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ProBLEM 1. Consider the sequence My, My, ...

of matrices constructed recursively as

follows:
+M, +M,
My =[+1] and M, = {—FMT _MJ forr=0,1,...
For example, we have,
+1 +1 +1 +1
+1 +1 +1 -1 +1 -1
M= [+1 —1}7 M=ty o1 2
+1 -1 —1 +1

Note that M, is a 2" x 2" matrix with elements taking values in {41, —1}. Each row (and
each column) has squared Euclidean norm 2.

Now fix 7 > 0 and let n = 2". Let = be a row of M, and write x = [¢/ 2”] where 2’ is the
left half of # and z” is the right half (for example, with » = 2 and = = [+1,+1, -1, —1]
being the 3rd row of My, we have 2’ = [+1,+1] and 2" = [-1,—1]). As & = [T/ 7"] steps
through all the n rows of M,, compute the inner products p’ = (z/,7’) and p” = (", 2").
(For the example above (p/, p”) takes the values (2, —2), (0,0), (2,2) and (0,0) as & steps
through [+1,+1,+1,+1], [+1,—1,+1, —1], [+1,+1,—1,—1] and [+1, -1, -1, +1].)

(a) Show that for any row x of M,, (p/,p”) equals (n/2,n/2) once, the value (n/2, —n/2)
once, and the value (0,0) for the remaining n — 2 times. Use this to conclude that
the rows of M, are orthogonal to each other.

Hint: One way is by induction on r.

+M,
M,
Let x = [2' 2] be a row of B,. As & = [’ &"] steps through all the m rows of B, compute
p/ — <aj/7 i,/) and p// — <x//’:’i,//>‘

Let B, = . The m = 2n rows of B, consists of the rows of M, and their negatives.

(b) Show that for any row x of B,, (p/,p”) takes the value (n/2,n/2) once, the value
(—n/2,—n/2) once, the value (n/2, —n/2) once, the value (—n/2,n/2) once, and the
value (0,0) the remaining m — 4 times.

Hint: Use (a).

(¢) Conclude that for any row x of B,, p’' + p” takes the value n once, the value —n once,
and the value 0 the remaining m — 2 times.
Hint: Use (b).

PROBLEM 2. Suppose we have a channel whose input = [z’ 2”] is a real vector of even

dimension n (so that =’ and z” are of dimension n/2). The channel has two behaviors
determined by an internal state s € {1,2}. The output Y = [Y'Y"] is given by

(\/ﬁx’ + 7, 2"+ Z”) if s =1,

(Y/7 Y//) — .
(x’ +2Z', /92" + Z”) if s =2,



where g > 1 is a non-negative constant and Z = [Z’ Z”] has i.i.d. N(0,0?) components.
In other words, the channel subjects either the first half (if s = 1) or the second half (if
s = 2) of the input vector to an energy gain g, and adds Gaussian noise.

Suppose ¢y, ..., ¢, are the codewords for m equally likely messages for transmission over
the channel above. Thus, each ¢; is a real vector of (even) dimension n. Write ¢; = [¢} /|

so that ¢} and ¢ are real vectors of dimension n /2.

(a) Suppose the value of s is known to the receiver. What is the decision rule that
minimizes the probability of error?

(b) Suppose [|lci[| = - - = [}, [| and [|}[| = - - = [l || Let

VI )+ (el s =1,

score(i, Y, s) = {<y’ )+ gy ey s =2.

Show that
i = arg max score(i, Y, s)
(2

is an optimum decision rule for a receiver that observes Y = [Y'Y"] and is aware of
the value of s.

Now suppose that the receiver is not aware of the value of s. Still supposing that the
codewords ¢; are as in (b) (i.e., all have equal norms of their first halves, and equal norms
of their second halves), consider the following way to assign a score to each message 7 based
on the observation Y = [Y'Y"]:
score(7,Y) = max score(i, Y, s)

se{1,2}
and the following two decoding rules. The first rule chooses the message with the highest
score, i.e.,

i = arg max score(7,Y).
7

The second is based on a threshold ¢, and chooses the message 5 if 75 is the only ¢ for which
score(i,Y) > t. If there is no such ¢, or two or more such i’s, it sets i, = 0 — note that
when 75 = 0 this decoding rule has certainly made an error.

(¢) Argue that when iy # 0, we have 2; = iy, and thus the probability of error of the
second decoding rule is an upper bound to the probability of error of the first decoding
rule.

PROBLEM 3. Let » > 0. Let the codewords for m messages, ¢y, ..., ¢, be the rows of the
matrix \/a[B, B,], where B, is as in Problem 1 above and a > 0 is chosen to make the
energy per bit to equal &,.

(a) With n denoting the dimension of the ¢;’s, express n, m and « in terms of r and &,.

Suppose the codewords above are used to communicate over the channel in Problem 2. Let
s denote the channel state and § denote the ‘other’ state (i.e., s =3 — s).

(b) Fix a threshold t. Show that, conditional on ¢ being the transmitted message, the
probability of error of the second decoding rule that uses the threshold t is upper
bounded by

Pr (score(i,Y,s) < t) + Z Z Pr (score(i,Y,s') > t).

i'#i s'e{1,2}

2



()

Let § = %oz(g+ 1)n. Show that, conditional on i being the transmitted message, with
s being the channel state,

score(i, Y, s) ~ N(B,%3).

Conditional on 7 being the transmitted message, with s being the channel state, show
that

(i) there is one value of i’ # ¢ for which
score(i,Y,s) ~ N(=8,0°8) and  score(i,Y, ) ~ N(—ay/gn,c*B);
(ii) for the remaining m — 2 values of i’ # 1,
score(i’,Y,s) ~ N(0,0°8) and  score(i,Y,5) ~ N(0,0°8).

Hint: Use 1(c).

For a threshold ¢ > 0, show that the error probability of the second decoding rule is

upper bounded by
p_t _oo |t
Q ( /02_6> + (2m —2)Q ( /025> ’

Hint: Use (b), (c) and (d) and the fact that Q(-) is a decreasing function.

Fix 0 < e < 1 and set t = (1 — €)5. Show that the error probability of the second
decoding rule is upper bounded by

Q (ev/Blo?) + 2m = 2)Q (1 = )v/Blo?) .

Show that as r grows, the first term above approaches zero, and if (1+ ¢)(1—¢€)2&, >
0241n 2, the third term approaches zero too.
Hint: For the last claim, use the fact that for z > 0, Q(z) < %exp(—mz/Q).

Conclude that if &/0? > (4In2)/(1 + g), the error probability of the first decoding
rule approaches zero as r grows.



