
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 21 Principles of Digital Communications
Project Description Apr. 30, 2025

Channel Model.

We wish to communicate over a channel with two possible behaviors, but without knowledge
of which one will occur. The channel acts on the even-length input sequence x ∈ Rn and
produces outputs Y ∈ Rn as follows: either

Y2k−1 =
√
Gx2k−1 + Z2k−1, Y2k = x2k + Z2k, or

Y2k−1 = x2k−1 + Z2k−1, Y2k =
√
Gx2k + Z2k,

(1)

where Z1, Z2, . . . , Zn are i.i.d. N (0, σ2) random variables. Here G = 10 is a known power
gain parameter and σ2 = 10 is the noise variance. Thus, either the “odd” channel inputs
experience gain

√
G and the “even” ones unit gain, or vice-versa. However, the transmitter

and receiver do not know which of the two behaviors occurs.

The block length n of the input signal is part of your design, with the constraint that n is
even and n ≤ 1,000,000, so that communication is efficient. For the same reason, we also
enforce a constraint ∥x∥2 ≤ 2,000 on the transmitted energy. The channel rejects inputs
that violate these constraints.

Assignment.

Develop a system capable of reliably transmitting text messages over the above channel.
Specifically:

• Design a transmitter that reads a text message i and returns real-valued samples of
an information-bearing signal ci ∈ Rn, for some even n ≤ 1,000,000 as above. The
text message i is guaranteed to be a sequence of 40 characters from the set

A = {‘a’, . . . , ‘z’, ‘A’, . . . , ‘Z’, ‘0’, ‘1’, . . . , ‘9’, ‘ ’, ‘.’},

which has 64 elements.

• Send ci to a server (which we provide, see below) that applies the channel effect as
in (1) and returns Y ∈ Rn.

• Design a receiver that, having received Y , reconstructs the text message with as few
errors as possible.

Hint: Solve the theory part first.

Submission and Evaluation Rules.

• The project is to be done in teams of four (but we can also allow a small number of
teams of three).

Please choose your teammates at the latest by Friday, May 2 and send an email
to adway.girish@epfl.ch with the subject “PDC project team” in order to register
your team.

mailto:adway.girish@epfl.ch


• For the theoretical part, please prepare one solution per team, and submit it through
Moodle. The deadline for this submission is on Wednesday, May 28.

• For the practical part, you may use any programming language, as long as all the
code pertaining to the transmitter and receiver is produced by your team.

• During the last session of the semester (May 30), each group presents their project
in 5–10 minutes and demonstrates their working implementation using a text message
that we provide.

(i) You will run the transmitter and the receiver on your own laptop.

(ii) You must submit your team’s code to Moodle before Friday, May 30, 1 pm.
One submission per team is enough.

(iii) Your presentation should contain a brief explanation of your signaling scheme
(this is not expected to be formal; there is no need to prepare slides, we simply
want you to be able to explain your choices in designing your transmitter and
receiver), followed by the transmission and decoding of the chosen text (that
will be given to you on the spot).

(iv) You will be given two chances for transmission, i.e., if you fail to transmit the
message during your first transmission, you can repeat the transmission once
more.

• The grade is based on the solution that you submit for the theoretical part, and
the reliability of your scheme during the demonstration. The theoretical part counts
for 7 points of the grade and the demonstration part counts for 13 points (together
counting for a total of 20 points for the project). The demonstration part will be
graded as follows:

(a) If you manage to transmit the text message without error during one of the two
transmissions, you will get full marks (13 pts).

(b) Otherwise your score will be max{10−χ, 0} where χ is the number of incorrect
characters in the reproduced text at the receiver. We will grade based on the
better of the two transmissions.

(c) Additionally, the team which uses smallest energy ∥x∥2 (with χ = 0) will get 5
bonus points.

(d) You will be given 0 if you do not attend the presentation and your teammates
cannot specify your contribution during the presentation.

Python Client.

We simulate the channel (1) by a server, to which you can send an input x ∈ Rn and
receive the noisy output Y ∈ Rn. To access this server, we provide you a Python script
client.py that you can download from Moodle. Please read the associated docstrings for
more information. You can only connect to the server if you are inside the EPFL network.
If you are working outside of EPFL, you can use EPFL’s VPN (please visit the link1 for
more information). Please use the following connection parameters:

1https://www.epfl.ch/campus/services/en/it-services/network-services/

remote-intranet-access/

2

https://www.epfl.ch/campus/services/en/it-services/network-services/remote-intranet-access/
https://www.epfl.ch/campus/services/en/it-services/network-services/remote-intranet-access/


• --srv_hostname=iscsrv72.epfl.ch

• --srv_port=80

For example, running the command

python3 client.py --input_file input.txt --output_file output.txt

--srv_hostname=iscsrv72.epfl.ch --srv_port=80

reads x from input.txt and writes the corresponding Y to output.txt.

[You may need to call python instead of python3 depending on your installation. The
client requires the numpy library to be installed.]

Tips and Practical Considerations.

• To avoid overloading the server, we only allow each client to connect once every 30
seconds.

• The input file for python client should be organized such that the first n lines of the
input file contain the signal components x1, . . . , xn.

• The channel model is implemented on the server by the following function:

import numpy as np

import random

def channel(x):

G = 10

sigma2 = 10

s = random.choice([1, 2])

n = x.size

Y = np.random.normal(0, np.sqrt(sigma2), n)

if s == 1:

x_even = np.array(x[::2]) * np.sqrt(G)

x_odd = x[1::2]

else:

x_even = np.array(x[::2])

x_odd = x[1::2] * np.sqrt(G)

Y[::2] += x_even

Y[1::2] += x_odd

return Y

For testing your code locally, using this code snippet to simulate the channel (or an
equivalent version in your preferred language) may accelerate your code development.
However, be sure to also check your code with the server using the python client as
mentioned above as the demonstration on May 30th must use the server.

3


