of e3®a&, i.e.
oML = .

Proceeding similarly, we obtain

K—1
G = |2 1=0 %19
3 .
It is immediate to check that if there is no noise and ¢y, = @, then aprr = a.
Notice that both ¢asr and apr;, depend on the observation yg,...,yx—1 only

through the inner product Z{ial yicy

Depending on various factors and, in particular, on the duration of the trans-
mission, the stability of the oscillators and the possibility that the delay and/or
the attenuation vary over time, a one-time estimate of 8, a, and ¢ might not be
sufficient.

In Section 5.7.2, we have presented the delay locked loop to track 6, assuming
real-valued signals. The technique can be adapted to the situation of this section.
In particular, if the symbol sequence cy, ..., cx—1 that forms the training signal is
as in Section 5.7.2, once ¢ has been estimated and accounted for, the imaginary
part of the matched filter output contains only noise and the real part is as in
Section 5.7.2. Thus, once again, 6 can be tracked with a delay locked loop.

The most critical parameter is ¢ because it is very sensitive to channel delay
variations and to instabilities of the up/down-converter oscillators.

EXAMPLE 7.17 A communication system operates at a symbol rate of 10 Msps
(mega symbols per second) with a carrier frequency f. = 1 GHz. The local oscillator
that produces e3?™I<t is based on a crystal oscillator and a phase locked loop (PLL).
The frequency of the crystal oscillator can only be guaranteed up to a certain
precision and it is affected by the temperature. Typical precisions are in the range
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of 10-100 parts per million (ppm). If we take a 50 ppm precision as a mid-range
value, then the frequency used at the transmitter and that used at the receiver
are guaranteed to be within 100 ppm from each other, i.e. the carrier frequency
difference could be as large as Af, = 1074 f, = 10° Hz. Over the symbol time, this
difference accumulates a phase offset Ap = 2rAf.T = 2 x 102, which constitutes
a rotation of 3.6 degrees. For 16-QAM, a one-time rotation of 3.6 degrees might
have a negligible effect on the error probability, but clearly we cannot let the phase
drift accumulate over several symbols. O

Example 7.17 is quite representative. We are in the situation where there is a
small phase drift that creates a rotation of the sampled matched filter output.
From one sample to the next, the rotation is by some small angle Ay. An effective
technique to deal with this situation is to let the decoder decide on symbol ¢ and
then, assuming that the decision ¢ is correct, use it to estimate . This general
approach is denoted decision-directed phase synchronization.

A popular technique for doing decision-directed phase synchronization is based
on the following idea. Suppose that after the sample indexed by k — 1, the rotation
has been correctly estimated and corrected. Because of the frequency offset, the
kth sample is v = e3¢, plus noise. Neglecting for the moment the noise, YKCl, =
e3(29)|c |2, Hence

S{yeci} = sin(Ap)ler|* = Aplex|?,

where the approximation holds for small values of |Ap|. Assuming that |Ag]| is
indeed small, the idea is to decode y ignoring the rotation by Ay. With high
probability the decoded symbol é equals cx, and S{yx¢;} ~ Ap|cy|*. The feedback
signal S{yxéi} can be used by the local oscillator to correct the phase error.
Alternatively, the decoder can use the feedback signal to find an estimate A@
of Ay and to rotate yi by —A@. This method works well also in the presence
of noise, assuming that the noise is zero-mean and independent from sample to
sample. Averaging over subsequent samples helps to mitigate the effect of the
noise.

Another possibility of tracking ¢ is to use a phase locked loop — a technique
similar to the delay locked loop discussed in Section 5.7.2 to track 6.

Differential encoding is a different technique to deal with a constant or slowly
changing phase. It consists in encoding the information in the phase difference
between consecutive symbols.

When the phase y is either constant or varies slowly, as assumed in this section,
we say that the phase comes through coherently. In the next section, we will see
what we can do when this is not the case.

Non-coherent detection

Sometimes it is not realistic to assume that the phase comes through coherently.
We are then in the domain of non-coherent detection.
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EXAMPLE 7.18 Frequency hopping (FH) is a communication technique that
consists in varying the carrier frequency according to a predetermined schedule
known to the receiver. An example is symbol-by-symbol on a pulse train with
non-overlapping pulses and a carrier frequency that changes after each pulse. It
would be hard to guarantee a specified initial phase after each change of frequency.
So a model for the sampled matched filter output is

yr = ke, + 2y,

with py, uniformly distributed in [0, 27) and independent from sample to sample and
from anything else. Frequency hopping is sometimes used in wireless military com-
munication, because it makes it harder for someone that does not know the carrier-
frequency schedule to detect that a communication is taking place. In particular, it
is harder for an enemy to locate the transmitter and/or to jam the signal. Frequency
hopping is also used in wireless civil applications when there is no guarantee
that a fized band is free of interference. This is often the case in unlicensed
bands. In this case, rather than choosing a fized frequency that other applica-
tions might choose — risking that a long string of symbols are hit by interfering
signals — it is better to let the carrier frequency hop and use coding to deal with the
occasional symbols that are hit by interfering signals. Frequency hopping is a form
of spread spectrum (SS) communication.'® We speak of spread spectrum when the
signal’s bandwidth is much larger (typically by several orders of magnitude) than
the symbol rate. O

We consider the following fairly general situation. When H =i € H = {0,1,...,
m — 1}, the baseband-equivalent channel output is

RE(t) = aej“’wEﬂv(t) + NE(t),

where wg ;(t) is the baseband-equivalent signal, N (t) is the complex-valued white
Gaussian noise of power spectral density Ny, a € Ry is an arbitrary scaling factor
unknown to the receiver, and ¢ € [0,27) an unknown phase. We want to do
hypothesis testing in the presence of the unknown parameters a and ¢. (We are
not considering a delay € in our model, because a delay, unlike a scaling factor ae3?,
can be assumed to be constant over several symbols, hence it can be estimated via
a training sequence as described in Section 7.5.)

One approach is to extend the maximum likelihood (ML) decision rule by
maximizing the likelihood function not only over the message i but also over
the unknown parameters a and ¢. Another approach assumes that the unknown
parameters are samples of random variables of known statistic. In this case, we can
obtain the distribution of the channel-output observations given the hypothesis,
by marginalizing over the distribution of a and ¢, at which point we are back
to the familiar situation (but with a new channel model). We work out the ML
approach, which has the advantage of not requiring the distributions associated to
a and .

10 There is much literature on spread spectrum. The interested reader can find introduc-
tory articles on the Web.
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The steps to maximize the likelihood function mimic what we have done in the
previous section. Let ¢; be the codeword associated with wg ;(t) (with respect
to some orthonormal basis). Let y be the n-tuple former output. The likelihood
function is

1 lly—aedPey?

e No
(7TNO)”

fysi,a,0) =
We seek the 7 that maximizes

s 1, s
9(e) = max R{{y, ae??c;)} — 5 ||ae? il |?

a,p
. i a*
= maxaft{e ¥ (y,c)} — 7||Ci|| .
a,p

The ¢ that achieves the maximum is the one that makes e~3%(y, ¢;) real-valued
and positive. Let ¢prz, be the maximizing ¢ and observe that R{e 3%ML(y, ¢;)} =
|<ya Ci> | Hence,

; a?. o
g(ei) = maxal(y, ei)| — - fleill”. (7.34)

By taking the derivative of a|{y, ¢;)| — §||cl||2 with respect to G and setting to
zero, we obtain the maximizing a

X (i)l

ML = .
lea?

Inserting into (7.34) yields

1 |<y7 Ci>|2
g(er) = Ll
2 |all?

Hence

imr = argmax g(c;)
K3
1 |{y, c:)?
= argmax ————
BN el

(i)l

= arg max

(7.35)

Notice that for every vector ¢ € C" and every scalar b € C, Kﬁ’c’ﬁﬂ = |<|?\Jz;lc)ﬁ>" Hence,
it would be a bad idea if the codebook contains two or more codewords that are
collinear with respect to the complex inner product space C".

The decoding rule (7.35) is not surprising. Recall that, without phase and
amplitude uncertainty and with signals of equal energy, the maximum likelihood
decision is the one that maximizes R{(y, ¢;)}. If the channel scales the signal by
an arbitrary real-value a unknown to the decoder, then the decoder should not

take the signal’s energy into account. This can be accomplished by a decoder
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that maximizes R{(y, ¢;) }/||c;||. Next, assume that the channel can also rotate the
signal by an arbitrary phase ¢ (i.e. the channel multiplies the signal by €3¥). As we
increase the phase by 7/2, the imaginary part of the new inner product becomes
the real part of the old (with a possible sign change). One way to make the decoder
insensitive to the phase, is to substitute R{(y, ¢;)} with |{y, ¢;)|. The result is the
decoding rule (7.35).

EXAMPLE 7.19 (A bad choice of signals) Consider m-ary phase-shift keying, i.e.
wg i(t) = cap(t), where ¢; = /E,e3?™/™ i =0,....,m—1, and {(t) is a unit-norm
pulse. If we plug into (7.35), we obtain

[(y, VEsed*m/m)|
VEs

= argmax ‘e*jzﬁ/m (y, 1) ‘
K2

imr = argmax
1

= argmax [(y, 1)

= argmax [y|,
KA

which means that the decoder has no preference among the © € H, i.e. the error
probability is the same independently of the decoder’s choice. In fact, a PSK
constellation is a bad choice for a codebook, because it conveys information in
the phase and the phase information is destroyed by the channel. O

More generally, any one-dimensional codebook, like a PAM, a QAM, or a PSK
alphabet, is a bad choice, because in that case all codewords are collinear to
each other. (However, for n > 1, we could use codebooks that consist of n-length
sequences with components (symbols) taking value in a PAM, QAM, or PSK
alphabet.)

EXAMPLE 7.20 (A good choice) Two vectors in C™ that are orthogonal to each
other cannot be made equal by multiplying one of the two by a scalar ae3¥, which
was the underlying issue in Example 7.19. Complex-valued orthogonal signals
remain orthogonal after we multiply them by ae3¥. This suggests that they are a
good choice for the channel model assumed in this section. Specifically, suppose
that the ith codeword c; € C™, i = 1,...,m, has /& at position i and is zero
elsewhere. In this case, |(y,c;)| = V/Es|yi| and

IpL = argmax M
1

VEs

= argmax [y; .
3

(Compare this rule to the decision rule of Example 4.6, where the signaling scheme
is the same but there is neither amplitude nor phase uncertainty.) O
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Summary

The fact that each passband signal (real-valued by definition) has an equivalent
baseband signal (complex-valued in general) makes it possible to separate the
communication system into two parts: a part (top two layers) that processes base-
band signals and a part (bottom layer) that implements the conversion to/from
passband. With the bottom layer in place, the top two layers are designed to
communicate over a complex-valued baseband AWGN channel. This separation
has several advantages: (i) it simplifies the design and the analysis of the top two
layers, where most of the system complexity lies; (ii) it reduces the implementation
costs; and (iii) it provides greater flexibility by making it possible to choose
the carrier frequency, simply by changing the frequency of the oscillator in the
up/down-converter. For instance, for frequency hopping (Example 7.18), as long
as the down-converter is synchronized with the up-converter, the top two layers
are unaware that the carrier frequency is hopping. Without the third layer in
place, we change the carrier frequency by changing the pulse, and the options that
we have in choosing the carrier frequency are limited. (If the Nyquist criterion
is fulfilled for [v=(f + f1)|> + [v#(f — f1)|%, it is not necessarily fulfilled for
[r(f+ )PP + [r(f = )P, fL # f2.)

Theorem 7.13 tells us how to transform an orthonormal basis of size n for the
baseband-equivalent signals into an orthonormal basis of size 2n for the corres-
ponding passband signals. The factor 2 is due to the fact that the former is
used with complex-valued coefficients, whereas the latter is used with real-valued
coefficients.

For mathematical convenience, we assume that neither the up-converter nor the
down-converter modifies the signal’s norm. This is not what happens in reality,
but the system-level designer (as opposed to the hardware designer) can make this
assumption because all the scaling factors can be accounted for by a single factor
in the channel model. Even this factor can be removed (i.e. it can be made to
be 1) without affecting the system-level design, provided that the power spectral
density of the noise is adjusted accordingly so as to keep the signal-energy to
noise-power-density ratio unchanged.

In practice, the up-converter, as well as the down-converter, amplifies the signals,
and the down-converter contains a noise-reduction filter that removes the out-of-
band noise (see Section 3.6). The transmitter back end (the physical embodi-
ment of the up-converter) deals with high power, high frequencies, and a variable
carrier frequency f.. The skills needed to design it are quite specific. It is very
convenient that the transmitter back end can essentially be designed and built
separately from the rest of the system and can be purchased as an off-the-shelf
device.

With the back end in place, the earlier stages of the transmitter, which perform
the more sophisticated signal processing, can be implemented under the most
favorable conditions, namely in baseband and using voltages and currents that are
in the range of standard electronics, rather than being tied to the power of the
transmitted signal. The advantage of working in baseband is two-fold: the carrier
frequency is fixed and working with low frequencies is less tricky.
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A similar discussion applies to the receiver. Contrary to the transmitter back
end, the receiver front end (the embodiment of the down-converter) processes very
small signals, but the conclusions are the same: it can be an off-the-shelf device
designed and built separately from the rest of the receiver.'!

There is one more non-negligible advantage to processing the high-frequency
signals of a device (transmitter or receiver) in a confined space that can be
shielded from the rest of the device. Specifically, the powerful high-frequency
signal at the transmitter output can feed back over the air to the earlier stages
of the transmitter. If picked up and amplified by them, the signal can turn the
transmitter into an oscillator, similarly to what happens to an audio amplifier
when the microphone is in the proximity of the speaker. This cannot happen if
the earlier stages are designed for baseband signals. A similar discussion applies
for the receiver: the highly sensitive front end could pick up the stronger signals
of later stages, if they operate in the same frequency band.

We have seen that a delay in the signal path translates into a rotation of the
complex-valued symbols at the output of the n-tuple former. We say that the
phase comes through coherently when the rotation is constant or varies slowly
from symbol to symbol. Then, the phase can be estimated and its effect can be
removed. In this case the decision process is called coherent detection. Sometimes
the phase comes through incoherently, meaning that each symbol can be rotated
by a different amount. In this case PSK, which carries information in the symbol’s
phase, becomes useless; whereas PAM, which carries information in the symbol’s
amplitude, is still a viable possibility. When the phase comes through incoherently,
the decision process is referred to as non-coherent detection.

Appendix: Relationship between real- and
complex-valued operations

In this appendix we establish the relationship between complex-valued operations
involving n-tuples and matrices and their real-valued counterparts. We use these
results in Appendix 7.9 to derive the probability density function of circularly
symmetric Gaussian random vectors.

To every complex n-tuple u € C”, we associate a real 2n-tuple @ defined as

follows:
o[- 5]

ur S

Now let A be an m x n complex matrix and define u = Av. We are interested in
the real matrix A so that

o= Ab. (7.37)

11 Realistically, a specific back/front end implementation has certain characteristics that
limit its usage to certain applications. In particular, for the back end we consider its
gain, output power, and bandwidth. For the front end, we consider its bandwidth,
sensitivity, gain, and noise temperature.



266 7. Third layer

It is straightforward to verify that

PR s

To remember the form of A, observe that the top half of 4 is the real part of
Av, i.e. Agvr — Ajvr. This explains the top half of A. Similarly, the bottom half
of 4 is the imaginary part of Av, i.e. Agvy+ Ajvr, which explains the bottom half
of A. The following lemma summarizes a number of useful properties.

LEMMA 7.21 The following properties hold

Au = Aa (7.39a)
Utv=1a+0 (7.39b)
R{uTv} =0 (7.39¢)
[ull = |la]? (7.39d)
AB = AB (7.39)
A+B=A+B (7.39f)
Af = (A)T (7.39g)

I, =D, (7.39h)
A=A (7.391)
det(A) = |det(A)|*> = det(AAT) (7.393)
O

Proof Property (7.39a) is (7.37) restated; (7.39b) is immediate from (7.36);
(7.39¢) follows from the fact that R{ufv} is (ug) vr + (ur)Tv; = @'79; (7.39d)
follows from (7.39c) with v = u and using the fact that |lu||> = ufu is already
real-valued; (7.39¢) follows from the observation that if v = ABu, we can write
& = ABa but also » = ABu = ABa. By comparing terms we obtain AB = AB;
(7.391f), (7.39g), and (7.39h) follow immediately from (7.38); (7.39i) follows from
(7.39¢) and (7.39h); finally, to prove (7.39j) we use the fact that the determinant
of a product is the product of the determinants and the determinant of a block
triangular matrix is the product of the determinants of the diagonal blocks. Hence

det(A) = det ([é ﬂ A [é _]!'ID — det ([324,4) XD = det(A) det(A)",

where A* is A with each element complex conjugated. O
COROLLARY 7.22 IfU € C"™™ is unitary then U € R2"*2" s orthonormal. [
Proof From U'U = I,,, applying the hat operator on both sides we obtain

(N0 =1, = I, O
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To remember (7.39¢), observe that ufv is complex-valued in general whereas @' %

is always real-valued. To remember (7.39h), recall that the hat operator doubles
the size of a matrix. In (7.39j) we need to take the absolute value of det(A) because
det(A) can be a complex number, and we need to square because the hat operator
doubles the size of a matrix. In doubt, it helps to do a “sanity check” using a
scalar ja, a € R as a special case of a matrix A. The determinant of a scalar is
the scalar itself. Hence det(ja) = ja. From

o (0 —a>

Je=1\, o /)
det(ja) = a? = | det(ja)|?. The remaining relationships of Lemma 7.21 are natural
and easy to remember. However, be careful that 4" # uf. To see this, cogsider
a scalar u as a special case of an n-tuple. Then u' is still a scalar, hence u' has
dimension 2 x 1, whereas @' has dimension 1 x 2. Finally, notice that when we
apply the hat operator to a scalar, the result depends on whether we consider the
scalar as a special case of an n-tuple or of a matrix.

COROLLARY 7.23 If Q € C"*" is non-negative definite, then so is Q e R2Zx2n,
Moreover, ufQu = 4T Q1. O

Proof If Q is non-negative definite, u'Qu is a non-negative real-valued number
for all w € C™. Hence,

ulQu = R{u(Qu)} = 4" (Qu)
=4"Qu,

where in the last two equalities we use (7.39¢) and (7.39a), respectively. O

Appendix: Complex-valued random vectors
7.9.1 General statements

A complex-valued random variable Z (hereafter simply called complex random
variable) is an object of the form

Z=X+j3Y,

where X and Y are real random variables.

Recall that a real random variable X is specified by its cumulative distribution
function Fx(z) = Pr{X < z}. For a complex random variable Z, as there is
no natural ordering in the complex plane, the event Z < z does not make sense.
Instead, we specify a complex random variable by giving the joint distribution of
its real and imaginary parts Fy(z} 51z} (2,y) = Pr{f{Z} <z, 3{Z} < y}. Since
the pair of real numbers (z, y) can be identified with a complex number z = 2+ jy,
we will write the joint distribution Fy{z) g1z} (2,y) as Fz(z). Just as we do for
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real-valued random variables, if the function Fy(z) g(z)(z,y) is differentiable in
x and y, we will call the function

62
frizy.s(zy (2, y) = ax—ayFm{z}s{z} (z,y)

the joint density of (R{Z},3{Z}), and again associating with (z,y) the complex
number z = x + jy, we will call the function

fz2(2) = frizy.a(z(R{z}, 3{=})

the density of the random variable Z.
A complex random vector Z = (Z1,. .., Z,) is specified by the joint distribution
of its real and imaginary parts

Fz(z) =
Pr(R{Z1} < R{z1}, ..., R{Za} < R{za}, S{Z1) < S{21 ), S{Zn)} < S{zn)),

and if this function is differentiable in R{z1},...,R{zn},S{z1},...,3{zn}, then
we define the density of Z as

6271
axl .. axnayl PN ayn

fz(x1 4+ 3yt - 0 + jYn) = Fz(x1+ jyi,- -, Tn + jYn)-

If X is a real random vector with density fx, and A is a nonsingular matrix, then
the density of Y = AX is given by (see Appendix 2.9)

Fr(y) = det(A)| 7! fx (A7 ).

If W is a complex random vector with density fi and if A is a complex nonsingular
matrix, then Z = AW is again a complex random vector with

- e

and thus the density of Z will be given by

Falz) = ‘det ({gﬁ —g%}b

From (7.39j) we know that

det <[§gﬁ ‘ﬁ%}b — [ det(A)2,

-1

fw(A_lz).

and thus the transformation formula becomes

fz(2) = | det(A)| 2 fw (A" 2). (7.40)
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7.9.2 The Gaussian case

DEFINITION 7.24  The random vector Z = X + jY € C", where X € R™ and
Y € R", is a compler Gaussian random vector if X and Y are jointly Gaussian
random vectors. O

The probability density function (pdf) of a complex Gaussian random vector is
obtained from the pdf of Z (see Appendix 2.10),

e £ (3) — 1 —%(z—m)TK;(z_m)
fz(2) = [fz(2) = 7@1&(%}(2)6 : (7.41)
where
m = E[Z]
Ky, =E[(Z —m)(Z—m)T] = (é); %;) : (7.42)

In writing (7.41), we assume that K, is nonsingular. Example 2.32 shows how to
proceed when a Gaussian random vector has a singular covariance matrix.
Define the following complex-valued quantities

E[Z] :=E[X]+ E[Y] (7.43)
Kz :=E[(Z - E[Z))(Z - E[Z))1] (7.44)
Jz ==E((Z - E[2])(Z - E[2))") (7.45)

called the mean, the covariance matriz, and the pseudo-covariance matriz (of the
complex random vector Z), respectively.

Clearly E[Z] is in one-to-one correspondence with E[Z]. Furthermore
KZ:Kx+Ky—j(ny—ny) (746)
JZ:Kx—Ky+j(ny+ny)7 (7.47)

showing that we can compute Kz and Jz from K ;. We can also go the other way
by using

1
Kx = im{Kz—FJz} (7.48)
Ky — %éR{KZ _ Iy (7.49)
1
Kyx = 5%{Kz+Jz}, (7.50)

and of course Kxy = K{, x- Hence, Kz and Jz are in one-to-one correspondence
with K ;. This implies that, in principle, even though fz(2) is defined via f,(2), we
can express it using E[Z], Kz and Jz. Doing so is rather cumbersome for general
complex Gaussian random vectors, but the expression simplifies for so-called proper
Gaussian vectors. Fortunately, all complex random vectors that concern us are
proper. The next subsection is dedicated to their study.
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We conclude this subsection with a lemma that gives an alternative character-
ization of a complex Gaussian random vector. In Appendix 2.10 we have defined
a zero-mean Gaussian random vector Z € R™ as a vector that can be obtained
via Z = AW for some n x m matrix A and W ~ N(0,1,,). If A has linearly
independent rows, then Kz is nonsingular and the pdf of Z is well defined. We
can do the same for zero-mean complex Gaussian random vectors.

LEMMA 7.25 The random vector Z € C" is a zero-mean complex Gaussian
random vector if and only if there exists a matriz A € C™*" such that

7 = AW, (7.51)
where W ~ N (0, I,,,). O

Proof The “if” part is obvious. If Z can be written as in (7.51), X = R®{Z} =
R{A}W and YV = {7} = S{A}W are jointly Gaussian random vectors
(Definition 2.30) and Z is a complex Gaussian random vector (Definition 7.24).
For the “only if” part, let Z € C™ be a complex Gaussian random vector. By
Definition 7.24, R{Z} € R™ and S{Z} € R" are jointly Gaussian random vectors.
By Definition 2.30, there exist n x m real matrices Ag and A; such that

X\ [An
)= ()
where W ~ N(0, I,,,). Hence

Z = ApW + JAW = AW
with A=A+ jA;. O

7.9.3 The circularly symmetric Gaussian case

Define V =X + jY € C”, where X € R” and Y € R" are independent Gaussian
random vectors with iid ~ A/(0, 3) components. Then

. 1 on g2
fr(v) = fp(0) = —em &= ™
1
L e
ﬂ-TL
1
= —ev', (7.52)
ﬂ-TL

Notice that although fy (v) is derived via 0, it can be expressed in compact form as
a function of v. Notice also that f-(v) only depends on ||v||. Hence €3V, which is
V' with each component rotated by the angle 0, has the same pdf as V. Gaussian
random vectors that have this property are of particular interest to us for two
reasons: (i) all the noise vectors of interest to us are of this kind, and (ii) the pdf
of a Gaussian random vector that has this property takes on a simplified form. For
these two reasons, it is worthwhile investing in the study of such random vectors,
called circularly symmetric.
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DEFINITION 7.26 A complex random vector Z € C" is circularly symmetric if
for any 6 € [0,27), the distribution of Ze3? is the same as the distribution of Z. (If
it is the case and n = 1, we speak of a circularly symmetric random variable.) O

A circularly symmetric random vector is always zero-mean. In fact
E(Z] = E[¢Z] = ¢°E[Z],
which can be true for all 6 only if E[Z] = 0.

DEFINITION 7.27 A complex random vector Z is called proper if its pseudo-
covartance Jyz vanishes.
O

The above two definitions are related. To see how, let Z be circularly symmetric.
Then it is zero-mean and, for every 6 € [0, 27),

Jz =E[Z2ZT] =E[(92) (e 2)T] = 3¥E[227),

which, evaluated for § = /2, yields J; = E[ZZT] = —~E[ZZT]. Hence Jz = 0. We
conclude that if a random vector Z is circularly symmetric, then it is zero-mean
and proper. Note that Z need not be Gaussian.

If Z is indeed Gaussian, then the converse is also true, i.e. if Z is zero-mean and
proper, then it is circularly symmetric. To see this, let Z be zero-mean, proper, and
Gaussian. Then e3?Z is also zero-mean and Gaussian. Hence Z and e3? Z have the
same density if and only if they have the same covariance and pseudo-covariance
matrices. We know that the pseudo-covariance matrix of Z vanishes. From

E[(e3?Z)(e32)T) = 32E[22T]) = 0

we see that the pseudo-covariance matrix of €3?Z vanishes as well. Finally, the
covariance matrix of 3?7 is

E[(e3Z)(e2)'| =E [227] = K7,

proving that the covariance matrices are identical. We summarize this result in a
lemma.

LEMMA 7.28 For a complex-valued Gaussian random vector Z, the following
statements are equivalent:

(i) Z is circularly symmetric;
(i) Z is zero-mean and proper. O

The covariance matrix of two real-valued random vectors X and Y satisfies
Kxy = K{y. Hence, (7.47) can be written as

Jz =(Kx — Ky)+ j(Kxy + Kxy),

which proves the following.
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LEMMA 7.29 A complex random vector Z = X + jY € C", where X € R" and
Y € R™, is proper if and only if

KX = Ky and KXY = —K;(y,

i.e. Jz wvanishes if and only if X and Y have identical auto-covariance matrices
and their cross-covariance matriz is skew-symmetric.'? O

COROLLARY 7.30 A real random vector Z is a proper complex random vector if
and only if it is constant (with probability 1). O

Proof If Z=X+3jY € C", with X e R®" and Y =0 € R?, then Ky =0. If Z
is proper, Lemma 7.29 implies Kx = 0. Hence X is constant (with probability 1).
For the other direction, if Z is constant, Jz = 0, hence Z is proper. O

To gain insight into Lemma 7.29, it is helpful to consider a circularly symmetric
random vector V = X + jY, with X,Y € R”. When we multiply V by eI™/2 = j,
we obtain jV = =Y + jX. For V and jV to have the same distribution, X and
—Y have to have the same distribution. This explains why the real part and the
imaginary part of V have to have the same covariance. The covariance between
the real and the imaginary part of V is Kxy, whereas that between the real and
the imaginary part of jV is K(_y)x = —Kyx = — K. This explains why Kxy
has to be skew-symmetric.

The skew-symmetry of K xy implies that Kxy has zeros on the main diagonal,
which means that the real and imaginary part of each component Z; of Z are
uncorrelated. However, it does not imply that the real part of Z; and the imaginary
part of Z; are uncorrelated for k # [. In the following example, we construct a case
where the real part of a component is correlated with the imaginary part of another
component.

EXAMPLE 7.31 LetU = X +jY € C, where X € R and Y € R are independent,
zero-mean, Gaussian random variables of unit variance, and let

Z = (U,jU)" € C2.

Now Zr = R{Z} = (X,-Y)" and Z; = S{Z} = (Y, X)" have the same covari-
ance, i.e. Kz, = Kz, = I5. Furthermore,

0 1
o= (%, ).

By Lemma 7.29, Z is proper despite the fact that its real and imaginary parts are
correlated. O

LEMMA 7.32 (Closure under affine transformations) Let Z be a proper n-di-
mensional random vector, i.e. Jz = 0. Then any vector obtained from Z by an
affine transformation, i.e. any vector Z of the form Z = AZ +b, where A € C™*™
and b € C™ are constant, is also proper. O

12 A real-valued matrix A is skew-symmetric if AT = —A.
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Proof From

it follows that

Hence we have
J; =E[(Z —E[Z))(Z —E[Z))T]
=E{A(Z - E[Z])(Z - E[2])" AT}
=AJzAT =0.
O
The pdf of a proper Gaussian random vector Z is described by the mean myz
and covariance matrix Kz. We denote it by N¢(mz, Kz).

The complex Gaussian random vector V introduced at the beginning of this
subsection is characterized by

E[V] =0
Ky =1,
Jv =0.

Hence V ~ N (0, 1,,).

We have seen that every zero-mean complex Gaussian random vector Z € C"
can be written as Z = AW for some complex n X m matrix A and W ~ N(0, I,,,).
There is a similar result for circularly symmetric Gaussian random vectors.

LEMMA 7.33 The random vector Z € C" is a circularly symmetric Gaussian
random vector if and only if there exists a matriz A € C™*" such that

Z = AV, (7.53)

with V'~ Ne(0,I,). Furthermore, if Z has nonsingular covariance matriz, then
we can write (7.563) with V'~ N¢(0, I,,) and a nonsingular matrix A € C**™. O

Proof Clearly any Z of the form (7.53) for some A € C"*™ and V ~ N¢(0, I,,,)
is Gaussian, zero-mean, and proper (Lemma 7.32), hence circularly symmetric
(Lemma 7.28). To prove the other direction, let Z be a circularly symmetric
Gaussian random vector specified by its n x n covariance matrix K. A covariance
matrix is Hermitian, hence Kz can be written in the form Kz = UAU', where U €
C™*"™ is unitary and A € R™*™ is diagonal (Appendix 2.8). If K is nonsingular,
then all the diagonal elements of A are positive. (In fact, they are non-negative
because a covariance matrix is positive semidefinite, and they cannot vanish,
because the product of the eigenvalues equals the determinant of the matrix,
which is non-zero by assumption.) Define V' = A—2UZ , where for a € R, A®
is the diagonal matrix obtained by raising to the power « the diagonal elements
of A. Clearly V is a zero-mean Gaussian random vector and Z = U A2V has the
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form (7.53) for the nonsingular matrix A = UA2 € C™*". The covariance matrix
of V is

Ky =E[VVT]
~E A tUtzziuah

[ ][y S—

=A:U'E [22'UA-
= AFUTKZUAS

= A"FUTUAUTUA
—A2AA2

= I,.

Finally, V is proper (by Lemma 7.32) and circularly symmetric (by Lemma 7.28).
This completes the proof for the case that Kz is nonsingular. If K, is singular,
then some of its components are linearly dependent on other components. In this
case, we can write Z = BZ for some B € C"*™_ where Z € C™ consists of linearly
independent components of Z. The covariance matrix of Z is nonsingular. Hence we
can find a nonsingular matrix A € C™*"™ such that Z = AV with V ~ N¢(0, I,,).
Finally, Z = BZ = BAV = AV has the desired form with A = BA € C**™. O

We are now in the position to derive a general expression for a circularly
symmetric Gaussian random vector Z of nonsingular covariance matrix.

THEOREM 7.34  The probability density function of a circularly symmetric Gaus-
sian random vector Z € C™ of nonsingular covariance matrix Kz can be written as

1 e
— z z 54
126 = et (7.54)
O

Proof Let Z € C™ be circularly symmetric and Gaussian with nonsingular covari-
ance matrix Kz. By Lemma 7.33, we can write Z = AV where A is a nonsingular
n x n matrix and V ~ N¢(0, I,). From (7.40),

P26 = e (7.55)
Now
K, =E[2Z]
=E[AVV1AT]
= AE [VVT] A
= AAT,
hence

det(Kz) = det(AAT) = | det(A)|*. (7.56)
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Furthermore,
(A712)T(A7 1) = 2T(A HTA7 1,
= 21(AAT) 12
=21K, 2, (7.57)

where in the second equality we use the fact that, for nonsingular n x n matrices,
(AB)™' = B71A~! and (AT)~! = (A~1)T. Inserting (7.56) and (7.57) into (7.55)
yields (7.54). O

The above theorem justifies one of the two claims we have made at the beginning
of this appendix, specifically that the pdf of a circularly symmetric Gaussian
random vector takes on a simplified form. (Compare (7.54) and (7.41) when m = 0,
keeping in mind (7.42) to compute K, from Kx, Ky, and Kxy.) The next
theorem justifies the other claim: that the complex-valued noise vectors of interest
to us, those at the output of Figure 7.13b, are Gaussian and circularly symmetric.

THEOREM 7.35 Let Ng(t) = Ng(t) + jNi(t), where Ng(t) and Ni(t) are inde-
pendent white Gaussian noises of spectral density No/2. For any collection of

Lo functions gi(t), | = 1,...,k that belong to a finite-dimensional inner product
space V, the complez-valued random vector Z = (Z1, ..., Z)", Z1 = (Ng(t), gi(t)),
is circularly symmetric and Gaussian. O

Proof Let 1(t),...,%¥n(t) be an orthonormal basis for V. First consider the
random vector V = (Vi,..., V)T, where V; = (Ng(t),i(t)). It is straightforward
to check that V ~ N¢(0, I,). Every gi(t) can be written as gi(t) = 227, c1,;45(t),
where ¢; ; € C. By the linearity of the inner product, Z = AV, where A € Ckxm is

the matrix that has (¢,,...,¢},,) in its lth row. By Lemma 7.33, Z is circularly
symmetric with K, = AAT. O
Exercises

Note: The exercises are available only in the official copy provided by the editor.
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a posteriori probability, see posterior memoryless, 24
absorption, 235 passband AWGN, 243, 252
additive white Gaussian noise (AWGN) time-varying, 113
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affine plane, 37, 38, 48, 70 wireline, 111
amateur radio, 234, 241 channel attenuation, 111, 256
antenna channel capacity, 8, 14, 221

effective area, 120 codes

gain, 119 convolutional, 146, 205-208, 226-229
antenna array, 80, 81, 128, 280 low-density parity-check (LDPC), 9
autocorrelation, 117, 190, 191 turbo, 9, 222
autocovariance, 164, 190 codeword, 205
automatic gain control (AGC), 112 collinear, 67

colored Gaussian noise, 113

band-edge symmetry, 169 communication, digital vs. analog, 13
bandwidth, 142, 149 complex vector space, 66

single-sided vs. double-sided, 144 conjugate
basis, 71 (anti)symmetry, 235
Bhattacharyya bound, see error probability transpose, 36
bit-by-bit on a pulse train, 137, 145 converter, up/down, 12, 232, 246, 264, 278
bit-error probability (convolutional code), convolutional codes, see codes

219 correlated symbol sequence, 166

block-orthogonal signaling, 139, 145 correlative encoding, 166, 224
Bolzmann’s constant, 118 correlator, 108

covariance matrix, 61, 269
carrier frequency, 232, 237-240, 244, 246, 259,  cumulative distribution function, 190
261

Cauchy—Schwarz inequality, 67 decision
channel, 24 function, 29, 31
baseband-equivalent, 11, 252 regions, 29, 31
binary symmetric (BSC), 51 decoder, 12, 97, 205
complex-valued AWGN, 264 decoding, 26
continuous-time AWGN, 25, 95, 96, 102, function, see decision function
103, 105, 119, 148 regions, see decision regions
discrete memoryless, 49, 89 delay, 256
discrete-time AWGN, 25, 32, 39, 45, 46, 53,  delay locked loop, 259
97, 102, 180, 205, 208 detection, see hypothesis testing
discrete-time vs. continuous-time, 144, 180 detour, 212, 213
impulse response, 112 detour flow graph, 214
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diffraction, 112, 234
dimensionality, 135, 142
Dirichlet function, 181
dither, 163

down-converter, see converter
duration, 142

electromagnetic waves, 234
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map, 206

entropy, 19

error probability, 26, 29, 31, 35
Bhattacharyya bound, 50, 87-90, 219
union Bhattacharyya bound, 48, 53
union bound, 44, 86, 91, 141, 228

events, 190

eye diagram, 173

fading, 81, 114
finite-energy functions, 161
first layer, 23
Fisher—-Neyman factorization, 43, 83, 101, 130
Fourier

series, 167, 187

transform, 16, 184, 203
frame, 3
free-space path loss, 120
frequency hopping (FH), 261
frequency-shift keying, see FSK
frequency-shift property, 236
FSK, 104, 139

generating function, 214
Gram—Schmidt procedure, 72, 123, 124

Hermitian
adjoint, 53
matrix, 54, 61
skew, 54
hyperplane, 69, 70
hypothesis testing, 26, 32, 102
binary, 28
m-ary, 30
exercises, 74-77, 80-82, 91, 93, 125, 126,
129, 130

independent white Gaussian noises, 254

indicator function, 16, 30, 43
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information theory, xi, 9, 18, 19, 103, 142,
147, 221
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inter-symbol interference (ISI), 173, 224

interference, 114

Internet, 1, 2, 4
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Jacobian, 59
jitter, 173

Lo

equivalence, 161, 183

functions, 161, 180
Laplacian noise, 75, 77, 90
law of total expectation, 30
law of total probability, 29
layer

application, 2

data link, 3

network, 3

physical, 4

presentation, 3

session, 3

transport, 3
layering, 1
LDPC code, see codes
Lebesgue

integrable functions, 182

integral, 180

measurable sets, 182

measure, 182
light-emitting diode (LED), 26
likelihood

function, 27, 257

ratio, 29, 34, 43
l.i.m., 168, 188
log likelihood ratio, 34
low-noise amplifier, 111

MAP
rule, 27, 51, 77
test, 29, 107
Mariner-10, 123
Markov chain, 41
matched filter, 108, 127, 128, 201
maximum a posteriori, see MAP
maximum likelihood, see ML
Mercury, 123
messages, 12
metric, 209
military communication, 261

minimum distance, 40, 136, 145, 146

minimum-distance rule, 39
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ML parameter estimation, 175, 257
ML rule, 27, 39, 208, 261
for complex-valued AWGN channels, 252
mobile communication, 113, 222
modem, 4
modulation (analog)
single sideband (SSB), 241
amplitude (AM), 13, 241, 278
DSB-SC, 240
frequency (FM), 13
multiaccess, 93
multiple antennas, see antenna array

n-tuple former, 12, 97, 102, 159
NASA, 123
nearest neighbors, 145
noise, 111
correlated, 93
data dependent, 93
man-made, 99
Poisson, 75
shot, 99
thermal (Johnson), 99, 118
white Gaussian, 98
noise temperature, 119
non-coherent detection, 260, 263
nonlinearities, 114
norm, 67, 96
Nyquist
bandwidth, 169
criterion, 167, 168, 170, 179, 198-200, 281
pulse, 198

observable, 26, 101

OFDM, 113

open system interconnection (OSI), 1, 103,
250

optical fiber, 26

orthonormal expansion, 71

packet, 3

PAM, 39, 48, 79, 105, 135, 159, 179, 208, 221,
279

parallelogram equality, 67

parameter estimation, 175, 256

Parseval’s relationship, 99, 144, 161, 165, 167,
185, 238, 254

partial response signaling, 166

passband, 12, 232, 235, 276, 277

phase drift, 260

phase locked loop, 260

phase-shift keying, see PSK

phase synchronization, 256

decision-directed, 260
picket fence miracle, 193, 196, 200
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Plancherel’s theorem, 185
Planck’s constant, 119
Poisson distribution, 26
positive (semi)definite, 55
post office protocol (POP), 2
posterior, 27, 51
power
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received, 120, 121
power spectral density (PSD), 119, 163, 191,

197, 223, 224

power spectrum, see power spectral density
PPM, 104, 139
prior, 51
probability measure, 190
probability of error, see error probability
probability space, 190
projection, 69, 72
propagation delay, 112
pseudo-covariance matrix, 269
PSK, 46, 48, 80, 106, 136, 160, 179, 248, 263
pulse, 15
pulse amplitude modulation, see PAM
pulse position modulation, see PPM
Pythagoras’ theorem, 69

Q@ function, 31, 78, 228

QAM, 40, 48, 79, 86, 106, 126, 160, 179, 249,
263, 279

QAM (analog), 241

quantization, 20

radio spectrum, 234

raised-cosine function, 170

random process, see stochastic process

random variables and vectors, 61, 190
circularly symmetric, 270, 271, 273, 274,

279

complex-valued, 252, 267, 269
proper, 269, 271

Rayleigh probability density, 60

real vector space, 66

receiver, 24

receiver design
for continuous-time AWGN channels, 95
for discrete-time AWGN channels, 32
for discrete-time observations, 23
for passband signals, 243

reflection, 112, 234

refraction, 234

Riemann integral, 180
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192
root-raised-cosine function, 170
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sample space, 190
sampling theorem, 161
satellite communication, 119, 222
Schur, 54
second layer, 95
self-similarity function, 164, 172, 178, 197
Shannon, xv, 8
o-algebra, 190
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analytic-equivalent, 235, 236, 241
baseband-equivalent, 12, 235
energy, 46, 95, 96, 106, 111, 119, 121,
133-135, 137, 147, 166, 183, 236, 241,
264
power, 95
signal design trade-offs, 132
simple mail transfer protocol (SMTP), 2
simulation, 115, 231
sinc
Fourier transform, 185
peculiarity, 201
singular value decomposition (SVD), 56, 62
sky wave, 234
Slepian, 143
software-defined radio, 162
source, 23
binary symmetric, 19
continuous-time, 20
discrete, 18
discrete memoryless, 19
discrete-time, 20
spread spectrum (SS), 105, 261
square-root raised-cosine function,
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standard inner product, 66
state diagram, 207
stationary, 191
stochastic process, 190
sufficient statistic, 41, 83, 85, 102, 130
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PAM, 159, 160, 179, 208, 221, 279

PSK, 160, 179, 248, 263

QAM, 160, 179, 249, 263, 279
symbol-by-symbol on a pulse train, 159
synchronization, 112, 175

Bayesian approach, 176

DLL approach, 176

for passband signals, 256

LSE approach, 176

ML approach, 175

third layer, 232
time offset, 256
training
signal, 256, 258
symbols, 177
transmission control protocol (TCP), 5
transmitter, 24
trellis, 209
triangle inequality, 67

uncorrelated, 64, 165

union Bhattacharyya bound, see error
probability

union bound, see error probability

unitary, 53

up-converter, see converter

user datagram protocol (UDP), 5

vector space, 65

Viterbi algorithm (VA), 209, 222, 224
voltage-controlled oscillator (VCO), 177
Voronoi region, 39

water-filling, 113

waveform, 15

waveform former, 97, 102, 159
whitening filter, 113

wide-sense stationary (WSS), 163, 191






