SPRING

Computer Security (COM-301)
Adversarial thinking
Attacks and defenses

Carmela Troncoso
SPRING Lab
carmela.troncoso@epfl.ch

Some slides/ideas adapted from: Emiliano de Cristofaro, Gianluca Stringhini, George Danezis




Structure of the lecture
* Why studying attacksis so important?

* How are attacks developed?
* Adversarial thinking process
* Exampleson real world systems

* Which attacks should you worry about?
* Reasoningprocess: what can go wrong? what not to do?
* Example attacks on software




SPRING

Computer Security (COM-301)
Adversarial thinking
Reasoning as an adversary

Carmela Troncoso
SPRING Lab
carmela.troncoso@epfl.ch

Some slides/ideas adapted from: Emiliano de Cristofaro, Gianluca Stringhini, George Danezis




Why do we study attacks?

Deeper Understanding of Defense
Very good attackers make very good defenders (and vice versa— find many attacks)
Mediocre attackers, make extremely poordefenders (find some attacks...)

Job opportunity: Penetration testing (pentesting) is a major industry
Try to bypass controls to establishithe security quality of a system

Nowadays also privacy!
Companies need to work with data, and
need to make sure that no inferences can
be made. They require knowledge to test
how well the algorithms they deploy
sanitize their data

In computer security the study of attacks (besides a lot of fun) is the path to better
understand threats on systems in order to build better defences.

Besides, from a practical perspective, being a good attacker gives high chances to find a job.
Traditional attacks are on systems and software (so-called pentesting). As systems cannot
be perfectly secure (as we have seen and we will continue seeing in the next lectures)
companies hire adversaries to try to find vulnerabilities. This does not guarantee security
(“the universe of bad things” is too big to explore exhaustively) but it helps lowering the
risk of attacks by eliminating low-hanging fruits.

Nowadays, not only security attackers are in demand. As privacy becomes more important,
both claimed by society (users) and regulation, industry becomes more interested on hiring
knowledge related to the evaluation of algorithms to guarantee privacy.




Why do we study attacks?

Deeper Understanding of Defense
Very good attackers make very good defenders (and vice versa— find many attacks)
Mediocre attackers, make extremely poordefenders (find some attacks...)

Job opportunity: Penetration testing (pentesting) is a major industry
Try to bypass controls to establish the security quality of a system

Does lack of found attacks guarantee that the systemis secure?
No! we can never be sure we have explored the complete attack space

Related concepts: fail safe principle, sanitization

But remember that not finding attacks is not a guarantee of security. The attack surface is
large ant we cannot guarantee that we have tried all possible attacks.

Recall:
fail safe: because we do not know what can go wrong, if something fails go to a state you

know is safe.
sanitization: do not try to avoid all the bad things, only allow known good things in your

system.




Why do we study attacks?

Deeper Understanding of Defense
Very good attackers make very good defenders (and vice versa— find many attacks)
Mediocre attackers, make extremely poordefenders (find some attacks...)

Job opportunity: Penetration testing (pentesting) is a major industry
Try to bypass controls to establish the security quality of a system

A SRS A




How are attacks developed?

ser-en-dip-i-ty
/seren'dipadé/ )

the occurrence and development of events by chance
in a happy or beneficial way.

fluke:
More

Attacks (typically) do not happen by chance. It is not that one day one wakes up and has an
illumination or an apple falls on your head a la Newton.

Attacks are discovered by studying systems in systematic ways that enable adversaries to
explore many angles where there can be a vulnerability.

Remember from Lecture 1.1, that a vulnerability is “a specific weakness that could be
exploited by adversaries with interest in a lot of different assets”




The security engineering process

1. Define a security policy (principals, assets, properties) and a threat model.

2. Define security mechanisms that support the policy given the threat model.

3. Build animplementation that supports / embodies the mechanisms.

During the first lecture, we established the steps that a security engineer needs to take in
order to secure a system:

At a very, very, high level:

- Decide what to protect from whom
- Decide how to protect it
- Implement the protections



The attack engineering process

“inverse” approach — exploits flaws in the security engineering process

1. Define a security policy (principals, assets, properties) and a threat model.
Adversary can exploit
Misidentified principals, assets, or properties
Capabilities beyond whatis considered inthreat model
(more access or more computational/algorithmic capabilities)

2. Define security mechanisms that support the policy given the threat model.

3. Build an implementation that supports / embodies the mechanisms.

The attack engineering process exploits weaknesses introduced during the security
engineering process due to carelessness, lack of knowledge, or errors.

What can go wrong when creating the security policy:
- Forgetting principal, assets, or properties. If any of this is not considered, there may be a
valuable asset whose security is not protected from a particular principal.

What can go wrong when deciding the threat model:

- Underestimation of the adversary. One thinks that the adversary has less computational
power than in reality (e.g., does not have enough resources to perform denial of service),
or one assumes that he knows no algorithm that can break the security policy (e.g., infer
secret assets to break confidentiality, compute a hash collision to break integrity).




The attack engineering process

Exploiting misidentified assets in the security policy

EXAMPLE 1 — EXTRACTING KEYS FROM HARDWARE
SECURE MODULES (HSMSs)

HSMs implement PKCS#11 standard for interoperability
API to create a new key from the secret key:
Given bits_length and offset, it uses bits_length
of the secret key from position offset

How would you exploit this function?

https://randomoracle.wordpress.com/2015 /08 /13/ safenet-h sm-key-extraction-vu Inerabil ity-part: 10

An HSM is a CPU secured physically. That is, it can hold cryptographic keys that cannot be
extracted by observing the device, or measuring the device characteristics (power
consumption, computation timing, etc.)

Part of their security comes from having a strict APl to interact with them. Following
economy of mechanism, HSMs can only be accessed through a small set of functions.

One of the functions available is “Extract key from key”. On input offset and key length it

internally generates a key of the designated length using length bits of the secret key of the
HSM starting at position offset.



The attack engineering process

Exploiting misidentified assets in the security policy

PKCS#11 considers the full key an asset to protect, but not bytes of the key

EXAMPLE 1 — EXTRACTING KEYS FROM HARDWARE
SECURE MODULES (HSMSs)

Assume a strong key exists in the HSM
Ask HSM to derive a new key of length 1 byte at offset 0

Use new key to do an operation, say HMAC on a known input
(allowed by the HSM)

Brute force the key
(input known, output known, key only 1 byte)

Repeat with keys at different offsets — Full key recovery!

https://randomoracle. wordpress.com/2015 /08 /13/ safenet-h sm-key-extraction-vu Inerab il ity-part

This allows a strategic adversary to create small keys (e.g., of size one byte), and ask the
HSM to do operations with this key.

As the key to this operation has only 228 bits, itis possible to find using exhausting search.
By asking for different offsets, the adversary can eventually recover the fill key.




Th e attaCk e ngl n ee rl ng p rocess In both cases the adversary had remote

access to functionality that was not

Exploiting unforeseen access capabilities foreseen by the threat model

EXAMPLE 2 — FROM CABLE TO THE AIR
Engine Control Units (ECU) control the vehicle

ECU connected to GSM/WiFi give a remote adversary access to the
CAN bus and all the (safety) functions of the vehicle

EXAMPLE 3 — |OT DEVICES ARE A WEAK LINK
loT weakly protected devices connected to internet

MadloT - manipulation of demand via loT
(Princeton U.) — hackers can compromise the Smart
Grid with ~100K devices

https://www. forbes. berg/2 013/07/2 4/hackers-revea -nasty-ne w-car-attacks-wit h-me-behind-t he-wheel-video/# 4536 af4228¢c 12
https: //www. wired. com/2015/07/h ackers-remotely-kil Ljeep-h ighw ay,

https://www. ft.com/content/2c17ff5e-4f02-11e8-ac41-759%eelefb74

In a car, all instructions are given to different parts using the CAN bus. The CAN bus was
never secured, because it was always assumed that an adversary would need physical
access to the vehicle in order to read/write from this bus. As electronics advanced, the bus
was connected to the Engine Control Unit, but it was still hard to access because one would
also need physical access to the vehicle to interact with the ECU. In modern vehicles,
however, the ECU is now connected to the internet (via WiFi or GSM) to enable remote
updates of the vehicle firmware, or infotainment. As a result, now remote adversaries have
access tothe most critical part of the vehicle. Hackers have demonstrated that indeed the
cangainaccess and get full control of the vehicle and perform any function: brake, steer, or
change sensor readings to make drivers believe their vehicle is not working.

A similar thing happens with Electrical centrals and the power grid. Centrals and
distribution centers count with very strong protections. They are typically not connected to
the internet, and if they do they have very strong firewalls. Similarly, modifying electricity
consumption from traditional infrastructure is hard. One has to have physical access to
appliances to switch them on. Other devices connected (computers) are also somehow
protected. But nowadays we have (million) more devices connected, the Internet of Things.
They are small and many times badly protected because their manufacturers are not well-
trained. For instance, many of them still have admin:admin as one of the authorized
login/password. Researchers at Princeton University showed that, by accessing these
devices, which in turn are connected to the power grit, they can create arbitrary electricity
demands that can even bring down the whole grid.


https://www.forbes.com/sites/andygreenberg/2013/07/24/hackers-reveal-nasty-new-car-attacks-with-me-behind-the-wheel-video/
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.ft.com/content/2c17ff5e-4f02-11e8-ac41-759eee1efb74

The attack engineering process

Exploiting unforeseen capabilities

EXAMPLE 3 — UNILATERAL USER AUTHENTICATION IN GSM Fake BTS!

When GSM was designed antennas (Base Transceiver
Stations - BTS) were difficult to implementand
expensive to build.

Thus, operators decided thatthe network did notneed
to authenticate!

Nowadays, commodity hardware can be used to fake a
base station and performaman in the middle
(eavesdrop,impersonate,...)!

13
https://wildfire.blazeinfosec.com/practical-attacks-against-gsm-networks-part-1/

Another example of unprotected infrastructure due to underestimating the capabilities of
the adversary is the GSM network. When it was created, it was assumed that creating an
antenna had prohibitive cost both in materials and know-how. Thus, when running the
protocol to connect phones to the network, the antennas do not authenticate.

Nowadays, however, we have commodity Software Defined Radio boards that can easily be
programmed to impersonate an antenna. As there is no authentication, it is easy to spoof a
network base station and trick mobile phones into connecting to your antenna instead of a
real one.




The attack engineering process

Exploiting unforeseen computational/algorithmic capabilities

Help! Hackers Stole My
Password Just By Listening To

Me Type On Skype!

EXAMPLE 4 — THE MACHINE LEARNING REVOLUTION 9

The power of inference at your fingertips!
Apparently irrelevant information becomes
critical for the security of the system

Using deep learning to break a
Captcha system

Learn to break better and faster!

Machine learning eases attacks, as it
simplifies their implementation through
substituting complex modeling tasks by

data collection

abing Capechas.

14

Regarding computation/algorithmic capabilities, we have many examples.

On the capabilities side we have the greater capabilities of state agencies (e.g., NSA) to
brute-force RSA long keys. One reason why the internet is changing to longer keys (2048)
and mainly Diffie Hellman exchange, as we will see in the network security lecture.

On the algorithmic side, the most paradigmatic example nowadays is the use of machine
learning to turn algorithm design into a data-driven problem. Adversaries do not need to
think about clever algorithms to infer secret information, or to find ways to fool a detector,
but just a lot of data to create a machine learning model that does it for them.




The attack engineering process

Exploiting unforeseen computational/algorithmic capabilities

|
THE MACHINE LEARNING REVOLUTION : ALSO WORKS FOR THE GOOD GUYS!!

Improved malware detection

EXAMPLE 3

Predicting zero days (unknown vulnerabilities)
The powe

Identifying vulnerable devices

Learn to b| Automated log analysis

Breaping Copechas

15

It must also be said that machine learning has also improved the situation from the
defender point of view:

- Improve malware detection by being able to process many more features than template-
based detectors (see lecture on Malware)

- Improve our capability to detect configurations that are vulnerable (hard to enumerate,
but modelable if you have enough data).

- Improve our capability to find malicious complex patterns in logs, even when adversaries
try to hide their actions




The attack engineering process

“inverse” approach — exploits flaws in the security engineering process

1. Define a security policy (principals, assets, properties) and a threat model.
Adversary can exploit
Misidentified principals, assets, or properties
Capabilities beyondwhatis considered inthreat model
(accessorcomputational/algorithmic)

2. Define security mechanisms that support the policy given the threat model.
Adversary can exploit

Design weaknesses/flaws in the security mechanisms

3. Build an implementation that supports / embodies the mechanisms.

16

A second way of breaking the policyis to inspect the security mechanism to find
vulnerabilities that can be exploited.

As we have seenin the lecture there are many decisions to be taken when designing
architectures and protocols. It is not hard to make mistakes that open the door to attacks.




The attack engineering process

Exploiting security mechanisms design weaknesses

In both cases the algorithms were secret, but researchersreverse engineered them. Once the
algorithms were known researchersidentified vulnerabilities that allowed them to decrypt and
read messages, and even recover the key.

EXAMPLE 1 — WEAK CRYPTOGRAPHIC PRIMITIVES

Tesla — Key Fob algorithm to start the car allows to recover
key in seconds (with pre-computation)

GSM - A5/1 and A5/2 weak allow ciphertext only attacks
Can be real time by FPGA parallel computation!

Security by obscurity is a bad idea <- Open design principle!

https://web.archive.org/web/20090821163913/http://reflextor.com/trac/a51/wiki
https://www.securityweek.com/hackers-can-clone-tesla-key-fobs-seconds/ 17
https://motherboard.vice.com/amp/en_us/article/43ee8m/watch-hackers-steal-a-tesla-model-s-key-fob-hack

Two examples of weak designs, that used security by obscurity as extra protections.

In both cases the adversaries could reverse engineer the algorithm and then use weak
points of the cryptographic design to recover the key.




The attack engineering process

“inverse” approach — exploits flaws in the security engineering process

1. Define a security policy (principals, assets, properties) and a threat model.

Adversary can exploit
Misidentified principals, assets, or properties
Capabilities beyondwhatis considered inthreat model
(accessorcomputational/algorithmic)

2. Define security mechanisms that support the policy given the threat model.

Adversary can exploit
Design weaknesses/flaws in the security mechanisms

3. Build an implementation that supports / embodies the mechanisms.

Adversary can exploit
Implementation or operation problems that allow you to subvert the mechanisms

18

After the design comes the implementation. Software is very complex and many times
small errors enable the adversaries to infiltrate the TCB (see final slides of this lecture and
the software security lecture).




The attack engineering process

Exploiting bad operation decisions to subvert security mechanisms

When the IV is repeated, the stream produced by RC4 that

EXAMPLE 1 — WEP BAD USE OF RC4 is XORed with messages is repeated. This effectively is a
repeated One Time Pad, and thus allows to recover

messages. Because of some particularities of how RC4 is
constructed, one can evenrecover the secret key.

WEP uses RC4, a secure stream cipher when the IV is random.

In WEP the IV is defined to have 24 bit. The implementation uses this 24 bits in such a way that the IV is
repeated every 5000 / 6000 frames!
Adversary can accelerate the attack by spoofing MAC addresses to ask for more frames

Can be also seen
as the WEP
protocolisa

flawed design

One implementation problem was the decision of using RC4 (a secure stream cipher) with a
small IV for WEP (a protocol to encrypt WiFi communications). The fact that the IV is very
small means that if there is enough traffic the IV will be repeated. And remember that if we
repeat the IV with a given key, a stream cipher will output the same pseudorandom string!
(effectively we are doing the same as repeating the use of a one time pad).

Given this reuse of a stream, adversaries can recover information about the message, and
because of the internals of RC4, even recover the symmetric key and decrypt the full
communication.




The attack engineering process

Exploiting implementation flaws to subvert security mechanisms

EXAMPLE 2 — BUGS, BUGS AND MORE BUGS

Programmers make mistakes:
They forget checks, or check the wrong things
They do not sanitize, or do not sanitize correctly
They forget to protect what needs to be protected

They get confused about origin or reliability of data /
variables (Ambient authority & confused deputy)

Sudo Flaw Lets Linux Users Run Commands As Root Even When They're
Restricted

What the HUG!

sudo root with
user ID -1 or
4294967295

Beside bad parametrization of algorithms inimplementations, programmers also make
mistakes. These mistakes, often known as bugs, become vulnerabilities that enable the
adversary to perform actions the break the security policy.




W h y d O e S t h i S W O r k? :z:::'ae\: Lets Linux Users Run Commands As Root Even When They're

) What the HUG!
Sudo program uses two routines, one ofthem does

the change in UID (Remember UID is what

determines the permissions of the program).
user ID -1 or
4294967295

That routine understands “-1” as “do nothing”.

Because the routine iscalled inside sudo, which is

being executed as root (UID =0), then the program
comes out without changing, and stays withthe same
uID.

Bright side, only exploitable under certain
configurations in which users can execute sudo on
potentially dangerous programs for some users
except for root:

someone ALL=(ALL, !root) /usr/bin/vi

An example of a bug that allows users to gain root access in Linux is a wrong check in the

implementation of the sudo command. In a nutshell, the problem is that:

- the sudo command runs as root (UID = 0)

- When given a user UID to run a command as another user, during the execution of sudo
the system changes the UID to that user

- Because of a wrong comparison, when the UID provided is -1, this change does not
happened, sothe program returns from sudo keeping UID=0, i.e., keeping root
privileges.

[Interestingly, it also works with 4294967295 because it is the unsigned version of -1]
This bug only works when there is a particular configuration of who can run which
programs using sudo. As a result, even though it is easy to launch this attack, it has very

little impact.

In any case, you should update your Linux distribution!




SPRING

Computer Security (COM-301)
Adversarial thinking
Reasoning as a defender - |

Carmela Troncoso
SPRING Lab
carmela.troncoso@epfl.ch

Some slides/ideas adapted from: Emiliano de Cristofaro, Gianluca Stringhini, George Danezis

22



Reasoning about attacks
Threat modelling methodologies

IDEA: help security engineers reason about threats to a system - “What can go wrong?"

Threat modelling
Processtoidentify potential threats and unprotected resources with the goal of prioritizing

problems to implement security mechanisms.

Systematic analysis:
Whatarethe mostrelevant threats?
Whatkindof problems can threats resulton?

Whereshouldl put more effort to protect?

In order to defend the system from attacks, itis alsoimportant to reason about them in a
systematic way. In other words, explore the ways in which things can wrong for your

security policy.

Threat modelling methodologies aim at providing guidance or security teams to explore
risks in a systematic way

23



Reasoning about attacks
Threat modelling methodologies

IDEA: help security engineers reason about threats to a system - “What can go wrong?"

Attacktrees

The attack goal is theroot, and the ways to achieve this goal arerepresented by the branches. The
leafs arethe weak resources.

STRIDE
Identify system entities, events, and the boundaries of the system.
Reason about threats enumerating the type of threats that canbe embodied by theadversary
P.ASTA.
Startfrombusiness goals, processes, and use cases.
Find threats within business model, assess impact, and prioritize based on risk
Many more!

There are many threat modelling methodogies. There is no “order” or “recommendation”.
They are different and one should choose the one that seems the most adequate for their
use case

24



Reasoning about attacks
STRIDE (by Microsoft)

Model the target system, with entities, assets, and flows. Then reason about:

A member of the council of Ricks convinces Morty thatheis

Spoofing Authenticity Sy ot
T . Integrit The bad minionmodifies the plan message send by Gruto our
ampering grity favorite minionBob
Repudiation Non-repudiability Summer denies having told Morty that Rick was waiting for him
Information disclosure | Confidentiality Summer learns about the secret plans of Rick and Morty
S The minions flood Dr. Nefario’s lab withbananas and he cannot
Denial of Service Availability

receivethelatest weapons

Bob the minion gains access to the system with Gru’s

i ivi Authorization .
Elevationof Privilege o credentials

25

Microsoft employees propose the methodology STRIDE to explore possible threats (and
security properties that can be broken).

Starting from a description of the system, STRIDE helps the analyst consider different
dangers and harms in a systematic way.

25



Reasoning about attacks
Brainstorming using cards

Financial Wellbeing Politics

Human Impact Adversary's Motivations

Ry Yo—
' Register

Physical Attack
Adversary's Methods

to Vote
Here

http://securitycards.cs.washington.edu/index.html 26

Games can help! This is an example of several card-based games that help brainstorming
about threats and vulnerabilities in order to explore all possible attack vectors and
consequences ina system.

26



	Slide 1: Computer Security (COM-301) Adversarial thinking Attacks and defenses
	Slide 2: Structure of the lecture
	Slide 3: Computer Security (COM-301) Adversarial thinking Reasoning as an adversary
	Slide 4: Why do we study attacks?
	Slide 5: Why do we study attacks?
	Slide 6: Why do we study attacks?
	Slide 7: How are attacks developed?
	Slide 8: The security engineering process
	Slide 9: The attack engineering process “inverse” approach – exploits flaws in the security engineering process
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Computer Security (COM-301) Adversarial thinking Reasoning as a defender - I
	Slide 23
	Slide 24
	Slide 25
	Slide 26

