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PROBLEM 1. In this problem, we develop further intuition about matched filters. You
may assume that all waveforms are real-valued. Let R(t) = tw(t) + N(¢) be the channel
output, where N (t) is additive white Gaussian noise of power spectral density 22 and w(t)
is an arbitrary but fixed pulse. Let ¢(¢) be a unit-norm but otherwise arbitrary pulse, and
consider the receiver operation

Y =(R,¢) = (w,¢) + (N, ¢)

The signal-to-noise ratio (SNR) is defined as

A |<w>¢>|2
SNR = BV, o)

Notice that the SNR remains the same if we scale ¢(t) by a constant factor. Notice also

that N
E[(N,¢)"] = =

2
(a) Use the Cauchy—Schwarz inequality to give an upper bound on the SNR. What is the
condition for equality in the Cauchy—Schwarz inequality? Find the ¢(¢) that maximizes
the SNR. What is the relationship between the maximizing ¢(t) and the signal w(t)?

(b) Let us verify that we would get the same result using a pedestrian approach. Instead
of waveforms we consider tuples. So let ¢ = (c1,¢2)T € R? and use calculus (instead of
the Cauchy—Schwarz inequality) to find the ¢ = (¢1, ¢2)T € R? that maximizes (c, ¢)
subject to the constraint that ¢ has unit norm.

(c) Verify with a picture (convolution) that the output at time 7" of a filter with input
w(t) and impulse response h(t) = w(T — t) is indeed (w,w) = [*°_w?(t)dt.

PROBLEM 2. Let w;(t) be as shown below and let wy(t) = wy(t — Ty), where T, > T is
a fixed number known to the receiver. One of the two pulses is selected at random and

transmitted across the AWGN channel of noise power spectral density %

w1 (t)

A

(a) Describe an ML receiver that decides which pulse was transmitted. The n-tuple former
must contain a single causal matched filter. Finally, draw the matched filter impulse
response.



(b) Express the error probability of the receiver in (a) in terms of A, T, Ty, Ny. Consider
both cases Ty > T and T; < T.

PROBLEM 3. In this problem, we consider the implementation of matched filter receivers.
In particular, we consider frequency-shift keying (FSK) with the following signals:

2 n;
w(t) = {\/;COSQWTJt 0<t<T

0 otherwise,

where n; € Z and 0 < j < m — 1. Thus, the communication scheme consists of m signals
wj(t) of different frequencies 7.

(a) Determine the impulse response h;(t) of a causal matched filter for the signal w,(t).
Plot h;(t) and specify the sampling time.

(b) Sketch the matched filter receiver. How many matched filters are needed?

(c) Sketch the output of the matched filter with impulse response h;(t) when the input is
w;(t).

PROBLEM 4. Let the message H € {1,...,m} be uniformly distributed and consider the
communication problem described by

H=i: Y=c+2, Z~N(0,0d,),

where Y = (Y1,...,Y,,)T € R™ is the received vector and {ci,...,c,} C R™ is the code-
book consisting of constant-energy codewords that are orthogonal to each other. Without
loss of essential generality, we can assume

C;, = \/E€i7

where e; is the ith unit vector in R™, i.e. the vector that contains 1 at position ¢ and 0
elsewhere, and £ is some positive constant.

(a) Describe the statistics of Y; for j =1,...,m given that H = 1.

(b) Consider a suboptimal receiver that uses a threshold ¢t = av/€ where 0 < o < 1. The
receiver declares H = i if i is the only integer such that Y; > ¢. If there is no such ¢
or there is more than one index 7 for which Y; > t, the receiver declares that it cannot
decide. This will be viewed as an error. Let E; = {Y; > t} and describe, in words, the
meaning of the event

EyNESNESA -+ N ES,

(¢) Find an upper bound to the probability that the above event does not occur when
H = 1. Express your result using the () function.

(d) Now let m = 2% and let £ = k&, for some fixed energy per bit &. Prove that the error
probability goes to 0 as k — oo, provided that % > 22

a?

22
Hint: Usem—1<m=e"™ and Q(z) < Je~=.

PROBLEM 5. (Signal translation)
Consider the signals wy(t) and w;(t) shown below, used to communicate 1 bit across
the AWGN channel of power spectral density %

2



wo (t) w1 (t)

2T

-1 -1

(a) Determine an orthonormal basis {to(t), 11 (t)} for the space spanned by {wo(t), w;(t)}
and find the corresponding codewords ¢y and ¢;. Work out two solutions, one obtained
via Gram—Schmidt and one in which ¢4 (t) is a delayed version of ¢y(t). Which of the
two solutions would you choose if you had to implement the system?

(b) Let X be a uniformly distributed binary random variable that takes values in {0, 1}.
We want to communicate the value of X over an additive white Gaussian noise channel.
When X = 0, we send wy(t), and when X = 1, we send w; (t). Draw the block diagram
of an ML receiver based on a single matched filter.

(¢) Determine the error probability P, of your receiver as a function of 7" and Np.

(d) Find a suitable waveform v(t) such that the signals wy(t) = wo(t) — v(t) and w,(t) =
w1 (t) — v(t) have minimum energy. Plot the resulting waveforms.

(e) What is the name of the signaling scheme that uses signals such as wy(t) and @, (t)?
Argue that one obtains this kind of signaling scheme independently of the initial choice
of wy(t) and wy (t).

PROBLEM 6. (Orthogonal signal sets)
Consider a set W = {wy(t), ..., wy,_1(t)} of mutually orthogonal signals with squared
norm &, each used with equal probability.

(a) Find the minimum-energy signal set W = {1 (t), . .., W,_1(t)} obtained by translating
the original set.

(b) Let & be the average energy of a signal picked at random within W. Determine £ and
the energy saving £ — £.

(c) Determine the dimension of the inner product space spanned by W.



