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PROBLEM 1. (12 points)

Consider the following binary hypothesis testing problem. Suppose that under hypothesis
H =1i¢e{0,1}, we have

(3/17}/2> =¢ + (Zla Z2)7

where ¢y = (—1,—1) and ¢; = (+1,+1). Define the functions 74,75, T3 as

(a)

T1(Y1,Y2) =Y1 = Ys, Tr(Y1,Y2) =Y1+Ys, T3(Y1,Ys) = sign(Ts).
(3 pts) Suppose Zy, Zy are i.i.d. N(0,1). Is T} a sufficient statistic? Repeat for T
and Tg.

Solution: If Zy, Z, are i.i.d. N(0,1), then fy, vy m(y1,y2i) = %exp (—M), and
the likelihood ratio is

le,YQ‘H<y17 y2|1)
fviva1m (Y1, 4210)

= exp (2(y1 +¥2)) -

Hence, only T is a sufficient statistic. (It is possible to find values of (y;,y2) that
have the same values of T} and T3, such as (=5, —10) and (0, —5), as an example, but
different values of the likelihood ratio.)

For the rest of the problem, suppose that Z;, Z, are i.i.d. but Laplacian (i.e., each has
probability density fz(z) = 3 exp(—|z])).

(b)

(2 pts) What are the log likelihood ratios for the observed values (y; = 4, y, = 0) and

(y1 =2,y =2)7
Hint: Log likelihood ratio, LLR(y1, y2), is In I vpu W all)

Iy, vo m (Y1,92[0)

Solution: If Zy, Zy are i.i.d. Laplacian, we have that the log likelihood ratio is

fY1,Y2\H(y1; y2’1>
le,YQ\H(y17y2|O)

In =y +1 |y =1+ |y + 1| = |y — 1],

which evaluates to 2 and 4 for the values given, respectively.

(2 pts) Is T a sufficient statistic? Justify your answer.
Hint: (b) might be useful.

Solution: If Ty had been a sufficient statistic, then LLR(y;, y2) should have been the
same for all (yi,y2) with the same value of T'(y1,y2) = y1 + y2. But part (b) gives a
counter-example to this, and hence, T5 is not a sufficient statistic.

(3 pts) Show that when LLR(y1, y2) > 0 we have y; +y2 > 0, and when LLR(y1, y2) <
0 we have y; +y2 < 0.

Solution: This is identical to problem 2 of problem set 5 (figure with decision regions
shown below for reference). We see that LLR(y;,y2) = 0 corresponds to the decision



region R, (using the same notation as the solutions there), and the set of points
where LLR(y1,y2) > 0, which is Ry, lies completely within the set points such that
y1 +y2 > 0. Similarly, we also see that the set of points where LLR(y1,32) < 0, Ry,
lies completely within the set points such that y; + yo < 0.
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(e) (2 pts) Suppose the hypotheses are equally likely. One person implements the MAP
decision rule Hyap(Y7, Y2). Can someone who only observes T, implement a decision
rule with the same error probability?

Solution: Yes. The MAP rule here coincides with the ML rule, which is to decide 1
if LLR > 0, 0 if LLR < 0, and to choose arbitrarily if LLR = 0. By (d) this can be
done based on the value of T5.

Remarks: We see how the distribution of the noise can affect whether the same functions
of the observations remain sufficient statistics or not — 75 is sufficient when the noise is
Gaussian, but it is not when the noise is Laplacian. Nonetheless, we can still evaluate an
equivalent decision rule (with the same error probability as the MAP decision rule) using
T, (even though it is not a sufficient statistic under Laplacian noise).

PROBLEM 2. (16 points)

In a 3-ary hypothesis test with a priori equally likely hypotheses, when the true hypothesis
H =1i€{0,1,2}, the observation Y € R" is given by

Y:Ci—i—Z,

with ¢; = z;v, where xg = —2, ;7 = 0, x5 = 2 are scalars, v = (1,1/2,1/3,...,1/n) € R",
and Z = (Z1,...,Z,) where Zy,...,Z, are i.i.d. N(0,1).

(a) (3 pts) Let T, = Y1 + --- +Y,. Consider decision rules based only on the value
of T,,. What is the rule that minimizes the error probability? What is the error
probability of this rule? [Let H, = 37, % Write your answer in terms of H, and
the @-function.|
Solution: The decision rule is to be based on T,, = 37 | Y = x; 30 vy + >0, Zj,
which is equal to H,x;,+Z, where H, = Z;‘:l 771 and Z is a Gaussian random variable
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with mean 0 and variance n. Thus, the possible values of T}, under the hypotheses
1 = 0,1, 2 are respectively —2H,, + Z, Z, and 2H, + Z. Hence, the optimal decision
rule is the minimum distance rule, which gives

0 ifT, <—-H,,
H(T,)={1 if —H,<T, < H,,
2 if H, <T,.

Conditioned on i being 0 or 2, the error probability is P.(0) = P.(2) = @ (fj’i) and

conditioned on i = 1, the error probability is P.(1) = 2Q < > Hence, the average
error probability is

PO+ PQ)+P(2) 4 (Hn
- 3 -32(32).

(b) (2 pts) For which values (if any) of n is T,, a sufficient statistic?

Solution: When n = 1, we have T} = Y], and hence, T} is clearly a sufficient statistic
(it is the entire observation Y'). For general n, we can write the likelihood of Y as

: 1 —lly —cill?
gy Yn 1) = ——x € —_—
le,...,Yn|H(y1 y | ) (27_‘_)5 Xp ( 2

o (sl el 20,0
(2%)% 2

L (Y o (25t Dl
(2#)% 2 2

20; (X1 %) = leill

2 Y

= h(y) exp

for some function h of the entire observation y = (y1,...,¥y,). We see that the above
term cannot be written in terms of only y; + - - - + y,,, hence T}, cannot be a sufficient
statistic, by the Fisher-Neyman factorization theorem.

(c) (3 pts) As n gets large, what is the error probability of the decision rule using 7,7
Hint: Facts that might be useful: H, = Y7, j~" = In(n) for large n, 3372, 5% = 7°/6,
Py j73 =1.2020..., Py j~4 = 74/90. Other sums available upon request. .. And lim,_,o, 22 =

na

0 for any a > 0.

Solution: From the facts given, we have that lim,,_,., 22 = = 0, and hence the error

probability above goes to 4@( ) = % as () is a continuous function.

ConsiderUnzYle%—i—---jLﬁ.

(d) (3 pts) Redo (a) with U, replacing T,,.
Y,

Solution: The decision rule is to be based on U, = 377, = ;30 = + 370 Z =
This is equal to x;(3°7_,j ) 4+ Z', where Z' is a Gaussian random variable with
mean 0 and variance Z;L=1 572, Thus, the possible values of U,, under the hypotheses



i =0, 1,2 are respectively —2(2?:1]'_2) + 7', 7', and 2(3 75, 77%) + Z'. Hence, the
optimal decision rule is the minimum distance rule, which gives
) 0 ifU, <—=377 772
HU,) =<1 if — Z?le‘2 <U,< Z?le‘2,
2 if ijlj—Q < U,.

n -2
Conditioned on i being 0 or 2, the error probability is P.(0) = P.(2) = @ (%) =
j=1

rR— " o - B S\
Q (, /Zj:1 J ), and conditioned on i = 1, the error probability is P.(1) = 2¢Q) (—\/W =

20 <, / Z;’L:1 j *2). Hence, the average error probability is

(e) (2 pts) Redo (b) with U, replacing T,,.

Solution: By the same computation as in part (b), we see that U, is indeed a sufficient
statistic, by the Fisher-Neyman factorization theorem.

(f) (3 pts) Redo (c) with U, replacing T,,.
Solution: Using the fact that Zj; j72 = %2, we have that the above error probability
4 T
from (d) goes to 3Q (76)

Remarks: In this problem, U, is a sufficient statistic and 7,, is not. We see that the error
probability obtained using 7;, is 2/3 ~ 0.67, which is the same as that of a random guess

between three choices. Hence, as n goes to infinity, 7,, has no information about the mes-

sage 7. On the other hand, the error probability using U, is % (\%) ~ 0.13 (it is easy to

see that this is certainly smaller than 2/3, as 7 > 0 and Q(z) < 1/2 for = > 0).

PROBLEM 3. (18 points)

Suppose wy, wi, we and ws are given in the following waveforms.



1 1
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These waveforms are used to convey one of four messages over an AWGN channel with
noise intensity o?. Assume that the four messages are equally likely.

(a) (3 pts) Draw the diagram of an optimal receiver architecture. If your architecture
requires computing inner products, use matched filters to do so.

Solution: A basis for the given set of waveforms is ¢1(t) = Lp)(t) and y(t) =
Lj1,9)(t). We can construct the sufficient statistic Y = (Y3,Y2) with Y; = (R, ¢;) =
(wi, ¥;) + (N,v¢;). Thus, we have Y = ¢; + Z, where ¢ = (1,1), ¢ = (—1,—-1),
o =(1,-1), ¢ = (—1,1) and Z = (Z;, Z) with independent Gaussian components
of mean 0 and variance o2. We then decide i = argmin; [|[Y — ¢|, i.e., 7 = 0 if
Vi >0, >0 1=1ifY,<0,Y,<0,:=2ifYV; >0Y <0, and 72 = 3 if
Y1 <0,Y; > 0.

To compute the inner products with v¢; and v, we can pick a matched filter of
impulse response h(t) = ¥(1 —t) = Ljo1)(t). Sampling the output of the matched
filter at times t = 1,2 gives Y7 and Y5 respectively. This is shown in the figure below.

Y;
R(t) —— h(t) t=2 i = argmin, ||Y — ¢|

Suppose now we are given analog circuits which produce the inner products U, = (R, g),
¢ =1,2,3,4 of the received signal R(t) with the waveforms gi, g2, g3, g4 given as follows:



1 1

0 ¢ 0 i
—1 1
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1 1
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Note that the g,’s are cyclic shifts of each other in the interval [0, 2].

(b) (3 pts) We are asked to design the best possible receiver with no further analog circuits
(so: no other analog inner product computations, matched filters, etc.). Does this
restriction penalize us (compared to what we are able to do in (a))? If yes, why? If
no, why not?

Hint: First plot 4¢1(¢) + 3g2(t) + g3(t) + 2g4(t) and 4gs(t) + 3g4(t) + g1 () + 2g2(2).

Solution: By plotting, we observe that 4g;(t) + 3¢2(t) + g5(t) + 2¢4(t) is equal to
51j0,1)(t) = 541 (t). Since the g’s are obtained by cyclic right shifts, we also have that
4g3(t) + 3ga(t) + g1(t) + 2g2(t) = 51p1,9)(t) = 51bo(t) (this can also seen by plotting it
independently). Hence, we can obtain (Y}, Y2) as in (a), since Y] = %(4U1 +3Uy,+Us+
2U,) and Y; = %(4U3 + 3Uy + Uy + 2U3)). Thus there is no penalty when restricted
to use only these analog circuits.

Suppose we replace the four waveforms gy, ..., g4 above with only two waveforms g;(t) =
L;—1,1)(¢) and go(t) = Lp 3)(t), with the corresponding inner products with R(¢) denoted by
U; and U,. Our receiver is now supposed to base its decision only on (Uy, Us).

(c) (3 pts) Draw the MAP decision regions for the transmitted message in the (u;, Us)

plane. Let p.(o) denote the error probability of this receiver as a function of o.
Similarly, let p.(o) denote the error probability of the receiver in (a). Find the ratio
of 7.(5/v/3) and pe(0).
Solution: We have Uy = (R, §1) = (w;, §1)+ (N, 1) and Uy = (w;, §a) + (N, §2). Thus,
we have that (U1, Us) = & + (Z1, Zs), where ¢ = (1,1), & = (=1, —1), & = (1, —1),
&3 = (—1,1), and Zy, Z, are independent Gaussian random variables with mean zero
and variance 202. (The variance is twice because ||g;]|> = 2.) The constellation and
the decision regions are marked below.
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This is identical to the scenario in (a), as ¢ = ¢;, except that the variance is now
twice. Hence, the error probabilities satisfy p.(0/v/2) = p.(c), and the desired ratio
is 1.

For the rest of the problem we continue with the optimal receiver found in (a).

(d) (3 pts) Conditioned on ¢ = ( being the sent message, find the probability that the
receiver in (a) decides ¢« = 1; repeat for i = 2, and 7 = 3.
Solution: When i = 0, we decide ¢ = 1 if we have Z; < —1 ar}d Zy < —1 (using
the same notation as in (a)). Hence, the probability of deciding ¢ = 1 when i = 0 is
equal to Pr(Z; < =1,Z, < —1) =Q (%)2 Similarly, we decide ¢ = 2 if Z; > —1 and
Zy < —1, which has probability Q () — Q (2)*. We decide i = 3 if Z; < —1 and
Zy > —1, which also has probability @) (%) - Q (1)2.

o

Suppose that the data to be sent is composed of two bits b; and by, with (b1, bo) taking the
values 00, 01, 10 and 11 with equal probability. We will assign these four possible data
values to the messages 0, 1, 2, 3. To transmit a particular bit pair, we send the waveform
corresponding to the respective message. This is summarized as follows:

(b1, by) — @ — w;(t) — R(t) — i —> (by, bs)

(e) (3 pts) Consider assigning the data bit values 00, 01, 10 and 11 to messages 0, 1, 2,
3as 00 — 0,01 — 1, 10 — 2, 11 — 3. Conditioned on (by,by) = 00, what is the
expected number of incorrectly received bits (131, 132)? Repeat the question for “01 is
sent”, “10 is sent” and “11 is sent”.

Hint: For the “repeat”s: you don’t have to do any calculations.

Solution: The mapping from bit pairs to messages is 00 — 0, 01 — 1, 10 — 2, 11 —
3. When 00 (message 0) is sent, we make 1 bit error if we receive either message 1
or 2, and two bit errors if we receive message 3. Hence, the expected number of bits
that are incorrectly received is

1-Pr{i=1|i=0}+1-Pr{i=2]i=0}+2-Pr{i=3]i=0}

o) ()’

Since the figure is entirely symmetric — we make two bit errors if we end up in a
neighbouring region and one error each if we end up in the other neighbouring region
or the diametrically opposite region — we get the same error probability even when
“01 is sent”, “10 is sent” and “11 is sent”.
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(f) (3 pts) Consider assigning the two-bit values to messages as 00 — 0, 01 — 3, 10 —
2,11 — 1. Redo (e).

Solution: With this mapping, we make two bit errors on sending 00 if we receive
message 1, and one bit error if we receive either message 2 or 3. Hence, the expected
number of incorrectly received bits is

1-Pr{i=2]i=0}+1-Pr{t=3]i=0}+2-Pr{i=2]i=0}

(l)

Similarly as in (e), we get the same error probability even when “01 is sent”, “10 is
sent” and “11 is sent” — we make two bit errors when we end up in the diametrically
opposite decision region, and one bit error otherwise.

Remarks: In part (b), we see that even though we are restricted to use a specific set of
signals to compute inner products, we are still able to implement the optimal decision rule
— this is because the signals that we are allowed to use (i.e., {g;}) span the orthonormal
basis of our waveforms {w;}. In part (c), however, the signals that we are allowed to
use (i.e., {g;}) do not span the orthonormal basis of our waveforms, they instead pick up
additional noise, and hence, results in a worse error performance.

In part (d), we see that different incorrect decisions occur with different probabilities, and
we can exploit this when assigning bit pairs to messages — the choice of assignment in (e)
is worse than that in (f) and has a higher error probability (3Q — Q? > 2Q, as Q < 1), as
it places 00 and 11 close to each other, which causes twice as many bit errors as message
errors. The assignment in (f) ensures that this does not happen, as messages that are close
to each other are assigned bit pairs that differ in only position. This assignment is called
a Gray code.



