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SOLUTION 1.
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where (1) follows from the Cauchy—Schwarz inequality and (2) from the fact that
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(d) By Parseval’s identity, we have

Re(t) = (§(t+7),&(1))
= (& (N7 R ()

B /_Oo EF(F)ER(f)e*™ T df
-/ R (f)PI .

which is the inverse Fourier transform of |££(f)]?.



SOLUTION 2.

(a) We have N
y(t) = / w(T)Y(r — t)dr.

oo

The samples of this waveform at multiples of T" are

y(mT) = /_ " w(r)(r — mT)dr

o0

_ /_Z[K dy W(r — kT)

= ) dy /OO (T — kT)(r — mT)dr
k=1 >

W(r —mT)dr

K
= ) dil{k=m}
k=1
= dp.
(b) Let w(t) be the channel output. Then, g(t) is w(t) filtered by ¥(—t). We have
w(t) = w(t)+pwit—-T)

and

y(t) = /00 w(T)Y(T — t)drT.

The samples of this waveform at multiples of 7" are
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(c) From the symmetry of the problem, we have

P, = Pe(l) = Pe(_l)'



P(1) = Pr{Dy=—1|Dy=1,Dp = -1} Pr{Dy = -1} +

Pr{D; = —1|D; = 1, Dy_y = 1} Pr{D;_, = 1}
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5 (PI‘{Yk < Ole = 1,Dk_1 = —1} + Pl"{Yk < 0|Dk = laDk:—l = 1})
1

= —(Pr{l—a+Z, <0} +Pr{l+a+ 2, <0})

(Pr{Zy < —14+a} +Pr{Z, < -1 — a})

o(5) ve ()]

(a) We can easily see that

N — N — DN

SOLUTION 3.

1 1
E[Xz’Xz—l] - EXi_l + 5(—X2_1) - 0

Consequently (using the law of total expectation)
E[X;] = E[E[X;|X;_1]] = 0.
Therefore,
Kx[k] = E[(X; — E[Xi])(Xi—x — E[Xi—4])"] = E[X: X[ ]
Moreover, using the fact that X; = X;_; x (—1)?" repeatedly, we can write

Xz' = Xi—k X H (—1)Dj
=ikl

Thus,
Kx[k] = E[X; X7 ]
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®) {5 if k=0,

0 otherwise.

where (a) follows from the independence of data bits {D;} and (b) since E[(—1)"i] = 0.

(b) By sampling the signal at the output of the matched filter, Y (¢), at multiples of T, we
obtain



where Z; is normally distributed with zero mean and variance Ny/2. By looking at the
definition of X;, we see that it is equal to X;_; if D; = 0 and equal to —X;_ if D; = 1.
Therefore a simple decoder estimates that ﬁl = 0 if Y; and Y;_; have the same sign,
and D; = 1 otherwise. This is equivalent to

YiYii Z 0.

(¢) We first compute the error probability when D; = 0. If X;_; = /&, then X; = V.
When we decode, we will make an error if the signal (Y;_;,Y;)" is in the second or
fourth quadrants (shaded regions in the following figure).
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Due to the symmetry of the problem, the probability for this to happen is two times
the probability for (Y;_1,Y;)T to be in the second quadrant:

P.D; = 01D,y = 0) = 2Q ( Nf/2> Q (‘N/pr) |

Again, due to the symmetry of the problem,

S0,

Pe(Di — 0|Di—1 — 1) — Pe(Di — 0|Di—1 — O) — Pe(Di — O),

and

hence

bot bot
Pe:2Q< N0/2> < (_\/ N0/2>.

SOLUTION 4. Because v(t) is real, its Fourier transform is conjugate symmetric (¢#(f) =
V(= 1),

From the condition [¢(t—kT)y(t —IT)dt = 1{k = I} for every pair k, [, it follows that
[Wr(f)|? satisfies Nyquist’s criterion with parameter T, Y-, , [¥#(f — k/T)|* = T. On the
other hand, since ¢(f) = 0 for | f| > 7, [¢¥#(f)|* must have band-edge symmetry.

Putting everything together, we obtain the complete plot of [x(f)[*.
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SoLUTION 5. From Theorem 5.6, we know that {¢(t — jT)}Z__ is an orthonormal set if
and only if

S r(f ) =T,

kEZ

(a)
Z Tl[ﬁfi kg1 (f) =T = The Nyquist criterion is satisfied
T T 2

2T T
= 9(t) is orthonormal to its time-translates by multiples of T'.

(b) -
Z Eﬂ[b k1) (f) =T = The Nyquist criterion is satisfied
T T
keZ

= () is orthonormal to its time-translates by multiples of 7.

(¢) Because [¢)x(f)[? vanishes outside [—7, ], we verify whether the band-edge symmetry
is fulfilled, which is the case. Hence, the Nyquist criterion is satisfied and ¥ (t) is
orthonormal to its time-translates by multiples of T'. Note: the same reasoning can be
applied to (b).

272
is orthogonal to its time-translates by multiples of T, but does not have unit norm

(unless T'=1): [~ [¢(t)]* dt = 7.

(d) ¥#£(f) is a sinc function, therefore 1 (t) is a box function, equal to %]1[ T T](t). This

SOLUTION 6.

(a) We pass R(t) through a whitening filter h(t) such that the output R'(t) looks like the
output of an AWGN channel. After this step we are facing a familiar situation and can
implement a matched filter receiver. The receiver architecture is shown below:
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Let N'(t) = [ N(a)h(t — ) da be the noise at the output of the whitening filter. We
want to select the filter h(t) such that 52 = G(f)|hz(f)[% ie.,

hr(f)I* =

The output of the filter is

R'(t) = /R(a)h(t —a) da = /wi(a)h(t —a) da+ /N(a)h(t —a) da
= wl(t) + N'(8),

where N’(t) is white Gaussian noise and wj(t) = [w;(a)h(t—a) da. We need to design
the matched filter for the signals wi(t).

To minimize both the noise and the energy of the signal, we need to select an antipodal
signal pair that is frequency-limited to [a,b] and has energy £.



