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PROBLEM 1. (8 points)
Answer the following questions with proper justification.

(a) (2 pts) Assuming equally likely messages, is it true that the energy of the constellation
{c1, o, c3,c4} given in the figure below cannot be reduced by isometric transforma-
tions? If not, give a minimum energy version.
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Solution: It is true. The given configuration already has mean 0.

(b) (2 pts) Re-do part (a) with Py (1) =1/2, Py(2) = Py(3) = Py(4) = 1/6 instead.

Solution: Still true, as the mean is still zero.

(c) (2 pts) In a binary hypothesis problem with observation Y, suppose fyu(y|0) =
exp(—y) I{y > 0}, and fyu(y|1) = (1/a)exp(—y/a)1{y > 0}, with o > 1. Is it true
that if T is a sufficient statistic, then 7" determines Y7

Solution: True. We know that in a binary hypothesis test any sufficient statistic

zgi:éi In this case the LLR is equal to

Y (1 — é) — log ar, which is a one-to-one function of y.

determines the log-likelihood ratio log

(d) (2 pts) Continuing with (c), is it true that no matter what the a priori probabilities
of the two hypotheses are, the error probability of the MAP decision rule is upper
bounded by 2v/a/(1 + «)?

Hint: Bhattacharyya bound.

Solution: True. The Bhattacharyya bound tells us that

iflg(l];/R\/fYH(y’1>fY|H(y|0)dy

P < A8 [P Frmt10) dy




Hence, the average probability of error is upper bounded by

2\/PH(0)PH(1)/R\/fY|H(y|1)fYH(y|O) dy.

For any value of Py(0) and Py (1), /Pr(0)Pg(1) is at most 1/2 (A.M. > G.M.), and
the integral evaluates to exactly 2v/a/(1 + ).

Remarks: Parts (a) and (b) look at “minimum energy constellation has zero mean” — this
is true even if the hypotheses are not equally likely, the mean should be weighted according
to the prior probabilities. Part (¢) is a direct application of the principle “sufficient statis-
tic determines LLR” — in this case the LLR also happens to determine the observation
itself, i.e., the LLR is a one-to-one function of the observation, so the sufficient statistic
also detrmines the observation. In part (d), using the tighter version of the Bhattacharyya
bound as described in the book gives an improvement by a factor of 1/2, i.e., the statement
would be true even if the bound was given to be \/a/(1 + ).

PROBLEM 2. (9 points)

(a) (2 pts) Suppose ¢q(t) is a waveform with Fourier transform ¢g #(f) satisfying
|do.2(f)I?
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What is Ag if ¢o is a unit energy waveform (i.e., [* [¢o(t)]*dt = 1)? Find the
smallest 7" such that {¢o(t — jT') : j € Z} is an orthogonal set of waveforms, and call
it Tp.
Solution: Ay = 3 via Parseval’s relation, iec., [*|po(t)[?dt = [ |pox(f)[>df.

2
The smallest T" that satisfies Nyquist criterion is Ty = 1/2, as the sum of shifts by

multiples of 1/7; = 2 is the constant 1/2 = Tj.

(b) (2 pts) Repeat (a) for ¢,(t) whose Fourier transform’s square magnitude is given by
|61.7(f)I?

Ay
17 (NIF = Ar(1 = [f) T{]f] < 1}
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That is, find A; such that ¢; has unit energy and T; such that it is the smallest T’
that makes {¢1(t — j7T) : j € Z} an orthogonal set.

Solution: Ay = 1 via Parseval’s relation. The smallest T" that satisfies Nyquist
criterion is 77 = 1, as the sum of shifts by multiples of 1/T, = 1 is the constant
1="1T.



(¢) (3 pts) Suppose we have two systems using the same codebook set C = {cy,..., ¢}
One system uses as orthonormal basis the shifts of ¢y by Ty obtained in (a), and
the other uses the shifts of ¢; by T} obtained in (b), to generate the waveforms
wy,. .., W,, which are then transmitted over an AWGN channel with noise intensity
%. Compare the two systems in terms of their

(i) energy per bit.
(ii) error probability.

(iii) bandwidth occupied (i.e., the smallest B such that all the w;’s have Fourier
transform zero outside of [—B, B]).

(iv) rate (i.e., number of bits transmitted per second).

Solution: Since the codebooks are the same, the energy per bit and error probability
are the same. The bandwidth is also the same, as ¢y and ¢; both have bandwidth
1 (and hence, so does w; = > _; ¢;;¢x(t — jTj) for both k = 0,1). Since both systems
send log, m bits, the system using ¢, transmits twice as many bits per second as the
one using ¢y, as Ty = 11 /2.

(d) (2 pts) Repeat (a) for ¢o(t) whose Fourier transform’s square magnitude is given by
|62, 7(f)I?
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That is, find Ay such that ¢9 has unit energy and 75, such that it is the smallest T’
that makes {¢o(t — jT') : j € Z} an orthogonal set (if it exists).
‘2

Hint: Look for band-edge symmetry in |¢2 #(f)|? or argue in time-domain.

Solution: Ay = 2, via Parseval’s relation again. There is no T that makes {¢s(t—jT) :
j € Z} an orthogonal set. From the frequency domain, this can be seen as there is
no point with band-edge symmetry and Nyquist’s criterion cannot be satisfied. From

the time domain, observe that |po #(f)| = VA2(1 — |f]) 1{|f| < 1}, which is the

1
convolution of A3 1{|f| < 3} with itself. Hence, the time domain signal is the square
of a sinc function, which is always non-negative, and hence, the inner product with
any shift of itself can never be zero.

Remarks: The waveforms ¢y and ¢; have the same bandwidth, but we need to shift ¢,
by twice as much as ¢y to get an orthonormal waveform. Hence, though they occupy the
same bandwidth, the data rate of the system using ¢ is twice as much (meaning that we
can send twice as much information in the same time). In previous exercises (and previous
exams) we have seen that among all waveforms that give the same data rate (i.e., same shift
to obtain an orthonormal waveform), the one occupying the minimum bandwidth is the
rect (in frequency domain). Here, we conversely see that among all waveforms occupying
the same bandwidth, the rect has the highest data rate. Part (d) shows an example where
it is NOT possible to obtain an orthonormal basis by shifts (unlike usual examples you
have seen earlier) — the time domain argument is elegant and makes it intuitively clear
why it is impossible to get its inner product with a shift to be zero — the function is simply



non-negative everywhere.

PROBLEM 3. (11 points)
Consider the following 3-state machine that transforms a binary data sequence by, bs, . ..

(with b; € {+,—1}) to a coded sequence xi, zs,x3, x4, Ts5, Tg, ... as follows, starting from
state a.
—/+ -+
current state data bit next state output
a + a +++
a — b - — =
b + c -+ -
b — b + -+
c + a - - +/4+++
C — b ++ -

+/-—+

(a) (2 pts) Show that there is a “sentinel sequence of bits” ¢,ts,...,t;, such that no
matter the current state of the machine, after the input ¢q,...,¢; the machine will
be found in state a. Among all such sequences, find the shortest one.

Solution: ti,ts = ++ is clearly such a sequence. Further, no length one sequence
works, as from b one cannot reach a in a single step, so ++ is the shortest such

sequence.
From now on, assume that the shortest such ¢, ..., ¢, (as found in (a)) will be appended to
the data sequence before transmission, i.e., to send by, ..., by, we encode by, ... by, t1,...,tp.

(b) (2 pts) Complete the following trellis diagram by filling in the ?’s:

STATE
C °
b °
q-
a ®
+++

textitSolution: The completed figure is:

STATE
C ° °
b ° o~ »e
~
~
-
a O p———————— >0
+++



(¢) (2 pts) Fill the ?’s in the following detour flow graph formed by splitting state a:

?
?
1D? ( ) D2 @
?
Solution: The completed figure is:
1D
D2
1D? ( ) D2 @
1D

(d) (3 pts) Find the transfer function 7'(1, D) from s to e.

Solution: The equations are:

T.(I, D) = D*T.(I, D)
Tc([aD) = DQTb([7D)
T,(I,D) = IDTy(I, D) + IDT.(I, D) + ID*Ty(I, D).

Substituting the first and second into the third, we get T}, = (ID + ID3)T}, + I D3T,,

3 .
hence T}, = %T ., and T, = D*T}, so we have the transfer function from s to e
is

ID?

TLD)=1—7p—1D%

(e) (2 pts) Consider the communication system described as follows: the bit sequence
by, ..., together with the sentinel bits from (a), are encoded using this 3-state machine
to obtain xi, zs, 3, .... The receiver observes Y;,Ys,Ys, ... where Y, = & + Zi,
with Z; ~ N'(0,6°) i.i.d. A MAP decoder converts the received sequence to decoded
bits b17 e

Find an upper bound to the bit error probability of this communication system, when
the “all 4”7 data sequence is transmitted.

Solution: The bit error probability is upper bounded by

9] -4
21, D R
oI (£, D) =1,p=: (1 —2z—23)%

where z = exp(—£5).

Remarks: As seen in the lectures, the encoding from bits to codewords is done using a
finite-state machine. This is not a “convolutional” code as the output bits cannot be
written as the convolution of the input bits with some filter. In fact, the transformation

b}



from the input to the output is not linear. Nonetheless, the same principles apply — we
can upper bound the bit error probability by counting detours using the transfer function.
The upper bound that we obtain is nearly iz7 if z is small, which means that the error

probability decays approximately as exp(—gag ).

PROBLEM 4. (16 points)

Hint: For this problem, you may find the following background on Fourier transforms useful:

(i) By Parseval’s relation, (a,b) = (Ar, Br), where Ax(f) and Br(f) are the Fourier transforms of
a(t) and b(t).

(ii) a(t) exp(j2wAt) has Fourier transform Ax(f — A).
(iii) ¢(t) = sinc(t) has Fourier transform rect(f) := 1{|f] < 1/2}.

Consider a transmitter that operates with fo > 0 and ¢(¢) = sinc(t) as follows:
[i] = [c; € C] = [wip(t) = cid(t)] = [wi(t) = V2R{w; p(t) exp(327 fot)}].

The waveform w;(t) is then input to an AWGN channel with noise intensity Ny/2; the
channel’s output is R(t).

(a) (3 pts) Consider the following receiver:
[R(t)] — [Re(t) = R(t)\/§exp(—j27rf0t)] — [Y = (Rp,¢)] — [i = argmin\Y—ciH.

What are the conditions on f; and the probability distribution of the message ¢ so
that this receiver is optimal?

Solution: We need that the inner product of Rp with ¢ also removes the high fre-
quency terms in Rg(t) that occupy frequencies in [—2fy — 1/2, =2fy + 1/2], i.e., we
require —2fo+1/2 < —1/2. Hence, we need fy > 1/2. (This also ensures that there is
no interference between the positive and negative frequencies in the passband signal.)
The given receiver based on Y is the ML receiver, which is optimal (equal to MAP) if
the message 7 is uniformly distributed (i.e., the hypothesis is a priori equlaly likely).

For the rest of the problem suppose that there is an error made in the receiver design:
while forming Rg(t), an oscillator frequency f; > 0 instead of fj is used, i.e., Rg(t) =
R(t)V2exp(—j2n fit). The rest of the receiver is identical to the design in (a).

(b) (2 pts) Noting that for any complex number z, 2R{z} = z + z*, find f, and f3 such
that
Rp(t) = ¢;o(t) exp(327 fot) + ¢;$(t) exp (32 ft) + N (1) V2 exp(—j2n fit).

Solution: By direct computation, we get fo = fo — f1, f3 = —(fo + f1)-

Suppose we write Y = d; + Z, where d; € C represents the part of Y which depends on the
message and Z represents noise.

(¢) (3 pts) Find a and § so that
d; = ac; + pc;.
Solution: We have a = (¢(t) exp(j27fat), ¢(t)) = (rect(f — f2),rect(f)) = (1 —

|f2D)1{|f2| < 1}. Similarly, 8 = (¢(t) exp(j27 fst), ¢(t)) = (rect(f — f3),rect(f)) =
(1= |fsDL{]f3] < 1}



(d) (2 pts) Find necessary and sufficient conditions on fy and f; so that 8 = 0. Find
necessary and sufficient conditions on fy and f; so that o # 0.

Solution: From the expressions in (d), we see that 5 = 0if and only if fo = fo+f1 > 1.
Similarly « # 0 if and only if |f3| = |fo — fi] < 1.

(e) (2 pts) Find waveforms a(t) and b(t) so that R{Z} = (N,a) and I{Z} = (N,D).
Under what conditions (on fy and f;) will R{Z} and S{Z} be independent?
Solution: a(t) = v/24(t) cos(27 fit), b(t) = v/2¢(t)sin(27 f1t). The orthogonality of
a(t) and b(t) requires {a, b) = (o(t), ¢(t) sin(2m(2f1)1)) = S{(4(1), (t) exp(32m(2f1)1)) }
to be zero. By Parseval’s relation the last is always equal to zero since (rect(f), rect(f—
A)) is real.

(f) (2 pts) Suppose fo = 3, f1 = 3.2, and the codewords are ¢y = V&, ¢; = jeg, 2 = —co,
c3 = —c1. What is the error probability?

Solution: By the parts above we have & = 0.8 and = 0. Hence Y = 0.8¢; + Z;,
and is equivalent to a QAM with 0.64€. Thus the error probability is 2Q(a) — Q(a)?

where a = /0.64E /Ny

(g) (2 pts) Suppose fo =3, fi =4, and the codewords are the same as in part (f). What
is the error probability?

Solution: Here both o and f are equal to zero, so Y is independent of the message.
The error probability is the same as that of a random guess between the four messages,
which is 3/4.

Remarks: We see from part (c) that 5 = 0if fo + f; > 1. Note that the bandwidth of the
baseband signal is 1/2. Typically, the carrier frequency is much larger than the bandwidth
of the baseband signal, so we usually have § = 0 in practice, even with the mismatch.
(If the mismatch is zero, then fy + f1 = 2fy > 1 anyway, so § = 0 again.) However, the
quantity « depends on the difference between fy and f;. If there is any mismatch at all (i.e.
fo # f1) then a < 1, and we will suffer in terms of error probability. Nonetheless, if this
difference is smaller than twice the bandwidth of the signal, we can still make a non-trivial
decision (as in part (f)). If this difference happens to be larger than twice the bandwidth,
we can do no better than a random guess (as in part (g)).



