
1

Computer Security (COM-301)
Adversarial thinking

Attacks and defenses

Carmela Troncoso

SPRING Lab

carmela.troncoso@epfl.ch

Some slides/ideas adapted from: Emiliano de Cristofaro, Gianluca Stringhini, George Danezis

2

Structure of the lecture

• Why studying attacks is so important?

• How are attacks developed?
• Adversarial thinking process

• Examples on real world systems

• Which attacks should you worry about?
• Reasoning process: what can go wrong? what not to do?

• Example attacks on software

2

3

Computer Security (COM-301)
Adversarial thinking

Reasoning as an adversary

Carmela Troncoso

SPRING Lab

carmela.troncoso@epfl.ch

Some slides/ideas adapted from: Emiliano de Cristofaro, Gianluca Stringhini, George Danezis

In computer security the study of attacks (besides a lot of fun) is the path to better
understand threats on systems in order to build better defences.

Besides, from a practical perspective, being a good attacker gives high chances to find a job.
Traditional attacks are on systems and software (so-called pentesting). As systems cannot
be perfectly secure (as we have seen and we will continue seeing in the next lectures)
companies hire adversaries to try to find vulnerabilities. This does not guarantee security
(“the universe of bad things” is too big to explore exhaustively) but it helps lowering the
risk of attacks by eliminating low-hanging fruits.

Nowadays, not only security attackers are in demand. As privacy becomes more important,
both claimed by society (users) and regulation, industry becomes more interested on hiring
knowledge related to the evaluation of algorithms to guarantee privacy.

Why do we study attacks?

Deeper Understanding of Defense
Very good attackers make very good defenders (and vice versa – find many attacks)

Mediocre attackers, make extremely poor defenders (find some attacks…)

Job opportunity: Penetration testing (pentesting) is a major industry
Try to bypass controls to establish the security quality of a system

4

Nowadays also privacy!
Companies need to work with data, and

need to make sure that no inferences can
be made. They require knowledge to test

how well the algorithms they deploy
sanitize their data

But remember that not finding attacks is not a guarantee of security. The attack surface is
large ant we cannot guarantee that we have tried all possible attacks.

Recall:
fail safe: because we do not know what can go wrong, if something fails go to a state you

know is safe.
sanitization: do not try to avoid all the bad things, only allow known good things in your

system.

Why do we study attacks?

Deeper Understanding of Defense
Very good attackers make very good defenders (and vice versa – find many attacks)

Mediocre attackers, make extremely poor defenders (find some attacks…)

Job opportunity: Penetration testing (pentesting) is a major industry
Try to bypass controls to establish the security quality of a system

5

Does lack of found attacks guarantee that the system is secure?

No! we can never be sure we have explored the complete attack space

Related concepts: fail safe principle, sanitization

Why do we study attacks?

Deeper Understanding of Defense
Very good attackers make very good defenders (and vice versa – find many attacks)

Mediocre attackers, make extremely poor defenders (find some attacks…)

Job opportunity: Penetration testing (pentesting) is a major industry
Try to bypass controls to establish the security quality of a system

6

Remember you cannot freely hack around

 Ethics, law, and regulations

Attacks (typically) do not happen by chance. It is not that one day one wakes up and has an
illumination or an apple falls on your head à la Newton.

Attacks are discovered by studying systems in systematic ways that enable adversaries to
explore many angles where there can be a vulnerability.

Remember from Lecture 1.1, that a vulnerability is “a specific weakness that could be
exploited by adversaries with interest in a lot of different assets”

How are attacks developed?

7

During the first lecture, we established the steps that a security engineer needs to take in
order to secure a system:

At a very, very, high level:

- Decide what to protect from whom
- Decide how to protect it
- Implement the protections

The security engineering process

The security engineering process (weeks 1 and 2)

1. Define a security policy (principals, assets, properties) and a threat model.
Attacks can exploit:

Mis identified principals, assets, or properties
Capabilities beyond what is considered in threat model

2. Define security mechanisms that support the policy given the threat model.
Attack can exploit:

Des ign weaknesses in the security mechanisms

3. Build an implementation that supports / embodies the mechanisms.
Attack can exploit:

Implementation or operation problems that allow you to subvert the mechanisms

8

The attack engineering process exploits weaknesses introduced during the security
engineering process due to carelessness, lack of knowledge, or errors.

What can go wrong when creating the security policy:
- Forgetting principal, assets, or properties. If any of this is not considered, there may be a

valuable asset whose security is not protected from a particular principal.

What can go wrong when deciding the threat model:
- Underestimation of the adversary. One thinks that the adversary has less computational
power than in reality (e.g., does not have enough resources to perform denial of service),
or one assumes that he knows no algorithm that can break the security policy (e.g., infer
secret assets to break confidentiality, compute a hash collision to break integrity).

The attack engineering process
“inverse” approach – exploits flaws in the security engineering process

1. Define a security policy (principals, assets, properties) and a threat model.
Adversary can exploit

Misidentified principals, assets, or properties

Capabilities beyond what is considered in threat model
(more access or more computational/algorithmic capabilities)

2. Define security mechanisms that support the policy given the threat model.
Adversary can exploit

Design weaknesses/flaws in the security mechanisms

3. Build an implementation that supports / embodies the mechanisms.
Adversary can exploit

Implementation or operation problems that allow you to subvert the mechanisms

9

An HSM is a CPU secured physically. That is, it can hold cryptographic keys that cannot be
extracted by observing the device, or measuring the device characteristics (power
consumption, computation timing, etc.)

Part of their security comes from having a strict API to interact with them. Following
economy of mechanism, HSMs can only be accessed through a small set of functions.

One of the functions available is “Extract key from key”. On input offset and key length it
internally generates a key of the designated length using length bits of the secret key of the
HSM starting at position offset.

10

EXAMPLE 1 – EXTRACTING KEYS FROM HARDWARE
 SECURE MODULES (HSMS)

HSMs implement PKCS#11 standard for interoperability

API to create a new key from the secret key:
 Given bits_length and offset, it uses bits_length

of the secret key from position offset

How would you exploit this function?

The attack engineering process
 Exploiting misidentified assets in the security policy

Create a new key using
a substring of an

existing key.

https://randomoracle.wordpress.com/2015 /08 /13/safenet-h sm-key-extraction-vu lnerab il ity-part-i /

This allows a strategic adversary to create small keys (e.g., of size one byte), and ask the
HSM to do operations with this key.

As the key to this operation has only 2^8 bits, it is possible to find using exhausting search.
By asking for different offsets, the adversary can eventually recover the fill key.

11

EXAMPLE 1 – EXTRACTING KEYS FROM HARDWARE
 SECURE MODULES (HSMS)

Assume a strong key exists in the HSM

Ask HSM to derive a new key of length 1 byte at offset 0

Use new key to do an operation, say HMAC on a known input
 (allowed by the HSM)

Brute force the key
 (input known, output known, key only 1 byte)

Repeat with keys at different offsets → Full key recovery!

The attack engineering process
 Exploiting misidentified assets in the security policy

Create a new key using
a substring of an

existing key.

https://randomoracle.wordpress.com/2015 /08 /13/safenet-h sm-key-extraction-vu lnerab il ity-part-i /

PKCS#11 considers the full key an asset to protect, but not bytes of the key

In a car, all instructions are given to different parts using the CAN bus. The CAN bus was
never secured, because it was always assumed that an adversary would need physical
access to the vehicle in order to read/write from this bus. As electronics advanced, the bus

was connected to the Engine Control Unit, but it was still hard to access because one would
also need physical access to the vehicle to interact with the ECU. In modern vehicles,
however, the ECU is now connected to the internet (via WiFi or GSM) to enable remote
updates of the vehicle firmware, or infotainment. As a result, now remote adversaries have
access to the most critical part of the vehicle. Hackers have demonstrated that indeed the
can gain access and get full control of the vehicle and perform any function: brake, steer, or
change sensor readings to make drivers believe their vehicle is not working.

A similar thing happens with Electrical centrals and the power grid. Centrals and
distribution centers count with very strong protections. They are typically not connected to
the internet, and if they do they have very strong firewalls. Similarly, modifying electricity
consumption from traditional infrastructure is hard. One has to have physical access to
appliances to switch them on. Other devices connected (computers) are also somehow
protected. But nowadays we have (million) more devices connected, the Internet of Things.
They are small and many times badly protected because their manufacturers are not well-
trained. For instance, many of them still have admin:admin as one of the authorized
login/password. Researchers at Princeton University showed that, by accessing these
devices, which in turn are connected to the power grit, they can create arbitrary electricity
demands that can even bring down the whole grid.

12

EXAMPLE 2 – FROM CABLE TO THE AIR

Engine Control Units (ECU) control the vehicle

ECU connected to GSM/WiFi give a remote adversary access to the
CAN bus and all the (safety) functions of the vehicle

The attack engineering process
 Exploiting unforeseen access capabilities

EXAMPLE 3 – IOT DEVICES ARE A WEAK LINK

IoT weakly protected devices connected to internet

MadIoT - manipulation of demand via IoT
(Princeton U.) – hackers can compromise the Smart

Grid with ~100K devices

https://www.forbes.com/sites/andygreen berg/2 013/07/2 4/hackers-revea l-nasty-ne w-car-attacks-wit h-me-behind-t he-wheel-video/# 4b536 af4228c
https://www.wired.com/2015/07/h ackers-remotely-kil l-jeep-h ighw ay/

https://www.ft.com/content/2c17ff5e-4f02-11e8-ac41-759eee1efb74

In both cases the adversary had remote
access to functionality that was not

foreseen by the threat model

https://www.forbes.com/sites/andygreenberg/2013/07/24/hackers-reveal-nasty-new-car-attacks-with-me-behind-the-wheel-video/
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.ft.com/content/2c17ff5e-4f02-11e8-ac41-759eee1efb74

Another example of unprotected infrastructure due to underestimating the capabilities of
the adversary is the GSM network. When it was created, it was assumed that creating an
antenna had prohibitive cost both in materials and know-how. Thus, when running the

protocol to connect phones to the network, the antennas do not authenticate.

Nowadays, however, we have commodity Software Defined Radio boards that can easily be
programmed to impersonate an antenna. As there is no authentication, it is easy to spoof a
network base station and trick mobile phones into connecting to your antenna instead of a
real one.

EXAMPLE 3 – UNILATERAL USER AUTHENTICATION IN GSM

When GSM was designed antennas (Base Transceiver
Stations - BTS) were difficult to implement and
expensive to build.

Thus, operators decided that the network did not need
to authenticate!

Nowadays, commodity hardware can be used to fake a
base station and perform a man in the middle
(eavesdrop, impersonate,…)!

https://wildfire.blazeinfosec.com/practical-attacks-against-gsm-networks-part-1/

The attack engineering process
 Exploiting unforeseen capabilities

Fake BTS!

13

Regarding computation/algorithmic capabilities, we have many examples.

On the capabilities side we have the greater capabilities of state agencies (e.g., NSA) to

brute-force RSA long keys. One reason why the internet is changing to longer keys (2048)
and mainly Diffie Hellman exchange, as we will see in the network security lecture.

On the algorithmic side, the most paradigmatic example nowadays is the use of machine
learning to turn algorithm design into a data-driven problem. Adversaries do not need to
think about clever algorithms to infer secret information, or to find ways to fool a detector,
but just a lot of data to create a machine learning model that does it for them.

14

EXAMPLE 4 – THE MACHINE LEARNING REVOLUTION

The power of inference at your fingertips!
 Apparently irrelevant information becomes

 critical for the security of the system

Learn to break better and faster!

The attack engineering process
 Exploiting unforeseen computational/algorithmic capabilities

Machine learning eases attacks, as it
simplifies their implementation through

substituting complex modeling tasks by
data collection

It must also be said that machine learning has also improved the situation from the
defender point of view:

- Improve malware detection by being able to process many more features than template-
based detectors (see lecture on Malware)

- Improve our capability to detect configurations that are vulnerable (hard to enumerate,
but modelable if you have enough data).

- Improve our capability to find malicious complex patterns in logs, even when adversaries
try to hide their actions

15

EXAMPLE 3 – THE MACHINE LEARNING REVOLUTION

The power of inference at your fingertips!
 Apparently irrelevant information becomes

 critical for the security of the system

Learn to break better and faster!

The attack engineering process
 Exploiting unforeseen computational/algorithmic capabilities

THE MACHINE LEARNING REVOLUTION: ALSO WORKS FOR THE GOOD GUYS!!

Improved malware detection

Predicting zero days (unknown vulnerabilities)

Identifying vulnerable devices

Automated log analysis

A second way of breaking the policy is to inspect the security mechanism to find
vulnerabilities that can be exploited.

As we have seen in the lecture there are many decisions to be taken when designing
architectures and protocols. It is not hard to make mistakes that open the door to attacks.

1. Define a security policy (principals, assets, properties) and a threat model.
Adversary can exploit

Misidentified principals, assets, or properties

Capabilities beyond what is considered in threat model
(access or computational/algorithmic)

2. Define security mechanisms that support the policy given the threat model.
Adversary can exploit

Design weaknesses/flaws in the security mechanisms

3. Build an implementation that supports / embodies the mechanisms.
Adversary can exploit

Implementation or operation problems that allow you to subvert the mechanisms

16

The attack engineering process
“inverse” approach – exploits flaws in the security engineering process

Two examples of weak designs, that used security by obscurity as extra protections.

In both cases the adversaries could reverse engineer the algorithm and then use weak

points of the cryptographic design to recover the key.

EXAMPLE 1 – WEAK CRYPTOGRAPHIC PRIMITIVES

Tesla – Key Fob algorithm to start the car allows to recover
key in seconds (with pre-computation)

GSM – A5/1 and A5/2 weak allow ciphertext only attacks
 Can be real time by FPGA parallel computation!

https://web.archive.org/web/20090821163913/http://reflextor.com/trac/a51/wiki
https://www.securityweek.com/hackers-can-clone-tesla-key-fobs-seconds/
https://motherboard.vice.com/amp/en_us/article/43ee8m/watch-hackers-steal-a-tesla-model-s-key-fob-hack

The attack engineering process
 Exploiting security mechanisms design weaknesses

17

Security by obscurity is a bad idea <- Open design principle!

In both cases the algorithms were secret, but researchers reverse engineered them. Once the
algorithms were known researchers identified vulnerabilities that allowed them to decrypt and

read messages, and even recover the key.

After the design comes the implementation. Software is very complex and many times
small errors enable the adversaries to infiltrate the TCB (see final slides of this lecture and
the software security lecture).

1. Define a security policy (principals, assets, properties) and a threat model.
Adversary can exploit

Misidentified principals, assets, or properties

Capabilities beyond what is considered in threat model
(access or computational/algorithmic)

2. Define security mechanisms that support the policy given the threat model.
Adversary can exploit

Design weaknesses/flaws in the security mechanisms

3. Build an implementation that supports / embodies the mechanisms.
Adversary can exploit

Implementation or operation problems that allow you to subvert the mechanisms

18

The attack engineering process
“inverse” approach – exploits flaws in the security engineering process

One implementation problem was the decision of using RC4 (a secure stream cipher) with a
small IV for WEP (a protocol to encrypt WiFi communications). The fact that the IV is very
small means that if there is enough traffic the IV will be repeated. And remember that if we

repeat the IV with a given key, a stream cipher will output the same pseudorandom string!
(effectively we are doing the same as repeating the use of a one time pad).

Given this reuse of a stream, adversaries can recover information about the message, and
because of the internals of RC4, even recover the symmetric key and decrypt the full
communication.

EXAMPLE 1 – WEP BAD USE OF RC4

WEP uses RC4, a secure stream cipher when the IV is random.

In WEP the IV is defined to have 24 bit. The implementation uses this 24 bits in such a way that the IV is
repeated every 5000 / 6000 frames!

 Adversary can accelerate the attack by spoofing MAC addresses to ask for more frames

19

The attack engineering process
 Exploiting bad operation decisions to subvert security mechanisms

https://null-byte.wonderhowto.com/how-to /hack-wi-fi-cracking-we p-passwor ds-with-aircrack-ng-0147340 /
https://asecuritysite.com/encryption/rc4_wep

Can be also seen
as the WEP

protocol is a
flawed design

When the IV is repeated, the stream produced by RC4 that
is XORed with messages is repeated. This effectively is a

repeated One Time Pad, and thus allows to recover
messages. Because of some particularities of how RC4 is

constructed, one can even recover the secret key.

Beside bad parametrization of algorithms in implementations, programmers also make
mistakes. These mistakes, often known as bugs, become vulnerabilities that enable the
adversary to perform actions the break the security policy.

EXAMPLE 2 – BUGS, BUGS AND MORE BUGS

Programmers make mistakes:

They forget checks, or check the wrong things

They do not sanitize, or do not sanitize correctly

They forget to protect what needs to be protected

They get confused about origin or reliability of data /
variables (Ambient authority & confused deputy)

20

The attack engineering process
 Exploiting implementation flaws to subvert security mechanisms

An example of a bug that allows users to gain root access in Linux is a wrong check in the
implementation of the sudo command. In a nutshell, the problem is that:
- the sudo command runs as root (UID = 0)

- When given a user UID to run a command as another user, during the execution of sudo
the system changes the UID to that user

- Because of a wrong comparison, when the UID provided is -1, this change does not
happened, so the program returns from sudo keeping UID=0, i.e., keeping root
privileges.

[Interestingly, it also works with 4294967295 because it is the unsigned version of -1]

This bug only works when there is a particular configuration of who can run which
programs using sudo. As a result, even though it is easy to launch this attack, it has very
little impact.

In any case, you should update your Linux distribution!

21

Why does this work?

Sudo program uses two routines, one of them does
the change in UID (Remember UID is what

determines the permissions of the program).

That routine understands “-1” as “do nothing”.

Because the routine is called inside sudo, which is

being executed as root (UID = 0), then the program
comes out without changing, and stays with the same

UID.

Bright side, only exploitable under certain

configurations in which users can execute sudo on
potentially dangerous programs for some users

except for root:

someone ALL=(ALL, !root) /usr/bin/vi

22

Computer Security (COM-301)
Adversarial thinking

Reasoning as a defender - I

Carmela Troncoso

SPRING Lab

carmela.troncoso@epfl.ch

Some slides/ideas adapted from: Emiliano de Cristofaro, Gianluca Stringhini, George Danezis

In order to defend the system from attacks, it is also important to reason about them in a
systematic way. In other words, explore the ways in which things can wrong for your
security policy.

Threat modelling methodologies aim at providing guidance or security teams to explore
risks in a systematic way

23

23

Reasoning about attacks
Threat modelling methodologies

IDEA: help security engineers reason about threats to a system - “What can go wrong?"

Threat modelling

 Process to identify potential threats and unprotected resources with the goal of prioritizing
problems to implement security mechanisms.

 Systematic analysis:

 What are the most relevant threats?

 What kind of problems can threats result on?

 Where should I put more effort to protect?

There are many threat modelling methodogies. There is no “order” or “recommendation”.
They are different and one should choose the one that seems the most adequate for their
use case

24

24

Reasoning about attacks
Threat modelling methodologies

IDEA: help security engineers reason about threats to a system - “What can go wrong?"

Attack trees

 The attack goal is the root, and the ways to achieve this goal are represented by the branches. The
leafs are the weak resources.

STRIDE

 Identify system entities, events, and the boundaries of the system.

 Reason about threats enumerating the type of threats that can be embodied by the adversary

P.A.S.T.A.

 Start from business goals, processes, and use cases.

 Find threats within business model, assess impact, and prioritize based on risk

Many more!

Microsoft employees propose the methodology STRIDE to explore possible threats (and
security properties that can be broken).

Starting from a description of the system, STRIDE helps the analyst consider different
dangers and harms in a systematic way.

25

25

Reasoning about attacks
STRIDE (by Microsoft)

Model the target system, with entities, assets, and flows. Then reason about:

Threat Property threatened Example

Spoofing Authenticity
A member of the council of Ricks convinces Morty that he is
the real Rick

Tampering Integrity
The bad minion modifies the plan message send by Gruto our
favorite minion Bob

Repudiation Non-repudiability Summer denies having told Morty that Rick was waiting for him

Information disclosure Confidentiality Summer learns about the secret plans of Rick and Morty

Denial of Service Availability
The minions floodDr. Nefario’s lab with bananas and he cannot
receive the latest weapons

Elevation of Privilege Authorization
Bob the minion gains access to the system with Gru’s
credentials

Games can help! This is an example of several card-based games that help brainstorming
about threats and vulnerabilities in order to explore all possible attack vectors and
consequences in a system.

26

26http://securitycards.cs.washington.edu/index.html

Reasoning about attacks
Brainstorming using cards

	Slide 1: Computer Security (COM-301) Adversarial thinking Attacks and defenses
	Slide 2: Structure of the lecture
	Slide 3: Computer Security (COM-301) Adversarial thinking Reasoning as an adversary
	Slide 4: Why do we study attacks?
	Slide 5: Why do we study attacks?
	Slide 6: Why do we study attacks?
	Slide 7: How are attacks developed?
	Slide 8: The security engineering process
	Slide 9: The attack engineering process “inverse” approach – exploits flaws in the security engineering process
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Computer Security (COM-301) Adversarial thinking Reasoning as a defender - I
	Slide 23
	Slide 24
	Slide 25
	Slide 26

