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SOLUTION 1.

(a) (i) The plots are shown below:
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(ii) The joint density function is invariant under rotation for @ = 2 only. For this
value of a, we have X, Y ~ N (0, %)

(b) (i) We know that we can write (x,y) in polar coordinates (r, ). Hence in general the
joint distribution of X and Y is a function of r and 6. Because of circular sym-
metry the joint distribution should not depend on #, which means that fxy(z,y)
can be written as a function of r. Hence if we denote this function by v and use
the independence of X and Y, we have fx(z)fy(y) = ¢(r).

(ii) Taking the partial derivative with respect to z and using the chain rule for dif-
ferentiation, we have fi(z)fy(y) = ¢'(r)9t = ¢/(r)%. If we divide both sides by

zfx(z)fy(y) we have mf ;; ((zw)) = f;((:)) Proceeding similarly for y, we obtain

fel@) _ ) _ K)
(@) i) i)




(iii) ;;i; (( *) s a function of  while e By iq o function of y. Hence the only way for the
equaflty to hold is that both of them equal a constant. If we denote this constant

by ——2, we reach the final result.

(iv) We have () . Integrating both sides we have log(£%) x)) Hence

fx (@) 202
fx(z) = C’exp(—%). fx(x) is a probability density function and so should

integrate to 1, which gives C = \/#? Hence fx(x) = \/Qi?exp(—%) and by

symmetry fy(y) =
random variables.

exp(— %), which shows that X and Y are Gaussian
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SOLUTION 2.
(a) Let xg(t) = xg(t) + jas(t). Then

2(t) = V2R{zp(t)e?? )
= V2R{[zr(t) + jos(t)]e3* "}
= \/5[373(15) cos(2m fot) — a1 (t) sin(27 fot)].
Hence, we have
and
Trpo(t) = V23 {zp(t)}.
(b) Let 2(t) = a(t)e?”®. Then

2(t) = V2R{zp(t)e?* '}
\/_§R{oz( )eJﬁ(t eﬂﬂfct}
\/_§R{a( )eJ (2w fet+pB(t) )}
= V2a(t) cos[2m ft + B(t)].

We thus have

_ a(edt — Ut g
z5(t) = a(t)e Bt — \/5 ®)

(¢) From (b) we see that

This is consistent with Example 7.9 (DSB-SC) given in the text. We can also verify:
o(t) = V2R{wp(t)e*"
At) ., s
— \/§§R{ eweﬂﬂfct}
V2

— %{A@)ej(?ﬂfctw)}
= A(t) cos(2m fet + ).



SOLUTION 3.

(a)

The key observation is that while e327/1* and e=32"/1* are two different signals if f; # 0,
R{eI?™ N1t} and N{e~I2"11} are identical.

Therefore, if we fix f; # 0 and choose a;(t) and as(t) so that a;(t)ed?™/ct = 2711t and
ap(t)ed?let = e32mN1t e get ai(t) # ax(t) and R {al(t)eﬂ”fct} =N {ag(t)ej%fct}.

Let a1 (t) = e 327 Ue=ft and ay(t) = e 327Ut f)t Then ay(t) # as(t) and

V2R {al(t)ej%fct} = V2R {ag(t)ej%fct} i

Let b(t) = a(t)e* /<! which represents a translation of a(t) in the frequency do-
main. If ax(f) = 0 for f < —f., then br(f) = 0 for f < 0. Because R{b(t)} =
1 (a(t)e3?™fet + q*(t)e~32mFet) | taking the real part has a scaling effect and adds a
negative-frequency component. The negative spectrum is canceled by the h- filter,
and the scaling is compensated by the v/2 factors from the up-converter and down-
converter. Multiplying by e~327f¢! translates the spectrum back to the initial position.
In conclusion, we obtain a(t).

Take any baseband signal u(t) with frequency domain support [—f.— A, f.+A], A > 0.
The signal can be real-valued or complex-valued (for example ur(f) = Li—f.—a s.+a](f),
which is a sinc in time domain). After we up-convert, the support of uz(f) will not
extend beyond 2f. + A. When we chop the negative frequencies we obtain a support
contained in [0, 2f.+A] and when we shift back to the left the support will be contained
in [—f., fo + A], which is too small to be the support of uz(f).

In time domain:

w(t) = V2R{a(t)e?* '}
ack V2a(t) cos(2m f.t).

Therefore,
w(t)

V2 cos(2m fot)

In frequency domain: If az(f) = 0 for f < —f., we obtain a(t) as described in (b). In
the following, we consider the case az(f) # 0 for f < —f..

We have wz(f) = 75 lar(f — fo) + ar(f + fo)] = ax(f)+az(f), with a}(f) = Jsaz(f-
fe) and ax(f) = \/Lia].-( f + fe), respectively. These two components have overlap-
ping support in some interval centered at 0. However, there is no overlap for suffi-
ciently large frequencies. This means that for sufficiently large frequencies f we have
wr(f) = \%a}( f), which implies that from wx(f) we can observe the right tail of

a(t) =

a%(f) and use that information to remove the right tail of az(f) from wx(f) (the right
tails of a£(f) and az(f) are the same because a(t) is real). Hence, from wz(f) we can
read more of the right tail of aX(f). The procedure can be repeated until we get to
see af(f) for all frequencies above f.. At this point, using az(f) = af(f + f.)v/2 and
the fact that a(t) is real-valued, we have ax(f) for the positive frequencies, hence for
all frequencies.



SOLUTION 4.

z(t)V2 cos(2m fot) = x(t) [

€j27rfct + 6—j27rfct‘|

V2
ej27"'fct + e_j27rfct:|

= V2R{xp(t)eI ¥} [ %

|:$E(t)ej27rfct_|_$*E<t)e—j2ﬂ'fct:| [6j2wfct+e_jgﬁfct]

vz V2
o l’E(t)errfct + :EE(t) + :L‘*E(t) + :E*E(t)e*j‘lﬂfct
= ] |
At the lowpass filter output we have
rp(t) + 25(t) — R{rp())

The calculation for the other path is similar.
SOLUTION 5.

(a) Notice that the sinusoids of w(t) have a period of T, = 4 ms units of time, which implies
that f, = — 9250 Hz.

4ms

(b) Notice that the phase of the sinusoidal signal changes every Ts = 4 ms. (Here we have
T, =T,, but in general it is not the case. In practice we usually have Ty > T,.. See the
note at the end.)

The expression of w(t) as a function of ¢ is:

(4dcos(2nfet —5) t€]0,T;] R {43720 ¢ €]0, T,
0 4cos(2m f.t) t €Ty, 27| R {4e3rfD Y t €Ty, 2Ty
w e — .

4eos(2mft +m) t€)2T,,3T;] R {43 ¢ €21, 3T,
(4cos(2mfet + F) 13T, AT[ R {432t €)3T,, 4T,

(R {—4jed?lt} tE] T
R {4yt €]T,, 2T, .

— . S 290 ¢ j2mfet 7

R {_46327rfct} ]ZTS, 3T, [ \/_ {wE( )6 }

(R {4je3? ety ¢ €]3T,, AT,

where

wg(t) = — ﬂIL{t €0, T,[} + iIL{t €|Ts, 2T}

V2 V2
_ 4 4
fﬂ{t €]2T, 3T,[} + fﬂ{t 6]3T8,4Ts[}

= \/_ﬂ{tEOT}—I—\/E%T 1{t €|T}, 2T, [}
- \/_ IL{t €]2T,, 3T,] }+J\/87\/T11{t €]3T,, 4T, [}.



If we define 9(t) = \/LT—S]I{t €0, T5[}, co = —jV8Ts, c1 = /8Ty, co = —/8T, and
cs = j/ 8T, we get

wp(t) = Zciw(t —iT}). (1)

Therefore, the pulse used in the waveform former is ¢ (t) = \/%Il{t €]0, T4}, and the
waveform former output signal is given by (1). The orthonormal basis that is used is

{¢(t - iTS) ?:0'

(C> The SymbOI sequence is {COJ C1, C2, C3} = {_J\/g_m \/8_87 _\/?87 J\/g_s}7 where gs =
8T;. We can see that the symbol alphabet is {v/&, iv&, —v&, —iVE}.

(d) We have:

e The output sequence of the encoder is the symbol sequence, which is
{607 €1, Co, 03} = {_J V Ss, V gs, —V 55, j\/ 85} .

e The symbol alphabet contains 4 symbols. This means that each symbol represents
two bits. Since the symbol rate is f; = Ti = 250 symbols/s, the bit rate is
2 x 250 = 500 bits/s.

e The input/output mapping can be obtained by assigning two bits for each symbol
in the symbol alphabet. Keeping in mind that it is better to minimize the number
of bit-differences between close symbols, we obtain the following input/output
mapping (which is not unique, i.e., we can obtain other mappings that satisfy the
mentioned criterion): /& <— 00, j/E «— 01, =&, +— 11 and —j /& «—
10.

e Assuming that the above input/output mapping was used, we can obtain the
input sequence of the encoder: 10001101.

Note that in this example, we have Ty = T,, so f. = fs. This is very unusual. In practice
we almost always have f. > f;, especially if we are using electromagnetic waves.



