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Problem 1. (12 points)

Consider the following binary hypothesis testing problem. Suppose that under hypothesis
H = i ∈ {0, 1}, we have

(Y1, Y2) = ci + (Z1, Z2),

where c0 = (−1,−1) and c1 = (+1,+1). Define the functions T1, T2, T3 as

T1(Y1, Y2) = Y1 − Y2, T2(Y1, Y2) = Y1 + Y2, T3(Y1, Y2) = sign(T2).

(a) (3 pts) Suppose Z1, Z2 are i.i.d. N (0, 1). Is T1 a sufficient statistic? Repeat for T2
and T3.

Solution: If Z1, Z2 are i.i.d. N (0, 1), then fY1,Y2|H(y1, y2|i) = 1
2π

exp
(
−∥y−ci∥2

2

)
, and

the likelihood ratio is

fY1,Y2|H(y1, y2|1)
fY1,Y2|H(y1, y2|0)

= exp (2(y1 + y2)) .

Hence, only T2 is a sufficient statistic. (It is possible to find values of (y1, y2) that
have the same values of T1 and T3, such as (−5,−10) and (0,−5), as an example, but
different values of the likelihood ratio.)

For the rest of the problem, suppose that Z1, Z2 are i.i.d. but Laplacian (i.e., each has
probability density fZ(z) =

1
2
exp(−|z|)).

(b) (2 pts) What are the log likelihood ratios for the observed values (y1 = 4, y2 = 0) and
(y1 = 2, y2 = 2)?
Hint: Log likelihood ratio, LLR(y1, y2), is ln

fY1,Y2|H(y1,y2|1)
fY1,Y2|H(y1,y2|0) .

Solution: If Z1, Z2 are i.i.d. Laplacian, we have that the log likelihood ratio is

ln
fY1,Y2|H(y1, y2|1)
fY1,Y2|H(y1, y2|0)

= |y1 + 1| − |y1 − 1|+ |y2 + 1| − |y2 − 1|,

which evaluates to 2 and 4 for the values given, respectively.

(c) (2 pts) Is T2 a sufficient statistic? Justify your answer.
Hint: (b) might be useful.

Solution: If T2 had been a sufficient statistic, then LLR(y1, y2) should have been the
same for all (y1, y2) with the same value of T (y1, y2) = y1 + y2. But part (b) gives a
counter-example to this, and hence, T2 is not a sufficient statistic.

(d) (3 pts) Show that when LLR(y1, y2) > 0 we have y1+y2 > 0, and when LLR(y1, y2) <
0 we have y1 + y2 < 0.

Solution: This is identical to problem 2 of problem set 5 (figure with decision regions
shown below for reference). We see that LLR(y1, y2) = 0 corresponds to the decision



region R? (using the same notation as the solutions there), and the set of points
where LLR(y1, y2) > 0, which is R1, lies completely within the set points such that
y1 + y2 > 0. Similarly, we also see that the set of points where LLR(y1, y2) < 0, R0,
lies completely within the set points such that y1 + y2 < 0.
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R?
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R1R1

R1

R0

R0 R0

(e) (2 pts) Suppose the hypotheses are equally likely. One person implements the MAP
decision rule ĤMAP(Y1, Y2). Can someone who only observes T2 implement a decision
rule with the same error probability?

Solution: Yes. The MAP rule here coincides with the ML rule, which is to decide 1
if LLR > 0, 0 if LLR < 0, and to choose arbitrarily if LLR = 0. By (d) this can be
done based on the value of T2.

Remarks: We see how the distribution of the noise can affect whether the same functions
of the observations remain sufficient statistics or not — T2 is sufficient when the noise is
Gaussian, but it is not when the noise is Laplacian. Nonetheless, we can still evaluate an
equivalent decision rule (with the same error probability as the MAP decision rule) using
T2 (even though it is not a sufficient statistic under Laplacian noise).

Problem 2. (16 points)

In a 3-ary hypothesis test with a priori equally likely hypotheses, when the true hypothesis
H = i ∈ {0, 1, 2}, the observation Y ∈ Rn is given by

Y = ci + Z,

with ci = xiv, where x0 = −2, x1 = 0, x2 = 2 are scalars, v = (1, 1/2, 1/3, . . . , 1/n) ∈ Rn,
and Z = (Z1, . . . , Zn) where Z1, . . . , Zn are i.i.d. N (0, 1).

(a) (3 pts) Let Tn = Y1 + · · · + Yn. Consider decision rules based only on the value
of Tn. What is the rule that minimizes the error probability? What is the error
probability of this rule? [Let Hn =

∑n
j=1

1
j
. Write your answer in terms of Hn and

the Q-function.]

Solution: The decision rule is to be based on Tn =
∑n

j=1 Yj = xi
∑n

j=1 vij +
∑n

j=1 Zj,

which is equal toHnxi+Z̃, whereHn =
∑n

j=1 j
−1 and Z̃ is a Gaussian random variable

2



with mean 0 and variance n. Thus, the possible values of Tn under the hypotheses
i = 0, 1, 2 are respectively −2Hn + Z̃, Z̃, and 2Hn + Z̃. Hence, the optimal decision
rule is the minimum distance rule, which gives

Ĥ(Tn) =


0 if Tn < −Hn,

1 if −Hn ≤ Tn < Hn,

2 if Hn ≤ Tn.

Conditioned on i being 0 or 2, the error probability is Pe(0) = Pe(2) = Q
(

Hn√
n

)
, and

conditioned on i = 1, the error probability is Pe(1) = 2Q
(

Hn√
n

)
. Hence, the average

error probability is

Pe =
Pe(0) + Pe(1) + Pe(2)

3
=

4

3
Q

(
Hn√
n

)
.

(b) (2 pts) For which values (if any) of n is Tn a sufficient statistic?

Solution: When n = 1, we have T1 = Y1, and hence, T1 is clearly a sufficient statistic
(it is the entire observation Y ). For general n, we can write the likelihood of Y as

fY1,...,Yn|H(y1, . . . , yn|i) =
1

(2π)
n
2

exp

(
−∥y − ci∥2

2

)
=

1

(2π)
n
2

exp

(
−∥y∥2 + ∥ci∥2 − 2⟨y, ci⟩

2

)
=

1

(2π)
n
2

exp

(
−∥y∥2

2

)
exp

(
2xi⟨y, v⟩ − ∥ci∥2

2

)

= h(y) exp

2xi

(∑n
j=1

yj
j

)
− ∥ci∥2

2

 ,

for some function h of the entire observation y = (y1, . . . , yn). We see that the above
term cannot be written in terms of only y1+ · · ·+ yn, hence Tn cannot be a sufficient
statistic, by the Fisher–Neyman factorization theorem.

(c) (3 pts) As n gets large, what is the error probability of the decision rule using Tn?
Hint: Facts that might be useful: Hn =

∑n
j=1 j

−1 ≈ ln(n) for large n,
∑∞

j=1 j
−2 = π2/6,∑∞

j=1 j
−3 = 1.2020 . . .,

∑∞
j=1 j

−4 = π4/90. Other sums available upon request. . . And limn→∞
ln(n)
na =

0 for any a > 0.

Solution: From the facts given, we have that limn→∞
Hn√
n
= 0, and hence the error

probability above goes to 4
3
Q(0) = 2

3
, as Q is a continuous function.

Consider Un = Y1 +
Y2

2
+ · · ·+ Yn

n
.

(d) (3 pts) Redo (a) with Un replacing Tn.

Solution: The decision rule is to be based on Un =
∑n

j=1
Yj

j
= xi

∑n
j=1

vij
j
+
∑n

j=1
Zj

j
.

This is equal to xi(
∑n

j=1 j
−2) + Z ′, where Z ′ is a Gaussian random variable with

mean 0 and variance
∑n

j=1 j
−2. Thus, the possible values of Un under the hypotheses

3



i = 0, 1, 2 are respectively −2(
∑n

j=1 j
−2) + Z ′, Z ′, and 2(

∑n
j=1 j

−2) + Z ′. Hence, the
optimal decision rule is the minimum distance rule, which gives

Ĥ(Un) =


0 if Un < −

∑n
j=1 j

−2,

1 if −
∑n

j=1 j
−2 ≤ Un <

∑n
j=1 j

−2,

2 if
∑n

j=1 j
−2 ≤ Un.

Conditioned on i being 0 or 2, the error probability is Pe(0) = Pe(2) = Q

( ∑n
j=1 j

−2

√∑n
j=1 j

−2

)
=

Q
(√∑n

j=1 j
−2
)
, and conditioned on i = 1, the error probability is Pe(1) = 2Q

( ∑n
j=1 j

−2

√∑n
j=1 j

−2

)
=

2Q
(√∑n

j=1 j
−2
)
. Hence, the average error probability is

Pe =
Pe(0) + Pe(1) + Pe(2)

3
=

4

3
Q

√√√√ n∑
j=1

j−2

 .

(e) (2 pts) Redo (b) with Un replacing Tn.

Solution: By the same computation as in part (b), we see that Un is indeed a sufficient
statistic, by the Fisher–Neyman factorization theorem.

(f) (3 pts) Redo (c) with Un replacing Tn.

Solution: Using the fact that
∑∞

j=1 j
−2 = π2

6
, we have that the above error probability

from (d) goes to 4
3
Q
(

π√
6

)
.

Remarks: In this problem, Un is a sufficient statistic and Tn is not. We see that the error
probability obtained using Tn is 2/3 ≈ 0.67, which is the same as that of a random guess
between three choices. Hence, as n goes to infinity, Tn has no information about the mes-

sage i. On the other hand, the error probability using Un is 4
3

(
π√
6

)
≈ 0.13 (it is easy to

see that this is certainly smaller than 2/3, as π√
6
> 0 and Q(x) < 1/2 for x > 0).

Problem 3. (18 points)

Suppose w0, w1, w2 and w3 are given in the following waveforms.
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w0(t)

t0
1

−1
2

1

w1(t)

t0

1

−1

1 2

w2(t)

t0

1

−1

2

w3(t)

t0

1

−1
2

These waveforms are used to convey one of four messages over an AWGN channel with
noise intensity σ2. Assume that the four messages are equally likely.

(a) (3 pts) Draw the diagram of an optimal receiver architecture. If your architecture
requires computing inner products, use matched filters to do so.

Solution: A basis for the given set of waveforms is ψ1(t) = 1[0,1)(t) and ψ2(t) =
1[1,2)(t). We can construct the sufficient statistic Y = (Y1, Y2) with Yj = ⟨R,ψj⟩ =
⟨wi, ψj⟩ + ⟨N,ψj⟩. Thus, we have Y = ci + Z, where c0 = (1, 1), c1 = (−1,−1),
c2 = (1,−1), c3 = (−1, 1) and Z = (Z1, Z2) with independent Gaussian components
of mean 0 and variance σ2. We then decide î = argmini ∥Y − ci∥, i.e., î = 0 if
Y1 > 0, Y2 > 0, î = 1 if Y1 < 0, Y2 < 0, î = 2 if Y1 > 0, Y2 < 0, and î = 3 if
Y1 < 0, Y2 > 0.

To compute the inner products with ψ1 and ψ2, we can pick a matched filter of
impulse response h(t) = ψ(1 − t) = 1[0,1)(t). Sampling the output of the matched
filter at times t = 1, 2 gives Y1 and Y2 respectively. This is shown in the figure below.

R(t) h(t)

t = 1

Y1

t = 2

Y2

î = argmini ∥Y − ci∥

Suppose now we are given analog circuits which produce the inner products Uℓ = ⟨R, gℓ⟩,
ℓ = 1, 2, 3, 4 of the received signal R(t) with the waveforms g1, g2, g3, g4 given as follows:
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g1(t)

t0

−1
2

1

g2(t)

t0

1

−1
1

2

g3(t)

t0

1

−1
1 2

g4(t)

t0

1

−1

1

2

Note that the gℓ’s are cyclic shifts of each other in the interval [0, 2].

(b) (3 pts) We are asked to design the best possible receiver with no further analog circuits
(so: no other analog inner product computations, matched filters, etc.). Does this
restriction penalize us (compared to what we are able to do in (a))? If yes, why? If
no, why not?
Hint: First plot 4g1(t) + 3g2(t) + g3(t) + 2g4(t) and 4g3(t) + 3g4(t) + g1(t) + 2g2(t).

Solution: By plotting, we observe that 4g1(t) + 3g2(t) + g3(t) + 2g4(t) is equal to
51[0,1)(t) = 5ψ1(t). Since the g’s are obtained by cyclic right shifts, we also have that
4g3(t) + 3g4(t) + g1(t) + 2g2(t) = 51[1,2)(t) = 5ψ2(t) (this can also seen by plotting it
independently). Hence, we can obtain (Y1, Y2) as in (a), since Y1 =

1
5
(4U1+3U2+U3+

2U4) and Y2 = 1
5
(4U3 + 3U4 + U1 + 2U2)). Thus there is no penalty when restricted

to use only these analog circuits.

Suppose we replace the four waveforms g1, . . . , g4 above with only two waveforms g̃1(t) =
1[−1,1)(t) and g̃2(t) = 1[1,3)(t), with the corresponding inner products with R(t) denoted by

Ũ1 and Ũ2. Our receiver is now supposed to base its decision only on (Ũ1, Ũ2).

(c) (3 pts) Draw the MAP decision regions for the transmitted message in the (ũ1, ũ2)
plane. Let p̃e(σ) denote the error probability of this receiver as a function of σ.
Similarly, let pe(σ) denote the error probability of the receiver in (a). Find the ratio
of p̃e(σ/

√
2) and pe(σ).

Solution: We have Ũ1 = ⟨R, g̃1⟩ = ⟨wi, g̃1⟩+⟨N, g̃1⟩ and Ũ2 = ⟨wi, g̃2⟩+⟨N, g̃2⟩. Thus,
we have that (Ũ1, Ũ2) = c̃i + (Z̃1, Z̃2), where c̃0 = (1, 1), c̃1 = (−1,−1), c̃2 = (1,−1),
c̃3 = (−1, 1), and Z̃1, Z̃2 are independent Gaussian random variables with mean zero
and variance 2σ2. (The variance is twice because ∥g̃i∥2 = 2.) The constellation and
the decision regions are marked below.
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ũ1

ũ2

c̃0

c̃1 c̃2

c̃3
1

−1

1−1

R0R3

R1 R2

This is identical to the scenario in (a), as c̃i = ci, except that the variance is now
twice. Hence, the error probabilities satisfy p̃e(σ/

√
2) = pe(σ), and the desired ratio

is 1.

For the rest of the problem we continue with the optimal receiver found in (a).

(d) (3 pts) Conditioned on i = 0 being the sent message, find the probability that the
receiver in (a) decides î = 1; repeat for î = 2, and î = 3.

Solution: When i = 0, we decide î = 1 if we have Z1 < −1 and Z2 < −1 (using
the same notation as in (a)). Hence, the probability of deciding î = 1 when i = 0 is

equal to Pr(Z1 < −1, Z2 < −1) = Q
(
1
σ

)2
. Similarly, we decide î = 2 if Z1 > −1 and

Z2 < −1, which has probability Q
(
1
σ

)
− Q

(
1
σ

)2
. We decide î = 3 if Z1 < −1 and

Z2 > −1, which also has probability Q
(
1
σ

)
−Q

(
1
σ

)2
.

Suppose that the data to be sent is composed of two bits b1 and b2, with (b1, b2) taking the
values 00, 01, 10 and 11 with equal probability. We will assign these four possible data
values to the messages 0, 1, 2, 3. To transmit a particular bit pair, we send the waveform
corresponding to the respective message. This is summarized as follows:

(b1, b2) −→ i −→ wi(t) −→ R(t) −→ î −→ (b̂1, b̂2)

(e) (3 pts) Consider assigning the data bit values 00, 01, 10 and 11 to messages 0, 1, 2,
3 as 00 → 0, 01 → 1, 10 → 2, 11 → 3. Conditioned on (b1, b2) = 00, what is the
expected number of incorrectly received bits (b̂1, b̂2)? Repeat the question for “01 is
sent”, “10 is sent” and “11 is sent”.
Hint: For the “repeat”s: you don’t have to do any calculations.

Solution: The mapping from bit pairs to messages is 00 → 0, 01 → 1, 10 → 2, 11 →
3. When 00 (message 0) is sent, we make 1 bit error if we receive either message 1
or 2, and two bit errors if we receive message 3. Hence, the expected number of bits
that are incorrectly received is

1 · Pr{̂i = 1 | i = 0}+ 1 · Pr{̂i = 2 | i = 0}+ 2 · Pr{̂i = 3 | i = 0}

= 3Q

(
1

σ

)
− 2Q

(
1

σ

)2

.

Since the figure is entirely symmetric — we make two bit errors if we end up in a
neighbouring region and one error each if we end up in the other neighbouring region
or the diametrically opposite region — we get the same error probability even when
“01 is sent”, “10 is sent” and “11 is sent”.
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(f) (3 pts) Consider assigning the two-bit values to messages as 00 → 0, 01 → 3, 10 →
2, 11 → 1. Redo (e).

Solution: With this mapping, we make two bit errors on sending 00 if we receive
message 1, and one bit error if we receive either message 2 or 3. Hence, the expected
number of incorrectly received bits is

1 · Pr{̂i = 2 | i = 0}+ 1 · Pr{̂i = 3 | i = 0}+ 2 · Pr{̂i = 2 | i = 0}

= 2Q

(
1

σ

)
.

Similarly as in (e), we get the same error probability even when “01 is sent”, “10 is
sent” and “11 is sent” — we make two bit errors when we end up in the diametrically
opposite decision region, and one bit error otherwise.

Remarks: In part (b), we see that even though we are restricted to use a specific set of
signals to compute inner products, we are still able to implement the optimal decision rule
— this is because the signals that we are allowed to use (i.e., {gi}) span the orthonormal
basis of our waveforms {wi}. In part (c), however, the signals that we are allowed to
use (i.e., {g̃i}) do not span the orthonormal basis of our waveforms, they instead pick up
additional noise, and hence, results in a worse error performance.
In part (d), we see that different incorrect decisions occur with different probabilities, and
we can exploit this when assigning bit pairs to messages — the choice of assignment in (e)
is worse than that in (f) and has a higher error probability (3Q−Q2 > 2Q, as Q < 1), as
it places 00 and 11 close to each other, which causes twice as many bit errors as message
errors. The assignment in (f) ensures that this does not happen, as messages that are close
to each other are assigned bit pairs that differ in only position. This assignment is called
a Gray code.
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