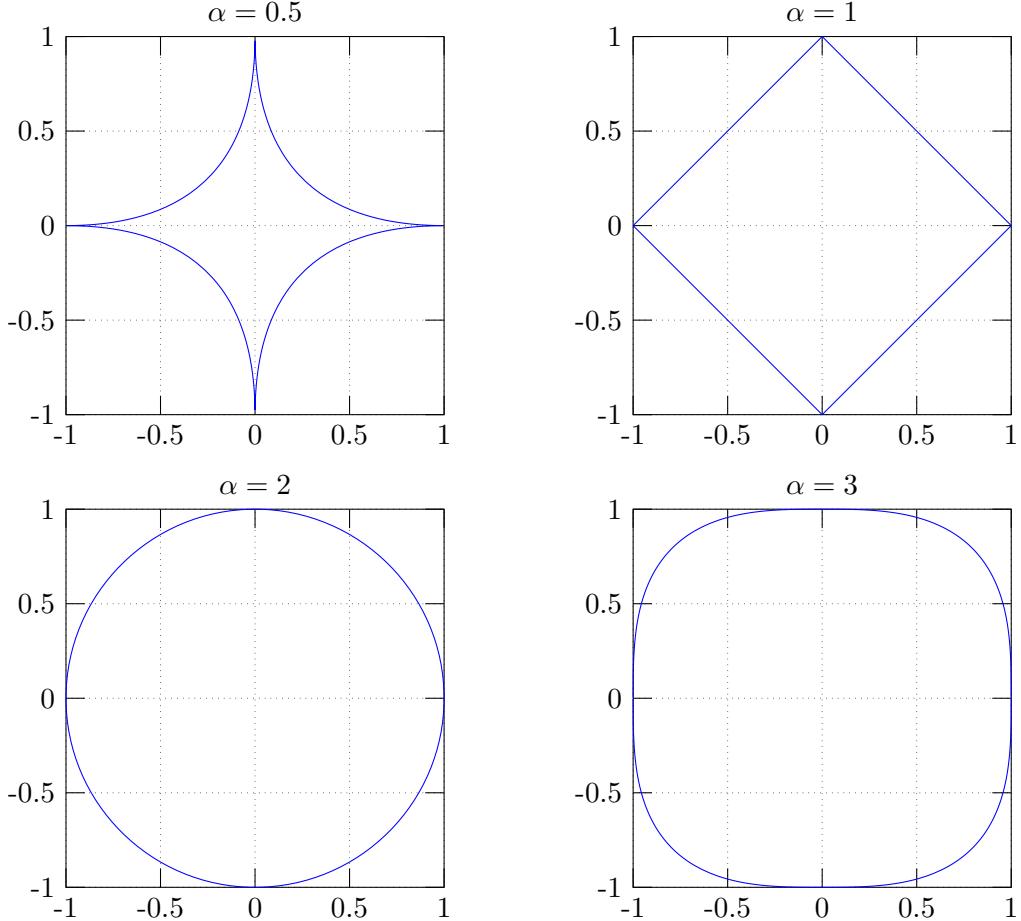


SOLUTION 1.

(a) (i) The plots are shown below:



(ii) The joint density function is invariant under rotation for  $\alpha = 2$  only. For this value of  $\alpha$ , we have  $X, Y \sim \mathcal{N}(0, \frac{1}{2})$ .

(b) (i) We know that we can write  $(x, y)$  in polar coordinates  $(r, \theta)$ . Hence in general the joint distribution of  $X$  and  $Y$  is a function of  $r$  and  $\theta$ . Because of circular symmetry the joint distribution should not depend on  $\theta$ , which means that  $f_{X,Y}(x, y)$  can be written as a function of  $r$ . Hence if we denote this function by  $\psi$  and use the independence of  $X$  and  $Y$ , we have  $f_X(x)f_Y(y) = \psi(r)$ .

(ii) Taking the partial derivative with respect to  $x$  and using the chain rule for differentiation, we have  $f'_X(x)f_Y(y) = \psi'(r)\frac{\partial r}{\partial x} = \psi'(r)\frac{x}{r}$ . If we divide both sides by  $x f_X(x)f_Y(y)$  we have  $\frac{f'_X(x)}{x f_X(x)} = \frac{\psi'(r)}{r \psi(r)}$ . Proceeding similarly for  $y$ , we obtain

$$\frac{f'_X(x)}{x f_X(x)} = \frac{\psi'(r)}{r \psi(r)} = \frac{f'_Y(y)}{y f_Y(y)}.$$

(iii)  $\frac{f'_X(x)}{xf'_X(x)}$  is a function of  $x$  while  $\frac{f'_Y(y)}{yf'_Y(y)}$  is a function of  $y$ . Hence the only way for the equality to hold is that both of them equal a constant. If we denote this constant by  $-\frac{1}{\sigma^2}$ , we reach the final result.

(iv) We have  $\frac{f'_X(x)}{f_X(x)} = -\frac{x}{\sigma^2}$ . Integrating both sides we have  $\log(\frac{f_X(x)}{C}) = -\frac{x^2}{2\sigma^2}$ . Hence  $f_X(x) = C \exp(-\frac{x^2}{2\sigma^2})$ .  $f_X(x)$  is a probability density function and so should integrate to 1, which gives  $C = \frac{1}{\sqrt{2\pi\sigma^2}}$ . Hence  $f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{x^2}{2\sigma^2})$  and by symmetry  $f_Y(y) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{y^2}{2\sigma^2})$ , which shows that  $X$  and  $Y$  are Gaussian random variables.

SOLUTION 2.

(a) Let  $x_E(t) = x_R(t) + jx_I(t)$ . Then

$$\begin{aligned} x(t) &= \sqrt{2}\Re\{x_E(t)e^{j2\pi f_c t}\} \\ &= \sqrt{2}\Re\{[x_R(t) + jx_I(t)]e^{j2\pi f_c t}\} \\ &= \sqrt{2}[x_R(t)\cos(2\pi f_c t) - x_I(t)\sin(2\pi f_c t)]. \end{aligned}$$

Hence, we have

$$x_{EI}(t) = \sqrt{2}\Re\{x_E(t)\}$$

and

$$x_{EQ}(t) = \sqrt{2}\Im\{x_E(t)\}.$$

(b) Let  $x_E(t) = \alpha(t)e^{j\beta(t)}$ . Then

$$\begin{aligned} x(t) &= \sqrt{2}\Re\{x_E(t)e^{j2\pi f_c t}\} \\ &= \sqrt{2}\Re\{\alpha(t)e^{j\beta(t)}e^{j2\pi f_c t}\} \\ &= \sqrt{2}\Re\{\alpha(t)e^{j(2\pi f_c t + \beta(t))}\} \\ &= \sqrt{2}\alpha(t)\cos[2\pi f_c t + \beta(t)]. \end{aligned}$$

We thus have

$$x_E(t) = \alpha(t)e^{j\beta(t)} = \frac{\alpha(t)}{\sqrt{2}}e^{j\theta(t)}.$$

(c) From (b) we see that

$$x_E(t) = \frac{A(t)}{\sqrt{2}}e^{j\varphi}.$$

This is consistent with Example 7.9 (DSB-SC) given in the text. We can also verify:

$$\begin{aligned} x(t) &= \sqrt{2}\Re\{x_E(t)e^{j2\pi f_c t}\} \\ &= \sqrt{2}\Re\left\{\frac{A(t)}{\sqrt{2}}e^{j\varphi}e^{j2\pi f_c t}\right\} \\ &= \Re\{A(t)e^{j(2\pi f_c t + \varphi)}\} \\ &= A(t)\cos(2\pi f_c t + \varphi). \end{aligned}$$

SOLUTION 3.

(a) The key observation is that while  $e^{j2\pi f_1 t}$  and  $e^{-j2\pi f_1 t}$  are two different signals if  $f_1 \neq 0$ ,  $\Re\{e^{j2\pi f_1 t}\}$  and  $\Re\{e^{-j2\pi f_1 t}\}$  are identical.

Therefore, if we fix  $f_1 \neq 0$  and choose  $a_1(t)$  and  $a_2(t)$  so that  $a_1(t)e^{j2\pi f_c t} = e^{j2\pi f_1 t}$  and  $a_2(t)e^{j2\pi f_c t} = e^{-j2\pi f_1 t}$ , we get  $a_1(t) \neq a_2(t)$  and  $\Re\{a_1(t)e^{j2\pi f_c t}\} = \Re\{a_2(t)e^{j2\pi f_c t}\}$ .

Let  $a_1(t) = e^{-j2\pi(f_c - f_1)t}$  and  $a_2(t) = e^{-j2\pi(f_c + f_1)t}$ . Then  $a_1(t) \neq a_2(t)$  and

$$\sqrt{2}\Re\{a_1(t)e^{j2\pi f_c t}\} = \sqrt{2}\Re\{a_2(t)e^{j2\pi f_c t}\}.$$

(b) Let  $b(t) = a(t)e^{j2\pi f_c t}$ , which represents a translation of  $a(t)$  in the frequency domain. If  $a_{\mathcal{F}}(f) = 0$  for  $f < -f_c$ , then  $b_{\mathcal{F}}(f) = 0$  for  $f < 0$ . Because  $\Re\{b(t)\} = \frac{1}{2}(a(t)e^{j2\pi f_c t} + a^*(t)e^{-j2\pi f_c t})$ , taking the real part has a scaling effect and adds a negative-frequency component. The negative spectrum is canceled by the  $h_>$  filter, and the scaling is compensated by the  $\sqrt{2}$  factors from the up-converter and down-converter. Multiplying by  $e^{-j2\pi f_c t}$  translates the spectrum back to the initial position. In conclusion, we obtain  $a(t)$ .

(c) Take any baseband signal  $u(t)$  with frequency domain support  $[-f_c - \Delta, f_c + \Delta]$ ,  $\Delta > 0$ . The signal can be real-valued or complex-valued (for example  $u_{\mathcal{F}}(f) = \mathbb{1}_{[-f_c - \Delta, f_c + \Delta]}(f)$ , which is a sinc in time domain). After we up-convert, the support of  $u_{\mathcal{F}}(f)$  will not extend beyond  $2f_c + \Delta$ . When we chop the negative frequencies we obtain a support contained in  $[0, 2f_c + \Delta]$  and when we shift back to the left the support will be contained in  $[-f_c, f_c + \Delta]$ , which is too small to be the support of  $u_{\mathcal{F}}(f)$ .

(d) In time domain:

$$\begin{aligned} w(t) &= \sqrt{2}\Re\{a(t)e^{j2\pi f_c t}\} \\ &\stackrel{a \in \mathbb{R}}{\equiv} \sqrt{2}a(t)\cos(2\pi f_c t). \end{aligned}$$

Therefore,

$$a(t) = \frac{w(t)}{\sqrt{2}\cos(2\pi f_c t)}.$$

In frequency domain: If  $a_{\mathcal{F}}(f) = 0$  for  $f < -f_c$ , we obtain  $a(t)$  as described in (b). In the following, we consider the case  $a_{\mathcal{F}}(f) \neq 0$  for  $f < -f_c$ .

We have  $w_{\mathcal{F}}(f) = \frac{1}{\sqrt{2}}[a_{\mathcal{F}}(f - f_c) + a_{\mathcal{F}}(f + f_c)] = a_{\mathcal{F}}^+(f) + a_{\mathcal{F}}^-(f)$ , with  $a_{\mathcal{F}}^+(f) = \frac{1}{\sqrt{2}}a_{\mathcal{F}}(f - f_c)$  and  $a_{\mathcal{F}}^-(f) = \frac{1}{\sqrt{2}}a_{\mathcal{F}}(f + f_c)$ , respectively. These two components have overlapping support in some interval centered at 0. However, there is no overlap for sufficiently large frequencies. This means that for sufficiently large frequencies  $f$  we have  $w_{\mathcal{F}}(f) = \frac{1}{\sqrt{2}}a_{\mathcal{F}}^+(f)$ , which implies that from  $w_{\mathcal{F}}(f)$  we can observe the right tail of  $a_{\mathcal{F}}^+(f)$  and use that information to remove the right tail of  $a_{\mathcal{F}}^-(f)$  from  $w_{\mathcal{F}}(f)$  (the right tails of  $a_{\mathcal{F}}^+(f)$  and  $a_{\mathcal{F}}^-(f)$  are the same because  $a(t)$  is real). Hence, from  $w_{\mathcal{F}}(f)$  we can read more of the right tail of  $a_{\mathcal{F}}^+(f)$ . The procedure can be repeated until we get to see  $a_{\mathcal{F}}^+(f)$  for all frequencies above  $f_c$ . At this point, using  $a_{\mathcal{F}}(f) = a_{\mathcal{F}}^+(f + f_c)\sqrt{2}$  and the fact that  $a(t)$  is real-valued, we have  $a_{\mathcal{F}}(f)$  for the positive frequencies, hence for all frequencies.

SOLUTION 4.

$$\begin{aligned}
x(t)\sqrt{2}\cos(2\pi f_c t) &= x(t) \left[ \frac{e^{j2\pi f_c t} + e^{-j2\pi f_c t}}{\sqrt{2}} \right] \\
&= \sqrt{2}\Re\{x_E(t)e^{j2\pi f_c t}\} \left[ \frac{e^{j2\pi f_c t} + e^{-j2\pi f_c t}}{\sqrt{2}} \right] \\
&= \left[ \frac{x_E(t)e^{j2\pi f_c t} + x_E^*(t)e^{-j2\pi f_c t}}{\sqrt{2}} \right] \left[ \frac{e^{j2\pi f_c t} + e^{-j2\pi f_c t}}{\sqrt{2}} \right] \\
&= \frac{x_E(t)e^{j4\pi f_c t} + x_E(t) + x_E^*(t) + x_E^*(t)e^{-j4\pi f_c t}}{2}.
\end{aligned}$$

At the lowpass filter output we have

$$\frac{x_E(t) + x_E^*(t)}{2} = \Re\{x_E(t)\}.$$

The calculation for the other path is similar.

SOLUTION 5.

- (a) Notice that the sinusoids of  $w(t)$  have a period of  $T_c = 4$  ms units of time, which implies that  $f_c = \frac{1}{T_c} = \frac{1}{4 \text{ ms}} = 250$  Hz.
- (b) Notice that the phase of the sinusoidal signal changes every  $T_s = 4$  ms. (Here we have  $T_s = T_c$ , but in general it is not the case. In practice we usually have  $T_s \gg T_c$ . See the note at the end.)

The expression of  $w(t)$  as a function of  $t$  is:

$$\begin{aligned}
w(t) &= \begin{cases} 4\cos(2\pi f_c t - \frac{\pi}{2}) & t \in ]0, T_s[ \\ 4\cos(2\pi f_c t) & t \in ]T_s, 2T_s[ \\ 4\cos(2\pi f_c t + \pi) & t \in ]2T_s, 3T_s[ \\ 4\cos(2\pi f_c t + \frac{\pi}{2}) & t \in ]3T_s, 4T_s[ \end{cases} = \begin{cases} \Re\{4e^{j(2\pi f_c t - \frac{\pi}{2})}\} & t \in ]0, T_s[ \\ \Re\{4e^{j(2\pi f_c t)}\} & t \in ]T_s, 2T_s[ \\ \Re\{4e^{j(2\pi f_c t + \pi)}\} & t \in ]2T_s, 3T_s[ \\ \Re\{4e^{j(2\pi f_c t + \frac{\pi}{2})}\} & t \in ]3T_s, 4T_s[ \end{cases} \\
&= \begin{cases} \Re\{-4je^{j2\pi f_c t}\} & t \in ]0, T_s[ \\ \Re\{4e^{j2\pi f_c t}\} & t \in ]T_s, 2T_s[ \\ \Re\{-4e^{j2\pi f_c t}\} & t \in ]2T_s, 3T_s[ \\ \Re\{4je^{j2\pi f_c t}\} & t \in ]3T_s, 4T_s[ \end{cases} = \sqrt{2}\Re\{w_E(t)e^{j2\pi f_c t}\},
\end{aligned}$$

where

$$\begin{aligned}
w_E(t) &= -\frac{4j}{\sqrt{2}}\mathbb{1}\{t \in ]0, T_s[\} + \frac{4}{\sqrt{2}}\mathbb{1}\{t \in ]T_s, 2T_s[\} \\
&\quad - \frac{4}{\sqrt{2}}\mathbb{1}\{t \in ]2T_s, 3T_s[\} + \frac{4j}{\sqrt{2}}\mathbb{1}\{t \in ]3T_s, 4T_s[\} \\
&= -j\sqrt{8T_s}\frac{1}{\sqrt{T_s}}\mathbb{1}\{t \in ]0, T_s[\} + \sqrt{8T_s}\frac{1}{\sqrt{T_s}}\mathbb{1}\{t \in ]T_s, 2T_s[\} \\
&\quad - \sqrt{8T_s}\frac{1}{\sqrt{T_s}}\mathbb{1}\{t \in ]2T_s, 3T_s[\} + j\sqrt{8T_s}\frac{1}{\sqrt{T_s}}\mathbb{1}\{t \in ]3T_s, 4T_s[\}.
\end{aligned}$$

If we define  $\psi(t) = \frac{1}{\sqrt{T_s}} \mathbb{1}\{t \in ]0, T_s[\}$ ,  $c_0 = -j\sqrt{8T_s}$ ,  $c_1 = \sqrt{8T_s}$ ,  $c_2 = -\sqrt{8T_s}$  and  $c_3 = j\sqrt{8T_s}$ , we get

$$w_E(t) = \sum_{i=0}^3 c_i \psi(t - iT_s). \quad (1)$$

Therefore, the pulse used in the waveform former is  $\psi(t) = \frac{1}{\sqrt{T_s}} \mathbb{1}\{t \in ]0, T_s[\}$ , and the waveform former output signal is given by (1). The orthonormal basis that is used is  $\{\psi(t - iT_s)\}_{i=0}^3$ .

(c) The symbol sequence is  $\{c_0, c_1, c_2, c_3\} = \{-j\sqrt{\mathcal{E}_s}, \sqrt{\mathcal{E}_s}, -\sqrt{\mathcal{E}_s}, j\sqrt{\mathcal{E}_s}\}$ , where  $\mathcal{E}_s = 8T_s$ . We can see that the symbol alphabet is  $\{\sqrt{\mathcal{E}_s}, j\sqrt{\mathcal{E}_s}, -\sqrt{\mathcal{E}_s}, -j\sqrt{\mathcal{E}_s}\}$ .

(d) We have:

- The output sequence of the encoder is the symbol sequence, which is

$$\{c_0, c_1, c_2, c_3\} = \{-j\sqrt{\mathcal{E}_s}, \sqrt{\mathcal{E}_s}, -\sqrt{\mathcal{E}_s}, j\sqrt{\mathcal{E}_s}\}.$$

- The symbol alphabet contains 4 symbols. This means that each symbol represents two bits. Since the symbol rate is  $f_s = \frac{1}{T_s} = 250$  symbols/s, the bit rate is  $2 \times 250 = 500$  bits/s.
- The input/output mapping can be obtained by assigning two bits for each symbol in the symbol alphabet. Keeping in mind that it is better to minimize the number of bit-differences between close symbols, we obtain the following input/output mapping (which is not unique, i.e., we can obtain other mappings that satisfy the mentioned criterion):  $\sqrt{\mathcal{E}_s} \longleftrightarrow 00$ ,  $j\sqrt{\mathcal{E}_s} \longleftrightarrow 01$ ,  $-\sqrt{\mathcal{E}_s} \longleftrightarrow 11$  and  $-j\sqrt{\mathcal{E}_s} \longleftrightarrow 10$ .
- Assuming that the above input/output mapping was used, we can obtain the input sequence of the encoder: 10001101.

Note that in this example, we have  $T_s = T_c$ , so  $f_c = f_s$ . This is very unusual. In practice we almost always have  $f_c \gg f_s$ , especially if we are using electromagnetic waves.