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Problem 1. (8 points)
Answer the following questions with proper justification.

(a) (2 pts) Assuming equally likely messages, is it true that the energy of the constellation
{c1, c2, c3, c4} given in the figure below cannot be reduced by isometric transforma-
tions? If not, give a minimum energy version.
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Solution: It is true. The given configuration already has mean 0.

(b) (2 pts) Re-do part (a) with PH(1) = 1/2, PH(2) = PH(3) = PH(4) = 1/6 instead.

Solution: Still true, as the mean is still zero.

(c) (2 pts) In a binary hypothesis problem with observation Y , suppose fY |H(y|0) =
exp(−y)1{y > 0}, and fY |H(y|1) = (1/α) exp(−y/α)1{y > 0}, with α > 1. Is it true
that if T is a sufficient statistic, then T determines Y ?

Solution: True. We know that in a binary hypothesis test any sufficient statistic

determines the log-likelihood ratio log
fY |H(y|1)
fY |H(y|0) . In this case the LLR is equal to

y
(
1− 1

α

)
− logα, which is a one-to-one function of y.

(d) (2 pts) Continuing with (c), is it true that no matter what the a priori probabilities
of the two hypotheses are, the error probability of the MAP decision rule is upper
bounded by 2

√
α/(1 + α)?

Hint: Bhattacharyya bound.

Solution: True. The Bhattacharyya bound tells us that

Pe(0) ≤

√
PH(1)

PH(0)

∫
R

√
fY |H(y|1)fY |H(y|0) dy

Pe(1) ≤

√
PH(0)

PH(1)

∫
R

√
fY |H(y|1)fY |H(y|0) dy.



Hence, the average probability of error is upper bounded by

2
√

PH(0)PH(1)

∫
R

√
fY |H(y|1)fY |H(y|0) dy.

For any value of PH(0) and PH(1),
√

PH(0)PH(1) is at most 1/2 (A.M. ≥ G.M.), and
the integral evaluates to exactly 2

√
α/(1 + α).

Remarks: Parts (a) and (b) look at “minimum energy constellation has zero mean” — this
is true even if the hypotheses are not equally likely, the mean should be weighted according
to the prior probabilities. Part (c) is a direct application of the principle “sufficient statis-
tic determines LLR” — in this case the LLR also happens to determine the observation
itself, i.e., the LLR is a one-to-one function of the observation, so the sufficient statistic
also detrmines the observation. In part (d), using the tighter version of the Bhattacharyya
bound as described in the book gives an improvement by a factor of 1/2, i.e., the statement
would be true even if the bound was given to be

√
α/(1 + α).

Problem 2. (9 points)

(a) (2 pts) Suppose ϕ0(t) is a waveform with Fourier transform ϕ0,F(f) satisfying

|ϕ0,F(f)|2 = A0 1{|f | < 1} ≡

f

|ϕ0,F(f)|2

A0

1−1

What is A0 if ϕ0 is a unit energy waveform (i.e.,
∫∞
−∞ |ϕ0(t)|2 dt = 1)? Find the

smallest T such that {ϕ0(t− jT ) : j ∈ Z} is an orthogonal set of waveforms, and call
it T0.

Solution: A0 = 1
2
via Parseval’s relation, i.e.,

∫∞
−∞ |ϕ0(t)|2dt =

∫∞
−∞ |ϕ0,F(f)|2 df .

The smallest T that satisfies Nyquist criterion is T0 = 1/2, as the sum of shifts by
multiples of 1/T0 = 2 is the constant 1/2 = T0.

(b) (2 pts) Repeat (a) for ϕ1(t) whose Fourier transform’s square magnitude is given by

|ϕ1,F(f)|2 = A1(1− |f |)1{|f | < 1} ≡

f

|ϕ1,F(f)|2

A1

1−1

That is, find A1 such that ϕ1 has unit energy and T1 such that it is the smallest T
that makes {ϕ1(t− jT ) : j ∈ Z} an orthogonal set.

Solution: A1 = 1 via Parseval’s relation. The smallest T that satisfies Nyquist
criterion is T1 = 1, as the sum of shifts by multiples of 1/T0 = 1 is the constant
1 = T0.
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(c) (3 pts) Suppose we have two systems using the same codebook set C = {c1, . . . , cm}.
One system uses as orthonormal basis the shifts of ϕ0 by T0 obtained in (a), and
the other uses the shifts of ϕ1 by T1 obtained in (b), to generate the waveforms
w1, . . . , wm, which are then transmitted over an AWGN channel with noise intensity
N0

2
. Compare the two systems in terms of their

(i) energy per bit.

(ii) error probability.

(iii) bandwidth occupied (i.e., the smallest B such that all the wi’s have Fourier
transform zero outside of [−B,B]).

(iv) rate (i.e., number of bits transmitted per second).

Solution: Since the codebooks are the same, the energy per bit and error probability
are the same. The bandwidth is also the same, as ϕ0 and ϕ1 both have bandwidth
1 (and hence, so does wi =

∑
j cijϕk(t− jTk) for both k = 0, 1). Since both systems

send log2m bits, the system using ϕ0 transmits twice as many bits per second as the
one using ϕ1, as T0 = T1/2.

(d) (2 pts) Repeat (a) for ϕ2(t) whose Fourier transform’s square magnitude is given by

|ϕ2,F(f)|2 = A2(1− |f |)2 1{|f | < 1} ≡

f

|ϕ2,F(f)|2

A2

1−1

That is, find A2 such that ϕ2 has unit energy and T2 such that it is the smallest T
that makes {ϕ2(t− jT ) : j ∈ Z} an orthogonal set (if it exists).
Hint: Look for band-edge symmetry in |ϕ2,F (f)|2 or argue in time-domain.

Solution: A2 =
3
2
, via Parseval’s relation again. There is no T that makes {ϕ2(t−jT ) :

j ∈ Z} an orthogonal set. From the frequency domain, this can be seen as there is
no point with band-edge symmetry and Nyquist’s criterion cannot be satisfied. From
the time domain, observe that |ϕ2,F(f)| =

√
A2(1 − |f |)1{|f | < 1}, which is the

convolution of A
1
4
2 1{|f | < 1

2
} with itself. Hence, the time domain signal is the square

of a sinc function, which is always non-negative, and hence, the inner product with
any shift of itself can never be zero.

Remarks: The waveforms ϕ0 and ϕ1 have the same bandwidth, but we need to shift ϕ1

by twice as much as ϕ0 to get an orthonormal waveform. Hence, though they occupy the
same bandwidth, the data rate of the system using ϕ0 is twice as much (meaning that we
can send twice as much information in the same time). In previous exercises (and previous
exams) we have seen that among all waveforms that give the same data rate (i.e., same shift
to obtain an orthonormal waveform), the one occupying the minimum bandwidth is the
rect (in frequency domain). Here, we conversely see that among all waveforms occupying
the same bandwidth, the rect has the highest data rate. Part (d) shows an example where
it is NOT possible to obtain an orthonormal basis by shifts (unlike usual examples you
have seen earlier) — the time domain argument is elegant and makes it intuitively clear
why it is impossible to get its inner product with a shift to be zero — the function is simply
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non-negative everywhere.

Problem 3. (11 points)
Consider the following 3-state machine that transforms a binary data sequence b1, b2, . . .
(with bi ∈ {+,−}) to a coded sequence x1, x2, x3, x4, x5, x6, . . . as follows, starting from
state a.

current state data bit next state output

a + a +++
a − b −−−
b + c −+−
b − b +−+
c + a −−+
c − b ++− a

b

c

+/+++

−/
−
−
−

−/+−+

+
/−

+
−−
/+

+
−

+/−−+

(a) (2 pts) Show that there is a “sentinel sequence of bits” t1, t2, . . . , tL such that no
matter the current state of the machine, after the input t1, . . . , tL the machine will
be found in state a. Among all such sequences, find the shortest one.

Solution: t1, t2 = ++ is clearly such a sequence. Further, no length one sequence
works, as from b one cannot reach a in a single step, so ++ is the shortest such
sequence.

From now on, assume that the shortest such t1, . . . , tL (as found in (a)) will be appended to
the data sequence before transmission, i.e., to send b1, . . . , bk, we encode b1, . . . , bk, t1, . . . , tL.

(b) (2 pts) Complete the following trellis diagram by filling in the ?’s:

a

b

c
STATE

+++ +++ +++

? ? ?

? ?

? ??

?

textitSolution: The completed figure is:

a

b

c
STATE

+++ +++ +++

−−−
−−−

−−−

+−+

+−+

−+
−

−+
−

+
+−−

−
+
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(c) (2 pts) Fill the ?’s in the following detour flow graph formed by splitting state a:

s b c e
ID3

?

?

?

D2

Solution: The completed figure is:

s b c e
ID3

ID

D2

ID

D2

(d) (3 pts) Find the transfer function T (I,D) from s to e.

Solution: The equations are:

Te(I,D) = D2Tc(I,D)

Tc(I,D) = D2Tb(I,D)

Tb(I,D) = IDTb(I,D) + IDTc(I,D) + ID3Ts(I,D).

Substituting the first and second into the third, we get Tb = (ID+ ID3)Tb + ID3Ts,
hence Tb =

ID3

1−ID−ID3Ts, and Te = D4Tb, so we have the transfer function from s to e
is

T (I,D) =
ID7

1− ID − ID3
.

(e) (2 pts) Consider the communication system described as follows: the bit sequence
b1, . . . , together with the sentinel bits from (a), are encoded using this 3-state machine
to obtain x1, x2, x3, . . . . The receiver observes Y1, Y2, Y3, . . . where Yi =

√
Esxi + Zi,

with Zi ∼ N (0, σ2) i.i.d. A MAP decoder converts the received sequence to decoded
bits b̂1, . . . .

Find an upper bound to the bit error probability of this communication system, when
the “all +” data sequence is transmitted.

Solution: The bit error probability is upper bounded by

∂

∂I
T (I,D)

∣∣∣
I=1,D=z

=
z7

(1− z − z3)2
,

where z = exp(− Es
2σ2 ).

Remarks: As seen in the lectures, the encoding from bits to codewords is done using a
finite-state machine. This is not a “convolutional” code as the output bits cannot be
written as the convolution of the input bits with some filter. In fact, the transformation
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from the input to the output is not linear. Nonetheless, the same principles apply — we
can upper bound the bit error probability by counting detours using the transfer function.
The upper bound that we obtain is nearly 1

3
z7 if z is small, which means that the error

probability decays approximately as exp(− 7Es
2σ2 ).

Problem 4. (16 points)

Hint: For this problem, you may find the following background on Fourier transforms useful:

(i) By Parseval’s relation, ⟨a, b⟩ = ⟨AF , BF ⟩, where AF (f) and BF (f) are the Fourier transforms of
a(t) and b(t).

(ii) a(t) exp(j2π∆t) has Fourier transform AF (f −∆).

(iii) ϕ(t) = sinc(t) has Fourier transform rect(f) := 1{|f | < 1/2}.

Consider a transmitter that operates with f0 > 0 and ϕ(t) = sinc(t) as follows:[
i
]
→

[
ci ∈ C

]
→

[
wi,E(t) = ciϕ(t)

]
→

[
wi(t) =

√
2ℜ{wi,E(t) exp(j2πf0t)}

]
.

The waveform wi(t) is then input to an AWGN channel with noise intensity N0/2; the
channel’s output is R(t).

(a) (3 pts) Consider the following receiver:[
R(t)

]
→

[
RE(t) = R(t)

√
2 exp(−j2πf0t)

]
→

[
Y = ⟨RE, ϕ⟩

]
→

[
ı̂ = argmin

i
|Y−ci|

]
.

What are the conditions on f0 and the probability distribution of the message i so
that this receiver is optimal?

Solution: We need that the inner product of RE with ϕ also removes the high fre-
quency terms in RE(t) that occupy frequencies in [−2f0 − 1/2,−2f0 + 1/2], i.e., we
require −2f0+1/2 ≤ −1/2. Hence, we need f0 ≥ 1/2. (This also ensures that there is
no interference between the positive and negative frequencies in the passband signal.)
The given receiver based on Y is the ML receiver, which is optimal (equal to MAP) if
the message i is uniformly distributed (i.e., the hypothesis is a priori equlaly likely).

For the rest of the problem suppose that there is an error made in the receiver design:
while forming RE(t), an oscillator frequency f1 > 0 instead of f0 is used, i.e., RE(t) =
R(t)

√
2 exp(−j2πf1t). The rest of the receiver is identical to the design in (a).

(b) (2 pts) Noting that for any complex number z, 2ℜ{z} = z + z∗, find f2 and f3 such
that

RE(t) = ciϕ(t) exp(j2πf2t) + c∗iϕ(t) exp(j2πf3t) +N(t)
√
2 exp(−j2πf1t).

Solution: By direct computation, we get f2 = f0 − f1, f3 = −(f0 + f1).

Suppose we write Y = di+Z, where di ∈ C represents the part of Y which depends on the
message and Z represents noise.

(c) (3 pts) Find α and β so that
di = αci + βc∗i .

Solution: We have α = ⟨ϕ(t) exp(j2πf2t), ϕ(t)⟩ = ⟨rect(f − f2), rect(f)⟩ = (1 −
|f2|)1{|f2| < 1}. Similarly, β = ⟨ϕ(t) exp(j2πf3t), ϕ(t)⟩ = ⟨rect(f − f3), rect(f)⟩ =
(1− |f3|)1{|f3| < 1}.
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(d) (2 pts) Find necessary and sufficient conditions on f0 and f1 so that β = 0. Find
necessary and sufficient conditions on f0 and f1 so that α ̸= 0.

Solution: From the expressions in (d), we see that β = 0 if and only if f2 = f0+f1 ≥ 1.
Similarly α ̸= 0 if and only if |f3| = |f0 − f1| < 1.

(e) (2 pts) Find waveforms a(t) and b(t) so that ℜ{Z} = ⟨N, a⟩ and ℑ{Z} = ⟨N, b⟩.
Under what conditions (on f0 and f1) will ℜ{Z} and ℑ{Z} be independent?

Solution: a(t) =
√
2ϕ(t) cos(2πf1t), b(t) =

√
2ϕ(t) sin(2πf1t). The orthogonality of

a(t) and b(t) requires ⟨a, b⟩ = ⟨ϕ(t), ϕ(t) sin(2π(2f1)t)⟩ = ℑ{⟨ϕ(t), ϕ(t) exp(j2π(2f1)t)⟩}
to be zero. By Parseval’s relation the last is always equal to zero since ⟨rect(f), rect(f−
∆)⟩ is real.

(f) (2 pts) Suppose f0 = 3, f1 = 3.2, and the codewords are c0 =
√
E , c1 = jc0, c2 = −c0,

c3 = −c1. What is the error probability?

Solution: By the parts above we have α = 0.8 and β = 0. Hence Y = 0.8ci + Zi,
and is equivalent to a QAM with 0.64E . Thus the error probability is 2Q(a)−Q(a)2

where a =
√
0.64E/N0

(g) (2 pts) Suppose f0 = 3, f1 = 4, and the codewords are the same as in part (f). What
is the error probability?

Solution: Here both α and β are equal to zero, so Y is independent of the message.
The error probability is the same as that of a random guess between the four messages,
which is 3/4.

Remarks: We see from part (c) that β = 0 if f0 + f1 ≥ 1. Note that the bandwidth of the
baseband signal is 1/2. Typically, the carrier frequency is much larger than the bandwidth
of the baseband signal, so we usually have β = 0 in practice, even with the mismatch.
(If the mismatch is zero, then f0 + f1 = 2f0 ≥ 1 anyway, so β = 0 again.) However, the
quantity α depends on the difference between f0 and f1. If there is any mismatch at all (i.e.
f0 ̸= f1) then α < 1, and we will suffer in terms of error probability. Nonetheless, if this
difference is smaller than twice the bandwidth of the signal, we can still make a non-trivial
decision (as in part (f)). If this difference happens to be larger than twice the bandwidth,
we can do no better than a random guess (as in part (g)).
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