

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 31

Final exam

Principles of Digital Communications

June 19, 2025

4 problems, 44 points, 180 minutes.

2 sheets (4 pages) of notes allowed.

Good Luck!

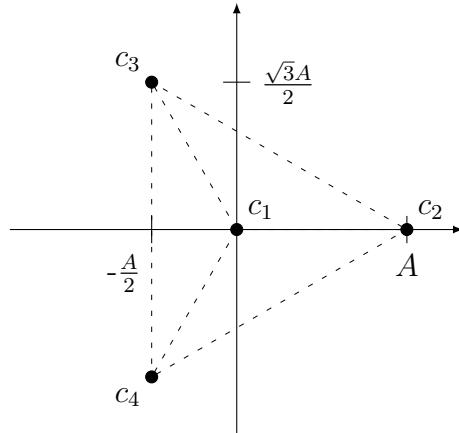
PLEASE WRITE YOUR NAME ON EACH SHEET OF YOUR ANSWERS.

PLEASE WRITE THE SOLUTION OF EACH PROBLEM ON A SEPARATE SHEET.

PROBLEM 1. (8 points)

Answer the following questions with proper justification.

(a) (2 pts) Assuming equally likely messages, is it true that the energy of the constellation $\{c_1, c_2, c_3, c_4\}$ given in the figure below cannot be reduced by isometric transformations? If not, give a minimum energy version.



(b) (2 pts) Re-do part (a) with $P_H(1) = 1/2$, $P_H(2) = P_H(3) = P_H(4) = 1/6$ instead.

(c) (2 pts) In a binary hypothesis problem with observation Y , suppose $f_{Y|H}(y|0) = \exp(-y) \mathbb{1}\{y > 0\}$, and $f_{Y|H}(y|1) = (1/\alpha) \exp(-y/\alpha) \mathbb{1}\{y > 0\}$, with $\alpha > 1$. Is it true that if T is a sufficient statistic, then T determines Y ?

(d) (2 pts) Continuing with (c), is it true that no matter what the a priori probabilities of the two hypotheses are, the error probability of the MAP decision rule is upper bounded by $2\sqrt{\alpha}/(1 + \alpha)$?

Hint: Bhattacharyya bound.

PROBLEM 2. (9 points)

(a) (2 pts) Suppose $\phi_0(t)$ is a waveform with Fourier transform $\phi_{0,\mathcal{F}}(f)$ satisfying

$$|\phi_{0,\mathcal{F}}(f)|^2 = A_0 \mathbf{1}\{|f| < 1\} \quad \equiv \quad \begin{array}{c} |\phi_{0,\mathcal{F}}(f)|^2 \\ \uparrow \\ \text{A grid with } A_0 \text{ in the center, } -1 \text{ and } 1 \text{ on the } f \text{ axis.} \end{array}$$

What is A_0 if ϕ_0 is a unit energy waveform (i.e., $\int_{-\infty}^{\infty} |\phi_0(t)|^2 dt = 1$)? Find the smallest T such that $\{\phi_0(t - jT) : j \in \mathbb{Z}\}$ is an orthogonal set of waveforms, and call it T_0 .

(b) (2 pts) Repeat (a) for $\phi_1(t)$ whose Fourier transform's square magnitude is given by

$$|\phi_{1,\mathcal{F}}(f)|^2 = A_1(1 - |f|) \mathbf{1}\{|f| < 1\} \quad \equiv \quad \begin{array}{c} |\phi_{1,\mathcal{F}}(f)|^2 \\ \uparrow \\ \text{A grid with } A_1 \text{ in the center, } -1 \text{ and } 1 \text{ on the } f \text{ axis.} \end{array}$$

That is, find A_1 such that ϕ_1 has unit energy and T_1 such that it is the smallest T that makes $\{\phi_1(t - jT) : j \in \mathbb{Z}\}$ an orthogonal set.

(c) (3 pts) Suppose we have two systems using the same codebook set $\mathcal{C} = \{c_1, \dots, c_m\}$. One system uses as orthonormal basis the shifts of ϕ_0 by T_0 obtained in (a), and the other uses the shifts of ϕ_1 by T_1 obtained in (b), to generate the waveforms w_1, \dots, w_m , which are then transmitted over an AWGN channel with noise intensity $\frac{N_0}{2}$. Compare the two systems in terms of their

- (i) energy per bit.
- (ii) error probability.
- (iii) bandwidth occupied (i.e., the smallest B such that all the w_i 's have Fourier transform zero outside of $[-B, B]$).
- (iv) rate (i.e., number of bits transmitted per second).

(d) (2 pts) Repeat (a) for $\phi_2(t)$ whose Fourier transform's square magnitude is given by

$$|\phi_{2,\mathcal{F}}(f)|^2 = A_2(1 - |f|)^2 \mathbf{1}\{|f| < 1\} \quad \equiv \quad \begin{array}{c} |\phi_{2,\mathcal{F}}(f)|^2 \\ \uparrow \\ \text{A grid with } A_2 \text{ in the center, } -1 \text{ and } 1 \text{ on the } f \text{ axis.} \end{array}$$

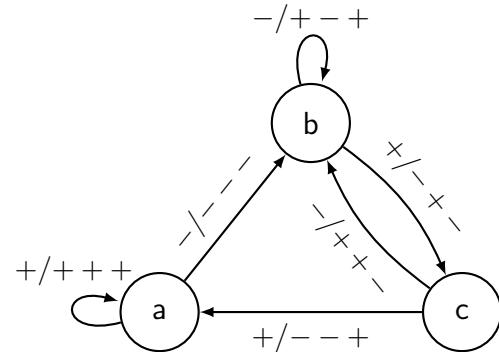
That is, find A_2 such that ϕ_2 has unit energy and T_2 such that it is the smallest T that makes $\{\phi_2(t - jT) : j \in \mathbb{Z}\}$ an orthogonal set (if it exists).

Hint: Look for band-edge symmetry in $|\phi_{2,\mathcal{F}}(f)|^2$ or argue in time-domain.

PROBLEM 3. (11 points)

Consider the following 3-state machine that transforms a binary data sequence b_1, b_2, \dots (with $b_i \in \{+, -\}$) to a coded sequence $x_1, x_2, x_3, x_4, x_5, x_6, \dots$ as follows, starting from state **a**.

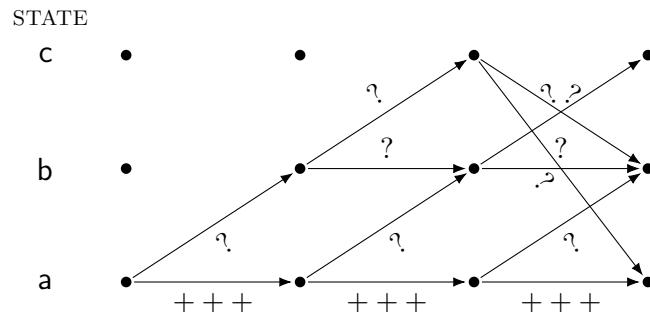
current state	data bit	next state	output
a	+	a	+++
a	-	b	---
b	+	c	-+-
b	-	b	+--
c	+	a	--+
c	-	b	+-



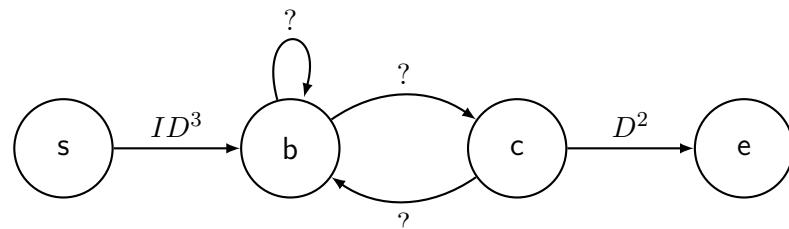
(a) (2 pts) Show that there is a “sentinel sequence of bits” t_1, t_2, \dots, t_L such that no matter the current state of the machine, after the input t_1, \dots, t_L the machine will be found in state **a**. Among all such sequences, find the shortest one.

From now on, assume that the shortest such t_1, \dots, t_L (as found in (a)) will be appended to the data sequence before transmission, i.e., to send b_1, \dots, b_k , we encode $b_1, \dots, b_k, t_1, \dots, t_L$.

(b) (2 pts) Complete the following trellis diagram by filling in the ?'s:



(c) (2 pts) Fill the ?'s in the following detour flow graph formed by splitting state **a**:



(d) (3 pts) Find the transfer function $T(I, D)$ from **s** to **e**.

(e) (2 pts) Consider the communication system described as follows: the bit sequence b_1, \dots , together with the sentinel bits from (a), are encoded using this 3-state machine to obtain x_1, x_2, x_3, \dots . The receiver observes Y_1, Y_2, Y_3, \dots where $Y_i = \sqrt{\mathcal{E}_s}x_i + Z_i$, with $Z_i \sim \mathcal{N}(0, \sigma^2)$ i.i.d. A MAP decoder converts the received sequence to decoded bits \hat{b}_1, \dots

Find an upper bound to the bit error probability of this communication system, when the “all +” data sequence is transmitted.

PROBLEM 4. (16 points)

Hint: For this problem, you may find the following background on Fourier transforms useful:

- (i) By Parseval's relation, $\langle a, b \rangle = \langle A_{\mathcal{F}}(f), B_{\mathcal{F}}(f) \rangle$, where $A_{\mathcal{F}}(f)$ and $B_{\mathcal{F}}(f)$ are the Fourier transforms of $a(t)$ and $b(t)$.
- (ii) $a(t) \exp(j2\pi\Delta t)$ has Fourier transform $A_{\mathcal{F}}(f - \Delta)$.
- (iii) $\phi(t) = \text{sinc}(t)$ has Fourier transform $\text{rect}(f) := \mathbb{1}\{|f| < 1/2\}$.

Consider a transmitter that operates with $f_0 > 0$ and $\phi(t) = \text{sinc}(t)$ as follows:

$$[i] \rightarrow [c_i \in \mathbb{C}] \rightarrow [w_{i,E}(t) = c_i \phi(t)] \rightarrow [w_i(t) = \sqrt{2} \Re\{w_{i,E}(t) \exp(j2\pi f_0 t)\}].$$

The waveform $w_i(t)$ is then input to an AWGN channel with noise intensity $N_0/2$; the channel's output is $R(t)$.

(a) (3 pts) Consider the following receiver:

$$[R(t)] \rightarrow [R_E(t) = R(t) \sqrt{2} \exp(-j2\pi f_0 t)] \rightarrow [Y = \langle R_E, \phi \rangle] \rightarrow [\hat{i} = \arg \min_i |Y - c_i|].$$

What are the conditions on f_0 and the probability distribution of the message i so that this receiver is optimal?

For the rest of the problem suppose that there is an error made in the receiver design: while forming $R_E(t)$, an oscillator frequency $f_1 > 0$ instead of f_0 is used, i.e., $R_E(t) = R(t) \sqrt{2} \exp(-j2\pi f_1 t)$. The rest of the receiver is identical to the design in (a).

(b) (2 pts) Noting that for any complex number z , $2\Re\{z\} = z + z^*$, find f_2 and f_3 such that

$$R_E(t) = c_i \phi(t) \exp(j2\pi f_2 t) + c_i^* \phi(t) \exp(j2\pi f_3 t) + N(t) \sqrt{2} \exp(-j2\pi f_1 t).$$

Suppose we write $Y = d_i + Z$, where $d_i \in \mathbb{C}$ represents the part of Y which depends on the message and Z represents noise.

(c) (3 pts) Find α and β so that

$$d_i = \alpha c_i + \beta c_i^*.$$

(d) (2 pts) Find necessary and sufficient conditions on f_0 and f_1 so that $\beta = 0$. Find necessary and sufficient conditions on f_0 and f_1 so that $\alpha \neq 0$.

(e) (2 pts) Find waveforms $a(t)$ and $b(t)$ so that $\Re\{Z\} = \langle N, a \rangle$ and $\Im\{Z\} = \langle N, b \rangle$. Under what conditions (on f_0 and f_1) will $\Re\{Z\}$ and $\Im\{Z\}$ be independent?

(f) (2 pts) Suppose $f_0 = 3$, $f_1 = 3.2$, and the codewords are $c_0 = \sqrt{\mathcal{E}}$, $c_1 = jc_0$, $c_2 = -c_0$, $c_3 = -c_1$. What is the error probability?

(g) (2 pts) Suppose $f_0 = 3$, $f_1 = 4$, and the codewords are the same as in part (f). What is the error probability?