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Solution 1. Consider the sequence M0,M1, . . . of matrices constructed recursively as
follows:

M0 = [+1] and Mr+1 =

[
+Mr +Mr

+Mr −Mr

]
for r = 0, 1, . . .

For example, we have,

M1 =

[
+1 +1
+1 −1

]
, M2 =


+1 +1 +1 +1
+1 −1 +1 −1
+1 +1 −1 −1
+1 −1 −1 +1

 , . . .

Note that Mr is a 2r × 2r matrix with elements taking values in {+1,−1}. Each row (and
each column) has squared Euclidean norm 2r.
Now fix r > 0 and let n = 2r. Let x be a row of Mr and write x = [x′ x′′] where x′ is the
left half of x and x′′ is the right half (for example, with r = 2 and x = [+1,+1,−1,−1]
being the 3rd row of M2, we have x′ = [+1,+1] and x′′ = [−1,−1]). As x̃ = [x̃′ x̃′′] steps
through all the n rows of Mr, compute the inner products p′ = ⟨x′, x̃′⟩ and p′′ = ⟨x′′, x̃′′⟩.
(For the example above (p′, p′′) takes the values (2,−2), (0, 0), (2, 2) and (0, 0) as x̃ steps
through [+1,+1,+1,+1], [+1,−1,+1,−1], [+1,+1,−1,−1] and [+1,−1,−1,+1].)

(a) Show that for any row x of Mr, (p
′, p′′) equals (n/2, n/2) once, the value (n/2,−n/2)

once, and the value (0, 0) for the remaining n − 2 times. Use this to conclude that
the rows of Mr are orthogonal to each other.
Hint: One way is by induction on r.

Solution: Direct check by induction. Base case r = 1 is trivial. Assume the statement
is true for r ≥ 1. Then check for r+1, using the fact that the rows of Mr+1 are either
[x, x] or [x,−x] for some row x of Mr.

Let Br =

[
+Mr

−Mr

]
. The m = 2n rows of Br consists of the rows of Mr and their negatives.

Let x = [x′ x′′] be a row of Br. As x̃ = [x̃′ x̃′′] steps through all the m rows of Br compute
p′ = ⟨x′, x̃′⟩ and p′′ = ⟨x′′, x̃′′⟩.

(b) Show that for any row x of Br, (p
′, p′′) takes the value (n/2, n/2) once, the value

(−n/2,−n/2) once, the value (n/2,−n/2) once, the value (−n/2, n/2) once, and the
value (0, 0) the remaining m− 4 times.
Hint: Use (a).

Solution: Follows almost immediately (a). As x̃ sweeps over 2n rows of Br, it first
sweeps over n rows of Mr and then n rows of −Mr. Hence it takes all values as in
(a) once, and also the negatives of those values once.

(c) Conclude that for any row x of Br, p
′+ p′′ takes the value n once, the value −n once,

and the value (0, 0) the remaining m− 2 times.
Hint: Use (b).

Solution: Immediate given (b).



Solution 2. Suppose we have a channel whose input x = [x′ x′′] is a real vector of even
dimension n (so that x′ and x′′ are of dimension n/2). The channel has two behaviors
determined by an internal state s ∈ {1, 2}. The output Y = [Y ′ Y ′′] is given by

(Y ′, Y ′′) =

{(√
gx′ + Z ′, x′′ + Z ′′) if s = 1,(

x′ + Z ′,
√
gx′′ + Z ′′) if s = 2,

where g ≥ 1 is a non-negative constant and Z = [Z ′ Z ′′] has i.i.d. N (0, σ2) components.
In other words, the channel subjects either the first half (if s = 1) or the second half (if
s = 2) of the input vector to an energy gain g, and adds Gaussian noise.
Suppose c1, . . . , cm are the codewords for m equally likely messages for transmission over
the channel above. Thus, each ci is a real vector of (even) dimension n. Write ci = [c′i c

′′
i ]

so that c′i and c′′i are real vectors of dimension n/2.

(a) Suppose the value of s is known to the receiver. What is the decision rule that
minimizes the probability of error?

Solution: The MAP rule with knowledge of s is

ĤMAP(Y ) = argmin
i

{
∥Y ′ −√

gc′i∥2 + ∥Y ′′ − c′′i ∥2 if s = 1,

∥Y ′ − c′i∥2 + ∥Y ′′ −√
gc′′i ∥2 if s = 2.

(b) Suppose ∥c′1∥ = · · · = ∥c′m∥ and ∥c′′1∥ = · · · = ∥c′′m∥. Let

score(i, Y, s) =

{√
g⟨Y ′, c′i⟩+ ⟨Y ′′, c′′i ⟩ s = 1,

⟨Y ′, c′i⟩+
√
g⟨Y ′′, c′′i ⟩ s = 2.

Show that
ı̂ = argmax

i
score(i, Y, s)

is an optimum decision rule for a receiver that observes Y = [Y ′ Y ′′] and is aware of
the value of s.

Solution: It follows by expanding the norm that ĤMAP(Y ) = ı̂ when ∥c′1∥ = · · · =
∥c′m∥ and ∥c′′1∥ = · · · = ∥c′′m∥.

Now suppose that the receiver is not aware of the value of s. Still supposing that the
codewords ci are as in (b) (i.e., all have equal norms of their first halves, and equal norms
of their second halves), consider the following way to assign a score to each message i based
on the observation Y = [Y ′ Y ′′]:

score(i, Y ) = max
s∈{1,2}

score(i, Y, s)

and the following two decoding rules. The first rule chooses the message with the highest
score, i.e.,

ı̂1 = argmax
i

score(i, Y ).

The second is based on a threshold t, and chooses the message ı̂2 if ı̂2 is the only i for which
score(i, Y ) > t. If there is no such i, or two or more such i’s, it sets ı̂2 = 0 — note that
when ı̂2 = 0 this decoding rule has certainly made an error.
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(c) Argue that when ı̂2 ̸= 0, we have ı̂1 = ı̂2, and thus the probability of error of the
second decoding rule is an upper bound to the probability of error of the first decoding
rule.

Solution: If ı̂2 = j ̸= 0, then score(j, Y ) > t and score(i, Y ) ≤ t for all i ̸= j. Clearly,
we then have that score(i, Y ) is maximized by taking i = j, and hence, ı̂1 = j.
Hence, if ı̂2 is equal to the transmitted message, so is ı̂1 necessarily, implying that the
probability that the second decoding rule is correct is at most that of the first rule,
and we are done.

Solution 3. Let r ≥ 0. Let the codewords for m messages, c1, . . . , cm be the rows of the
matrix

√
α[Br Br], where Br is as in Problem 1 above and α ≥ 0 is chosen to make the

energy per bit to equal Eb.

(a) With n denoting the dimension of the ci’s, express n, m and α in terms of r and Eb.
Solution: n = m = 2r+1 by noting that Mr is a 2r × 2r matrix. α = (r + 1)Eb/2r+1

by noting that the energy of any ci is n = 2r+1 and each ci conveys log2m = r + 1
bits.

Suppose the codewords above are used to communicate over the channel in Problem 2. Let
s denote the channel state and s̄ denote the ‘other’ state (i.e., s̄ = 3− s).

(b) Fix a threshold t. Show that, conditional on i being the transmitted message, the
probability of error of the second decoding rule that uses the threshold t is upper
bounded by

Pr
(
score(i, Y, s) ≤ t

)
+
∑
i′ ̸=i

∑
s′∈{1,2}

Pr
(
score(i′, Y, s′) > t

)
.

Solution: Let i be the transmitted message. There are only two ways that the
second decoding rule can make an error: (1) score(i′, Y ) > t for some i′ ̸= i, or (2)
score(i, Y ) ≤ t. By the union bound, the error probability of the second decoding rule
is upper bounded by the sums of the probabilities of these events. As score(i′, Y ) =
maxs′∈{1,2} score(i

′, Y, s′), we have score(i′, Y ) > t only if score(i′, Y, s′) > t for some
s′. Using another union bound to upper bound this probability gives us the required
terms.

(c) Let β = 1
2
α(g+1)n. Show that, conditional on i being the transmitted message, with

s being the channel state,

score(i, Y, s) ∼ N (β, σ2β).

Solution: Suppose s = 1 and i is the transmitted message. Then score(i, Y, 1) =√
g⟨Y ′, c′i⟩ + ⟨Y ′′, c′′i ⟩ with Y ′ =

√
gc′i + Z ′ and Y ′′ = c′′i + Z ′′. A direct computation

gives score(i, Y, 1) = g⟨c′i, c′i⟩+⟨c′′i , c′′i ⟩+
√
g⟨c′i, Z ′⟩+⟨c′′i , Z ′′⟩. Since Z ′ and Z ′′ are zero

mean Gaussian vectors, score(i, Y, 1) is Gaussian and has mean g⟨c′i, c′i⟩ + ⟨c′′i , c′′i ⟩ =
αn

2
(g+1) = β. The variance of score(i, Y, 1) is (g∥c′i∥2+∥c′′i ∥2)σ2 = βσ2. An identical

computation results for s = 2 as well.

(d) Conditional on i being the transmitted message, with s being the channel state, show
that
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(i) there is one value of i′ ̸= i for which

score(i′, Y, s) ∼ N (−β, σ2β) and score(i′, Y, s̄) ∼ N (−α
√
gn, σ2β);

(ii) for the remaining m− 2 values of i′ ̸= i,

score(i′, Y, s) ∼ N (0, σ2β) and score(i′, Y, s̄) ∼ N (0, σ2β).

Hint: Use 1(c).

Solution: We can compute the mean and variance of each score by repeating simikar
computations as in part (c) and using 1(c).

(e) For a threshold t ≥ 0, show that the error probability of the second decoding rule is
upper bounded by

Q

(
β − t√
σ2β

)
+ (2m− 2)Q

(
t√
σ2β

)
.

Hint: Use (b), (c) and (d) and the fact that Q(·) is a decreasing function.

Solution: We use the bound in part (b). The first term is Pr (score(i, Y, s) ≤ t) =

Q
(

β−t√
σ2β

)
, as score(i, Y, s) ∼ N (β, σ2β). The second term is the sum over i′ ̸= i of

terms f(i′) :=
∑

s′=s,s̄ Pr (score(i
′, Y, s′) > t). There is one value of i′ ̸= i for which

score(i′, Y, s) ∼ N (−β, σ2β) and score(i′, Y, s̄) ∼ N (−α
√
gn, σ2β). For this i′, the

term f(i′) = Q
(

β+t√
σ2β

)
+Q

(
α
√
gn+t√
σ2β

)
, which is upper bounded by 2Q

(
t√
σ2β

)
as Q(·)

is decreasing. For the remaining m− 2 values of i′ ̸= i, we have f(i′) = 2Q
(

t√
σ2β

)
.

Hence, the bound in part (b) is further upper bounded by the given expression.

(f) Fix 0 < ϵ < 1 and set t = (1 − ϵ)β. Show that the error probability of the second
decoding rule is upper bounded by

Q
(
ϵ
√

β/σ2
)
+ (2m− 2)Q

(
(1− ϵ)

√
β/σ2

)
.

Solution: Follows immediately by substituting t = (1− ϵ)β in the bound of part (e).

(g) Show that as r grows, the first term above approaches zero, and if (1+ g)(1− ϵ)2Eb >
σ24 ln 2, the second term approaches zero too.
Hint: For the last claim, use the fact that for x ≥ 0, Q(x) ≤ 1

2 exp(−x2/2).

Solution: The first term is Q
(
ϵ
√

β/σ2
)
≤ 1

2
exp

(
− ϵβ

σ2

)
= 1

2
exp

(
− ϵα(g+1)2r+1

σ2

)
. We

are done if we show that the upper bound goes to zero, as it is also lower bounded by
zero (the argument of Q is positive). As r → ∞, the argument of exp goes to −∞,
and hence, the first term goes to zero. The second term can be upper bounded as
follows:

(2m− 2)Q
(
(1− ϵ)

√
β/σ2

)
≤ 2r+1 exp

(
−(1− ϵ)2β

2σ2

)
= 2r+1 exp

(
−(1− ϵ)2(r + 1)Eb(g + 1)

4σ2

)
= exp

[
−(r + 1)

(
(1− ϵ)2Eb(g + 1)

4σ2
− ln 2

)]
, (*)

which goes to zero if (1 + g)(1− ϵ)2Eb > σ24 ln 2.
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(h) Conclude that if Eb/σ2 > (4 ln 2)/(1 + g), the error probability of the first decoding
rule approaches zero as r grows.

Solution: If Eb/σ2 > (4 ln 2)/(1 + g), there exists an ϵ > 0 sufficiently close to zero
such that (1 + g)(1 − ϵ)2Eb > σ24 ln 2. Hence, by part (g), the error probability of
the second decoding rule goes to zero as r grows. But by Problem 2(c), this error
probability is an upper bound to that of the first decoding rule, while, consequently,
must also go to zero as r grows.

Takeaways from theory for the implementation.

1. The goal of Problem 1 is to obtain a characterization of the possible inner products
of the rows the matrix Mr (called a Hadamard matrix). The reason for doing so
is that we require these inner products to compute the error probability of a code
that uses these rows as codewords, as we do in Problem 3.

2. Problem 2 introduces two decoding rules ı̂1 and ı̂2. It is easy to see that the second
is suboptimal (Problem 2(c)). The motivation for the second decoding rule is that
it is easy to analyze its performance, unlike the first decoding rule. However, as
the second decoding rule is necessarily worse (in terms of error probability) than
the first, we get an upper bound to the error probability of the first rule for free.

3. We see that using such a “repeated biorthogonal” (each codeword is obtained by
repeating a row of the Hadamard matrix or its negative) code allows us to have
an error probability that decays exponentially with the number of bits, if Eb is
at least 4σ2 ln 2/(1 + g). In the practical part of the project (refer to the project
description file):

(a) The channel is nearly the same, in the sense that half of the samples are
boosted by a power gain g. However, the samples experiencing this gain
are the samples at either odd indices or at even indices. In the theory
part above, the samples experiencing the gain were either the first half or
the second half of the codeword. Hence, to get the same performance as
suggested by theory, we must use as codeword an “interleaved” version of
the rows of α[Br Br], i.e., if ci = [c′i c

′
i] is a row of the matrix (with c′i having

dimension n/2), the codeword sent should be [c′i,1 c
′
i,1 c

′
i,2 c

′
i,2 . . . c

′
i,n/2 c

′
i,n/2].

The decoding should also be modified appropriately — Y ′ should be the odd
indices and Y ′′ should be the even indices of the received codeword (instead
of the first half and second half).

(b) We have g = 10, σ2 = 10, so as long as Eb > 2.52, we can make the error
probability as small as desired by choosing a sufficiently large r.

(c) We can send at most 106 samples to send 240 bits, hence if we use the code
in Problem 3, we must send 240/(r + 1) symbols, each of codelength 2r+1.
Hence, we require r to satisfy 240 · 2r+1/(r + 1) ≤ 106, which gives r ≤ 15.

(d) We have an energy constraint of 2,000 to send 240 bits, so we are allowed to
use Eb ≤ 2000

240
≈ 8.3. This is sufficiently larger than 2.52, so we expect to get a

sufficiently small error probability even at r = 15. Computing the expression
(*) in Problem 3(f) for r = 15 and Eb = 8.3, and optimizing over the choice
of ϵ, we get that the error probability of the second decoding rule is upper
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bounded by 0.017. Hence, to send 240 bits, the error probability of the sec-
ond rule is upper bounded by 0.017 · 240

r+1
≈ 0.26. The probability of getting

an error in both attempts is thus at most 0.07. A tighter bound can be ob-
tained by using the fact that Q(x) ≤ min{1

2
exp(−x2/2), 1√

2πx
exp(−x2/2)}

which gives us that the error probability of the second rule is at most 0.0039,
implying that the probability of getting both attempts wrong while sending

240 bits is at most ≈
(
240
r+1

· 0.039
)2

= 3.4 × 10−3, or a total success prob-
ability of at least 99.6%. This gives us enough confidence that the code in
Problem 3 should work for the channel in question (up to a rearrangement,
as in (a) above), at least using r = 15 and an energy of 2000.

(e) It turns out this bound is still rather loose and we can do much better in
practice, see Figure 1. Using r = 15 and an energy of 2000 to send 240 bits,
we have an error with probability 1/2000 = 5× 10−4, hence the actual error
rate in the demo (two attempts) is (5×10−4)2 = 2.5×10−7 (compare against
the theoretical bound of 3.4×10−3). Hence, we can use a much lower energy
in practice: Suppose our target success rate in the demo is 99.9%, i.e., an
error probability at most 0.001 to send 240 bits using two attempts. Then,
the required error probability for our code should be

√
0.001 ≈ 3.2 × 10−2,

which we can achieve using an energy under 1450 with r = 15 or even 1700
with r = 11 (which is mapping two characters per codeword).
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Figure 1: Empirical error probability over 2000 iterations versus average signal energy for
different values of r. We consider the frame error, i.e., it is considered to be an error if at
least one of the 40 characters is decoded incorrectly. At r = 14, 15, we get zero errors out
of 2000 iterations for the highest value of energy, so the average error probability is likely
to be smaller than 1/2000. To get r’s that do not divide the 240 bits exactly, simply pad
the original 240 bit message with some additional bits so that it is a multiple of r + 1.
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