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PROBLEM 1. A communication system uses bit-by-bit on a pulse train to communicate at
1 Mbps using a rectangular pulse. The transmitted signal is of the form

Z Bl (t — jT%),
j

where B; € {£b}. Determine the value of b needed to achieve bit-error probability P, =
10~ knowing that the channel corrupts the transmitted signal with additive white Gaussian
noise of power spectral density % =102 W/Hz.

PROBLEM 2. A discrete memoryless source produces bits at a rate 10° bps. The bits,
which are uniformly distributed and i.i.d., are grouped into pairs. Each pair is mapped
into a distinct waveform and sent over the AWGN channel of noise power spectral density
%. Specifically, the first two bits are mapped into one of the four waveforms shown below
with T, = 2 x 1079 seconds, the next two bits are mapped onto the same set of waveforms
delayed by T, etc.
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(a) Describe an orthonormal basis for the inner product space W spanned by w;(t), i =
0,1, 2,3 and plot the signal constellation in R™, where n is the dimensionality of W.

(b) Determine an assignment between pairs of bits and waveforms such that the bit-error
probability is minimized and derive an expression for B,.

(c) Draw a block diagram of the receiver that achieves the above P, using a single causal
filter.

(d) Determine the energy per bit & and the power of the transmitted signal.



PROBLEM 3. m-ary frequency-shift keying (m-FSK) is a signaling method that uses signals
of the form

2&
w;(t) =1/ 7 €os 27 (fe +iAf)t) Lory(t), i=0,...,m—1,
where £, T, f., Af are fixed parameters, with Af < f..

(a) Determine the average energy in terms of £. (You can assume f.7" € N.)

(b) Assuming f.T" € N, find the smallest value of Af that makes w;(¢) orthogonal to w;(t)
when i # 7.

(¢) In practice the signals w;(t), i = 0,...,m — 1 can be generated by changing the fre-
quency of a single oscillator. In passing from one frequency to another, a phase shift
0 is introduced. Again, assuming f.I' € N, determine the smallest value of Af that
ensures orthogonality between cos (27 (f. +iAf)t+6;) and cos (27 (f. + jAf)t +0;)
whenever ¢ # j, regardless of §; and 6;.

(d) Sometimes we do not have complete control over f. either, in which case it is not
possible to set f. 1" € N. Argue that if we choose f. 1" > 1, then for all practical
purposes the signals will be orthogonal to one another if the condition found in part
(c) is met.

(e) Give an approximate value for the bandwidth occupied by the signal constellation.
How does the WT product behave as a function of k = log,(m)?

PrROBLEM 4. Consider using antipodal signaling, i.e. wo(t) = —w;(t), to communicate 1
bit across a Rayleigh fading channel that we model as follows. When w;(t) is transmitted
the channel output is

R(t) = Aw(t) + N(t),

where N (t) is white Gaussian noise of power spectral density
of probability density function

No

2 and A is a random variable

fala) = 2ae="1{a > 0}.

We assume that, unlike the transmitter, the receiver knows the realization of A. We also
assume that the receiver implements a maximum likelihood decision, and that the signal’s
energy is &.

Describe the receiver.

(a
(

(c

(d) Compare Py to the error probability P. achieved by an ML receiver that observes
R(t) = mw;(t)+ N(t), where m = E[A]. Comment on the different behavior of the two
error probabilities. For each of them, find the ]gv—bo value necessary to obtain the error
probability 107°.

Hint: Use 3 exp (—42?) as an approximation of Q(z).

)

b) Determine the error probability conditioned on the event {A = a}.
) Determine the unconditional error probability Ps. (The subscript stands for fading.)
)



PrROBLEM 5. Consider the signal set shown below. Each signal is equally likely to be chosen
for transmission over an AWGN channel with power spectral density %
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Represent the signal set using the four basis signals given by 11 (t) = ¥(t), ¥o(t) =
Ut = 1), ¥s(t) = ¢t — 2), Ya(t) = ®(t — 3), where

¢(t):{1 0<t<l1

0 otherwise

Use the union bound to find an upper bound to the error probability for the optimal
receiver.

Transform the four signals by a translation in order to obtain a minimum energy signal
set. Sketch the new signal set {w;(t), wa(t), ws(t), wy(t)}.

Use the Gram—Schmidt procedure to find an orthogonal basis for {w;(t),ws(t), ws(t),

wy(t)}

Find the exact error probability of an optimal receiver designed for {w; (), wa(t), ws(t),
Wy ()}

Based on your answer to (e), what can you say about the error probability of the
receiver in (b)?

PROBLEM 6. This exercise complements what we have learned in Example 4.3 of the book.
Consider using the m-PAM constellation

{£a,+3a,+5a,...,£(m — 1)a}

to communicate across the discrete-time AWGN channel of noise variance 02 = 1. Our
goal is to communicate at some level of reliability, say with error probability P, = 1075.
We are interested in comparing the energy needed by PAM versus the energy needed by a
system that operates at channel capacity, namely at %log2 (1 + %) bits per channel use.

(a)

Using the capacity formula, determine the energy per symbol £ (k) needed to transmit
k bits per channel use. (The superscript C stands for channel capacity.) At any
rate below capacity, it is possible to make the error probability arbitrarily small by
increasing the codeword length. This implies that there is a way to achieve the desired
error probability at energy per symbol £Y (k).
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(b) Using single-shot m-PAM, we can achieve an arbitrarily small error probability by
making the parameter a sufficiently large. As the size m of the constellation increases,
the edge effects become negligible, and the average error probability approaches 2¢) (%),
which is the probability of error conditioned on an interior point being transmitted.
Find the numerical value of the parameter a for which 2¢Q) (%) =107°.

Hint: Use %eXp (—%332) as an approximation of Q(z).

(c) Having fixed the value of a, we can use equation (4.1) of the book to determine the
average energy £F'(k) needed by PAM to send k bits at the desired error probability.
(The superscript P stands for PAM.) Find and compare the numerical values of £ (k)
and EC(k) for k = 1,2,4.

. . C . P

(d) Find lim,, o % and lim,,_, %

(e) Comment on PAM’s efficiency in terms of energy per bit for small and large values of
k. Comment also on the relationship between this exercise and Example 4.3.



