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Problem 1. In this problem, we develop further intuition about matched filters. You
may assume that all waveforms are real-valued. Let R(t) = ±w(t) + N(t) be the channel
output, where N(t) is additive white Gaussian noise of power spectral density N0

2
and w(t)

is an arbitrary but fixed pulse. Let ϕ(t) be a unit-norm but otherwise arbitrary pulse, and
consider the receiver operation

Y = ⟨R, ϕ⟩ = ⟨w, ϕ⟩+ ⟨N, ϕ⟩

The signal-to-noise ratio (SNR) is defined as

SNR ≜
|⟨w, ϕ⟩|2

E[|⟨N, ϕ⟩|2]

Notice that the SNR remains the same if we scale ϕ(t) by a constant factor. Notice also
that

E[|⟨N, ϕ⟩|2] = N0
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(a) Use the Cauchy–Schwarz inequality to give an upper bound on the SNR. What is the
condition for equality in the Cauchy–Schwarz inequality? Find the ϕ(t) that maximizes
the SNR. What is the relationship between the maximizing ϕ(t) and the signal w(t)?

(b) Let us verify that we would get the same result using a pedestrian approach. Instead
of waveforms we consider tuples. So let c = (c1, c2)

T ∈ R2 and use calculus (instead of
the Cauchy–Schwarz inequality) to find the ϕ = (ϕ1, ϕ2)

T ∈ R2 that maximizes ⟨c, ϕ⟩
subject to the constraint that ϕ has unit norm.

(c) Verify with a picture (convolution) that the output at time T of a filter with input
w(t) and impulse response h(t) = w(T − t) is indeed ⟨w,w⟩ =

∫∞
−∞w2(t)dt.

Problem 2. Let w1(t) be as shown below and let w2(t) = w1(t − Td), where Td ≥ T is
a fixed number known to the receiver. One of the two pulses is selected at random and
transmitted across the AWGN channel of noise power spectral density N0
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.

w1(t)

t

A

T

(a) Describe an ML receiver that decides which pulse was transmitted. The n-tuple former
must contain a single causal matched filter. Finally, draw the matched filter impulse
response.



(b) Express the error probability of the receiver in (a) in terms of A, T, Td, N0. Consider
both cases Td ≥ T and Td < T .

Problem 3. In this problem, we consider the implementation of matched filter receivers.
In particular, we consider frequency-shift keying (FSK) with the following signals:

wj(t) =

{√
2
T
cos 2π

nj

T
t 0 ≤ t ≤ T

0 otherwise,

where nj ∈ Z and 0 ≤ j ≤ m− 1. Thus, the communication scheme consists of m signals
wj(t) of different frequencies

nj

T
.

(a) Determine the impulse response hj(t) of a causal matched filter for the signal wj(t).
Plot hj(t) and specify the sampling time.

(b) Sketch the matched filter receiver. How many matched filters are needed?

(c) Sketch the output of the matched filter with impulse response hj(t) when the input is
wj(t).

Problem 4. Let the message H ∈ {1, . . . ,m} be uniformly distributed and consider the
communication problem described by

H = i : Y = ci + Z, Z ∼ N (0, σ2Im),

where Y = (Y1, . . . , Ym)
T ∈ Rm is the received vector and {c1, . . . , cm} ⊂ Rm is the code-

book consisting of constant-energy codewords that are orthogonal to each other. Without
loss of essential generality, we can assume

ci =
√
Eei,

where ei is the ith unit vector in Rm, i.e. the vector that contains 1 at position i and 0
elsewhere, and E is some positive constant.

(a) Describe the statistics of Yj for j = 1, . . . ,m given that H = 1.

(b) Consider a suboptimal receiver that uses a threshold t = α
√
E where 0 < α < 1. The

receiver declares Ĥ = i if i is the only integer such that Yi ≥ t. If there is no such i
or there is more than one index i for which Yi ≥ t, the receiver declares that it cannot
decide. This will be viewed as an error. Let Ei = {Yi ≥ t} and describe, in words, the
meaning of the event

E1 ∩ Ec
2 ∩ Ec

3 ∩ · · · ∩ Ec
m

(c) Find an upper bound to the probability that the above event does not occur when
H = 1. Express your result using the Q function.

(d) Now let m = 2k and let E = kEb for some fixed energy per bit Eb. Prove that the error
probability goes to 0 as k → ∞, provided that Eb

σ2 >
2 ln 2
α2 .

Hint: Use m− 1 < m = elnm and Q(x) < 1
2e

− x2

2 .

Problem 5. (Signal translation)
Consider the signals w0(t) and w1(t) shown below, used to communicate 1 bit across

the AWGN channel of power spectral density N0
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.
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t

w0(t)

1

−1

2T
t

w1(t)

1

−1

2T

(a) Determine an orthonormal basis {ψ0(t), ψ1(t)} for the space spanned by {w0(t), w1(t)}
and find the corresponding codewords c0 and c1. Work out two solutions, one obtained
via Gram–Schmidt and one in which ψ1(t) is a delayed version of ψ0(t). Which of the
two solutions would you choose if you had to implement the system?

(b) Let X be a uniformly distributed binary random variable that takes values in {0, 1}.
We want to communicate the value of X over an additive white Gaussian noise channel.
When X = 0, we send w0(t), and when X = 1, we send w1(t). Draw the block diagram
of an ML receiver based on a single matched filter.

(c) Determine the error probability Pe of your receiver as a function of T and N0.

(d) Find a suitable waveform v(t) such that the signals w̃0(t) = w0(t) − v(t) and w̃1(t) =
w1(t)− v(t) have minimum energy. Plot the resulting waveforms.

(e) What is the name of the signaling scheme that uses signals such as w̃0(t) and w̃1(t)?
Argue that one obtains this kind of signaling scheme independently of the initial choice
of w0(t) and w1(t).

Problem 6. (Orthogonal signal sets)
Consider a set W = {w0(t), . . . , wm−1(t)} of mutually orthogonal signals with squared

norm E , each used with equal probability.

(a) Find the minimum-energy signal set W̃ = {w̃0(t), . . . , w̃m−1(t)} obtained by translating
the original set.

(b) Let Ẽ be the average energy of a signal picked at random within W̃ . Determine Ẽ and
the energy saving E − Ẽ .

(c) Determine the dimension of the inner product space spanned by W̃ .
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