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Problem 1.

(a) Suppose X and Y are real-valued i.i.d. random variables with probability density func-
tion fX(s) = fY (s) = c exp(−|s|α), where α is a parameter and c = c(α) is the
normalizing factor.

(i) Draw the contour of the joint density function for α = 1
2
, α = 1, α = 2, and

α = 3.
Hint: For simplicity, draw the set of points (x, y) for which fX,Y (x, y) = c2(α)e−1.

(ii) For which value of α is the joint density function invariant under rotation? What
is the corresponding distribution?

(b) In general we can show that if X and Y are i.i.d. random variables and fX,Y (x, y) is
circularly symmetric, then X and Y are Gaussian. Use the following steps to prove
this.

(i) Show that if X and Y are i.i.d. and fX,Y (x, y) is circularly symmetric, then

fX(x)fY (y) = ψ(r) where ψ is a univariate function and r =
√
x2 + y2.

(ii) Take the partial derivative with respect to x and y to show that

f ′
X(x)

xfX(x)
=
ψ′(r)

rψ(r)
=

f ′
Y (y)

yfY (y)

(iii) Argue that the only way for the above equalities to hold is that they be equal to

a constant value, i.e.
f ′X(x)

xfX(x)
= ψ′(r)

rψ(r)
=

f ′Y (y)

yfY (y)
= − 1

σ2 .

(iv) Integrate the above equations and show thatX and Y should be Gaussian random
variables.

Problem 2. A real-valued passband signal x(t) can be written as x(t) =
√
2ℜ{xE(t)ej2πfct},

where xE(t) is the baseband-equivalent signal (complex-valued in general) with respect to
the carrier frequency fc. Also, a general complex-valued signal xE(t) can be written in terms
of two real-valued signals, either as xE(t) = u(t) + jv(t) or as xE(t) = α(t) exp(jβ(t)).

(a) Show that a real-valued passband signal x(t) can always be written as

xEI(t) cos(2πfct)− xEQ(t) sin(2πfct)

and relate xEI(t) and xEQ(t) to xE(t).
Comment: This formula can be used at the sender to produce x(t) without doing complex-valued

operations. The signals xEI(t) and xEQ(t) are called the in-phase and the quadrature components

respectively.

(b) Show that a real-valued passband signal x(t) can always be written as

a(t) cos(2πfct+ θ(t))

and relate a(t) and θ(t) to xE(t).
Comment: This explains why sometimes people make the claim that a passband signal is modulated

in amplitude and in phase.



(c) Use part (b) to find the baseband-equivalent of the signal

x(t) = A(t) cos(2πfct+ φ),

where A(t) is a real-valued lowpass signal. Verify your answer with Example 7.9 where
we assumed φ = 0.

Problem 3. Let fc be a positive carrier frequency and consider an arbitrary real-valued
function w(t) whose Fourier transform is shown below:

f

|wF (f)|

−fc fc

(a) Argue that there are two different functions, a1(t) and a2(t), such that, for i = {1, 2},

w(t) =
√
2ℜ{ai(t) exp(j2πfct)}

This shows that, without some constraint on the input signal, the operation performed
by the circuit of Figure 7.4b is not reversible, even in the absence of noise. This was
already pointed out in the discussion preceding Lemma 7.8.

(b) Argue that if we limit the input of Figure 7.4b to signals a(t) such that aF(f) = 0 for
f < −fc, then the circuit of Figure 7.4a will retrieve a(t) when fed with the output of
Figure 7.4b.

(c) Find an example showing that the condition of part (b) is necessary. (Can you find
and example with a real-valued a(t)?)

(d) Argue that if we limit the input of Figure 7.4b to signals a(t) that are real-valued, then
the input of Figure 7.4b can be retrieved from the output.
Comment: We are not claiming that the circuit of Figure 7.4a will retrieve a(t).

Hint: You may argue in the time domain or in the frequency domain. If you argue in the time domain,

you can assume that a(t) is continuous. If you argue in the frequency domain, you can assume that

a(t) has finite bandwidth.

Problem 4. Let the signal xE(t) be band-limited to [−B,B] and let x(t) =
√
2ℜ{xE(t)ej2πfct},

where 0 < B < fc. Show that the circuit shown below recovers the real and imaginary part
of xE(t) when fed with x(t). (The two boxes are ideal lowpass filters of cutoff frequency
B.)
Comment: The circuit uses only real-valued operations.
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x(t)

×

√
2 cos(2πfct)

1[−B,B](f) ℜ{xE(t)}

×

−
√
2 sin(2πfct)

1[−B,B](f) ℑ{xE(t)}

Problem 5.

w(t)

t [ms]

4

1 Ts 2Ts 3Ts 4Ts

The figure above shows a toy passband signal. (Its carrier frequency is unusually low with
respect to its symbol rate.) Specify the three layers of a transmitter that generates the
given signal, namely the following:

(a) The carrier frequency fc used by the up-converter.

(b) The orthonormal basis used by the waveform former to produce the baseband-equivalent
signal wE(t).

(c) The symbol alphabet, seen as a subset of C.

(d) An encoding map, the encoder input sequence that leads to w(t), the bit rate, the
encoder output sequence, and the symbol rate.
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