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Problem 1. Consider the sequence M0,M1, . . . of matrices constructed recursively as
follows:

M0 = [+1] and Mr+1 =

[
+Mr +Mr

+Mr −Mr

]
for r = 0, 1, . . .

For example, we have,

M1 =

[
+1 +1
+1 −1

]
, M2 =


+1 +1 +1 +1
+1 −1 +1 −1
+1 +1 −1 −1
+1 −1 −1 +1

 , . . .

Note that Mr is a 2r × 2r matrix with elements taking values in {+1,−1}. Each row (and
each column) has squared Euclidean norm 2r.
Now fix r > 0 and let n = 2r. Let x be a row of Mr and write x = [x′ x′′] where x′ is the
left half of x and x′′ is the right half (for example, with r = 2 and x = [+1,+1,−1,−1]
being the 3rd row of M2, we have x′ = [+1,+1] and x′′ = [−1,−1]). As x̃ = [x̃′ x̃′′] steps
through all the n rows of Mr, compute the inner products p′ = ⟨x′, x̃′⟩ and p′′ = ⟨x′′, x̃′′⟩.
(For the example above (p′, p′′) takes the values (2,−2), (0, 0), (2, 2) and (0, 0) as x̃ steps
through [+1,+1,+1,+1], [+1,−1,+1,−1], [+1,+1,−1,−1] and [+1,−1,−1,+1].)

(a) Show that for any row x of Mr, (p
′, p′′) equals (n/2, n/2) once, the value (n/2,−n/2)

once, and the value (0, 0) for the remaining n − 2 times. Use this to conclude that
the rows of Mr are orthogonal to each other.
Hint: One way is by induction on r.

Let Br =

[
+Mr

−Mr

]
. The m = 2n rows of Br consists of the rows of Mr and their negatives.

Let x = [x′ x′′] be a row of Br. As x̃ = [x̃′ x̃′′] steps through all the m rows of Br compute
p′ = ⟨x′, x̃′⟩ and p′′ = ⟨x′′, x̃′′⟩.

(b) Show that for any row x of Br, (p
′, p′′) takes the value (n/2, n/2) once, the value

(−n/2,−n/2) once, the value (n/2,−n/2) once, the value (−n/2, n/2) once, and the
value (0, 0) the remaining m− 4 times.
Hint: Use (a).

(c) Conclude that for any row x of Br, p
′+ p′′ takes the value n once, the value −n once,

and the value 0 the remaining m− 2 times.
Hint: Use (b).

Problem 2. Suppose we have a channel whose input x = [x′ x′′] is a real vector of even
dimension n (so that x′ and x′′ are of dimension n/2). The channel has two behaviors
determined by an internal state s ∈ {1, 2}. The output Y = [Y ′ Y ′′] is given by

(Y ′, Y ′′) =

{(√
gx′ + Z ′, x′′ + Z ′′) if s = 1,(

x′ + Z ′,
√
gx′′ + Z ′′) if s = 2,



where g ≥ 1 is a non-negative constant and Z = [Z ′ Z ′′] has i.i.d. N (0, σ2) components.
In other words, the channel subjects either the first half (if s = 1) or the second half (if
s = 2) of the input vector to an energy gain g, and adds Gaussian noise.
Suppose c1, . . . , cm are the codewords for m equally likely messages for transmission over
the channel above. Thus, each ci is a real vector of (even) dimension n. Write ci = [c′i c

′′
i ]

so that c′i and c′′i are real vectors of dimension n/2.

(a) Suppose the value of s is known to the receiver. What is the decision rule that
minimizes the probability of error?

(b) Suppose ∥c′1∥ = · · · = ∥c′m∥ and ∥c′′1∥ = · · · = ∥c′′m∥. Let

score(i, Y, s) =

{√
g⟨Y ′, c′i⟩+ ⟨Y ′′, c′′i ⟩ s = 1,

⟨Y ′, c′i⟩+
√
g⟨Y ′′, c′′i ⟩ s = 2.

Show that
ı̂ = argmax

i
score(i, Y, s)

is an optimum decision rule for a receiver that observes Y = [Y ′ Y ′′] and is aware of
the value of s.

Now suppose that the receiver is not aware of the value of s. Still supposing that the
codewords ci are as in (b) (i.e., all have equal norms of their first halves, and equal norms
of their second halves), consider the following way to assign a score to each message i based
on the observation Y = [Y ′ Y ′′]:

score(i, Y ) = max
s∈{1,2}

score(i, Y, s)

and the following two decoding rules. The first rule chooses the message with the highest
score, i.e.,

ı̂1 = argmax
i

score(i, Y ).

The second is based on a threshold t, and chooses the message ı̂2 if ı̂2 is the only i for which
score(i, Y ) > t. If there is no such i, or two or more such i’s, it sets ı̂2 = 0 — note that
when ı̂2 = 0 this decoding rule has certainly made an error.

(c) Argue that when ı̂2 ̸= 0, we have ı̂1 = ı̂2, and thus the probability of error of the
second decoding rule is an upper bound to the probability of error of the first decoding
rule.

Problem 3. Let r ≥ 0. Let the codewords for m messages, c1, . . . , cm be the rows of the
matrix

√
α[Br Br], where Br is as in Problem 1 above and α ≥ 0 is chosen to make the

energy per bit to equal Eb.

(a) With n denoting the dimension of the ci’s, express n, m and α in terms of r and Eb.

Suppose the codewords above are used to communicate over the channel in Problem 2. Let
s denote the channel state and s̄ denote the ‘other’ state (i.e., s̄ = 3− s).

(b) Fix a threshold t. Show that, conditional on i being the transmitted message, the
probability of error of the second decoding rule that uses the threshold t is upper
bounded by

Pr
(
score(i, Y, s) ≤ t

)
+
∑
i′ ̸=i

∑
s′∈{1,2}

Pr
(
score(i′, Y, s′) > t

)
.
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(c) Let β = 1
2
α(g+1)n. Show that, conditional on i being the transmitted message, with

s being the channel state,

score(i, Y, s) ∼ N (β, σ2β).

(d) Conditional on i being the transmitted message, with s being the channel state, show
that

(i) there is one value of i′ ̸= i for which

score(i′, Y, s) ∼ N (−β, σ2β) and score(i′, Y, s̄) ∼ N (−α
√
gn, σ2β);

(ii) for the remaining m− 2 values of i′ ̸= i,

score(i′, Y, s) ∼ N (0, σ2β) and score(i′, Y, s̄) ∼ N (0, σ2β).

Hint: Use 1(c).

(e) For a threshold t ≥ 0, show that the error probability of the second decoding rule is
upper bounded by

Q

(
β − t√
σ2β

)
+ (2m− 2)Q

(
t√
σ2β

)
.

Hint: Use (b), (c) and (d) and the fact that Q(·) is a decreasing function.

(f) Fix 0 < ϵ < 1 and set t = (1 − ϵ)β. Show that the error probability of the second
decoding rule is upper bounded by

Q
(
ϵ
√

β/σ2
)
+ (2m− 2)Q

(
(1− ϵ)

√
β/σ2

)
.

(g) Show that as r grows, the first term above approaches zero, and if (1+ g)(1− ϵ)2Eb >
σ24 ln 2, the third term approaches zero too.
Hint: For the last claim, use the fact that for x ≥ 0, Q(x) ≤ 1

2 exp(−x2/2).

(h) Conclude that if Eb/σ2 > (4 ln 2)/(1 + g), the error probability of the first decoding
rule approaches zero as r grows.
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