
Computer Security and Privacy
(COM-301)

Applied cryptography II
Carmela Troncoso

SPRING Lab
carmela.troncoso@epfl.ch

Some slides/ideas adapted from: George Danezis, Yoshi Kohno

Computer Security (COM-301)
Applied cryptography II

Hash functions
Carmela Troncoso

SPRING Lab
carmela.troncoso@epfl.ch

Some slides/ideas adapted from: George Danezis, Yoshi Kohno

Hash functions

HASH FUNCTION
(H)

Any length message (m) Fixed short-length output (h)

THREE SECURITY PROPERTIES

PRE-IMAGE RESISTANCE

Given H(m), difficult to find m
SECOND PRE-IMAGE RESISTANCE

Given m, difficult to find an m'!=m such that H(m') = H(m)
COLLISION RESISTANCE

Difficult to find any m, m' such that H(m) = H(m')

Hash functions

HASH FUNCTION
(H)

Any length message (m) Fixed short-length output (h)

THREE SECURITY PROPERTIES

PRE-IMAGE RESISTANCE

Given H(m), difficult to find m
SECOND PRE-IMAGE RESISTANCE

Given m, difficult to find an m'!=m such that H(m') = H(m)
COLLISION RESISTANCE

Difficult to find any m, m' such that H(m) = H(m')

Hash functions

HASH FUNCTION
(H)

Any length message (m) Fixed short-length output (h)

MD5 (1991): 128 bit hash – insecure
SHA0, SHA1: 160 bits – insecure
SHA-2 (224/256 /384/512) – OK but slow
SHA-3 (224/256 /384/512)

Don’t design
your own

THREE SECURITY PROPERTIES

PRE-IMAGE RESISTANCE

Given H(m), difficult to find m
SECOND PRE-IMAGE RESISTANCE

Given m, difficult to find an m'!=m such that H(m') = H(m)
COLLISION RESISTANCE

Difficult to find any m, m' such that H(m) = H(m')

Hash functions

HASH FUNCTION
(H)

Any length message (m) Fixed short-length output (h)

USES

Support digital signatures, build HMAC, password storage, file integrity, secure
commitments, secure logging, blockchains, …

THREE SECURITY PROPERTIES

PRE-IMAGE RESISTANCE

Given H(m), difficult to get m
SECOND PRE-IMAGE RESISTANCE

Given m, difficult to get an m‘!=m such that H(m') = H(m)
COLLISION RESISTANCE

Difficult to find any m, m' such that H(m) = H(m')

Hash functions

HASH FUNCTION
(H)

Any length message (m) Fixed short-length output (h)

USES

Support digital signatures, build HMAC, password storage, file integrity, secure commitments,
secure logging, blockchain,…

HMAC != H(K||M)
Don’t design
your own

Computer Security (COM-301)
Applied cryptography

Asymmetric cryptography
Carmela Troncoso

SPRING Lab
carmela.troncoso@epfl.ch

Some slides/ideas adapted from: George Danezis, Yoshi Kohno

Block ciphers, Stream Ciphers, MACs

Gru and Bob need to share a secret key

Secure key distribution is a problem!

Symmetric Cryptography

Diffie, Whitfield, and Martin Hellman. "New directions in cryptography.“ Information Theory, IEEE Transactions on 22.6 (1976): 644-654

Asymmetric cryptography

Secret Key: SKBob Secret Key: SKGru

Public Key: PKBob Public Key: PKGru

Each participant has two keys:
One secret key that only they know
One public key that they can reveal

Pairs of (secret, public) keys are created with specific algorithms

Asymmetric cryptography

Secret Key: SKBob Secret Key:
SKGru

Public Key
PKBob

Public Key
PKGru

Public Key
Infrastructure

Public keys can be stored in a
public repository

Asymmetric cryptography: confidentiality

Public Key
PKGru

Enc(PKGru ; m)

Secret Key: SKGruExamples:
RSA-OAEP Don’t design

your own

Public Key
Infrastructure

Dec(SKGru ,Enc(PKGru,m))= m

Dec(PK,Enc(PK,m))=
I want to talk to

Gru

Public Key
PKBob

m, Sign(SKBob,m)

Public Key
Infrastructure

Examples:
NIST DSA
RSA-PSS

Don’t design
your own

Secret Key: SKBob

Asymmetric cryptography: integrity

Verify(PKBob, m, Sign(SKBob,m))= Yes or No

Public Key
PKBob

m, Sign(SKBob,m)

Public Key
Infrastructure

Examples:
NIST DSA
RSA-PSS

Don’t design
your own

Secret Key: SKBob

Asymmetric cryptography: integrity

Verify(PKBob, m, Sign(SKBob,m))= Yes or No

Cannot “forge” a signature
(m, s, PK) that verifies

without knowing sk

Properties:
Integrity of message
Authenticity sender
Non-repudiation

Application: Public Key Infrastructure: Certificates
(1) Authority signs a mapping between names, or names and

encryption public keys.
(2) Authority signs mapping between names and verification keys.

Digital Signatures

(why are they different from MACs?)

Properties:
Integrity of message
Authenticity sender
Non-repudiation

Application: Public Key Infrastucture: Certificates
(1) Authority signs a mapping between names, or names and

encryption public keys.
(2) Authority signs mapping between names and verification keys.

Digital Signatures

(why are they different from MACs?)

Encryption key pair != Signature key pair

All together
ASYMMETRIC CRYPTOGRAPHY

Users have two pairs of keys (secret key SK, public key PK)
Confidentiality Dec(SK,Enc(PK,m))= m
Integrity/Authentication Sig(SK,m) = s; Verify(PK,Sig(SK,m)) = YES/NO

Encryption Public Key
PK

Secret Encryption Key: SK

Enc(PK ; m) , Sign(SK ,m)

Verification Public Key
PK

Secret Signing Key: SK
Secret Encryption Key: SK

Secret Signing Key: SK
17

I want to talk to I want to make sure
I am talking to

18

Asymmetric cryptography limitations

Computationally costly compared with most symmetric key algorithms of
equivalent security

Signing and encrypting is slow

Not suitable to encrypt large amounts of data
There are not good “cipher modes”

In practice
Sign hash of messages

Hybrid encryption
(only encrypt small symmetric key)

Digital signatures on hash functions

Public Key
PKBob

Secret Key: SKBob

m, Sign(SKBob,m)

Public Key
Infrastructure

Digital signatures on hash functions

Public Key
PKBob

Secret Key: SKBob

m, Sign(SKBob,m)

Public Key
Infrastructure

Digital signatures on hash functions

Public Key
PKBob

Secret Key: SKBob

m, Sign(SKBob,h)

Public Key
Infrastructure

h=H(m)

h = H(m)

PRE-IMAGE RESISTANCE
Given H(m), difficult to get m

SECOND PRE-IMAGE RESISTANCE
Given m, difficult to get an m‘!=m such that H(m') = H(m)

COLLISION RESISTANCE
Difficult to find any m, m' such that H(m) = H(m')

Refresher

Verify(PKBob, h, Sign(SKBob,h))= Yes or No

I want to make sure
I am talking to

Hybrid encryption
Asymmetric encryption is slow, but symmetric is fast!

Public Key
PKGru

Enc(PKGru; k)

Enc(k, m1)

Step 1: establish a shared symmetric key k using “key transport”

Step 2: use the shared symmetric key k to encrypt the rest of the communication

Enc(k, m2)

Enc(k, m3)

For authentication,
add signatures!!

NOT SO SIMPLE!
e.g. ISO 9798-3

TLS
Don’t design
your own

I want to
talk to

This process is repeated every time Bob wants to talk to
Gru

Enc(PKGru; k1)

Enc(k1, m1)

23

Monday

Tuesday

Enc(k1, m2)
Enc(k1, m3)

Enc(PKGru; k2)

Enc(k2, m4)
Enc(k2, m5)
Enc(k2, m6)

Enc(PKGru; k3)

Enc(k3, m7)
Enc(k3, m8)
Enc(k3, m9)

Thursday

Each of these
exchanges with a
new key is called
“session”

The keys k1,k2,… are
called “Session keys”

Enc(PKGru; k1)

Enc(k1, m1)

24

Monday

Tuesday

Enc(k1, m2)
Enc(k1, m3)

Enc(PKGru; k2)

Enc(k2, m4)
Enc(k2, m5)
Enc(k2, m6)

Enc(PKGru k3)

Enc(k3, m7)
Enc(k3, m8)
Enc(k3, m9)

Thursday

Access to Gru’s secret
key gives access to the
present/past session’s
messages!

SKGru

What happens if the adversary gets access to Gru’s
asymmetric key on Thursday?

Enc(PKGru; k1)

Enc(k1, m1)

25

Monday

Tuesday

Enc(k1, m2)
Enc(k1, m3)

Enc(PKGru; k2)

Enc(k2, m4)
Enc(k2, m5)
Enc(k2, m6)

Enc(PKGru k3)

Enc(k3, m7)
Enc(k3, m8)
Enc(k3, m9)

Thursday

Access to Gru’s secret
key gives access to the
present/past session’s
messages!

SKGru

What happens if the adversary gets access to Gru’s
asymmetric key on Thursday?

DESIRABLE PROPERTY
FORWARD SECRECY: the secrecy of the messages in a session is

kept even if long term keys are compromised

If the adversary learns the key of Thursday’s session, Monday and Tuesday should
still be safe

Arithmetic modulo a number: clock arithmetic
6 (mod 12) = 6 (mod 12)
12 (mod 12) = 0 (mod 12)
14 (mod 12) = 2 (mod 12)

Arithmetic modulo a large prime p (>1024 bits)
Addition and multiplication (mod p) can be computed
Exponentiation can be computed [Given (a, x) → ax mod p?]
Discrete logarithms are HARD! [Given (a, ax mod p) → x?]

Key agreement for forward secrecy – The Math

Basic Diffie-Hellman key exchange

Secret Key: y (random!)

Shared public parameters p , g

Pb

Pa

(Pb)y= gxy (mod p)

27

Every time Bob wants to talk to Gru…

Because of the discrete logarithm hardness, an
adversary observing these values cannot

recover x and y, therefore cannot compute k

Secret Key: x (random!)

(Pa)x= gxy (mod p)
Shared secret!!
k= gxy (mod p)

To encrypt messages for the session

Basic Diffie-Hellman key exchange

Secret Key: y (random!)

Shared public parameters p , g

Pb

Pa

(Pb)y= gxy (mod p)

28

Every time Bob wants to talk to Gru…

Because of the discrete logarithm hardness, an
adversary observing these values cannot

recover x and y, therefore cannot compute k

Secret Key: x (random!)

(Pa)x= gxy (mod p)
Shared secret!!
k= gxy (mod p)

To encrypt messages for the session

After the session has ended, delete the secrets x and y.
The key can never be recovered.

Forward secrecy is achieved!!

Summary of the crypto lectures
Symmetric cryptography

• Confidentiality: Stream ciphers, Block ciphers (modes of operation!)
• Integrity / Authentication: Message Authentication Codes (MACs)

Asymmetric cryptography
• Confidentiality: Encryption
• Integrity / Authentication: Digital signatures

Hash functions
• Three security properties
• Support Digital Signatures + other functions

Hybrid encryption
best both worlds!

Forward secrecy
Diffie Hellman

Why a MAC should not be constructed as Hash(k||m)

https://www.whitehatsec.com/blog/hash-length-extension-attacks/

TAs & Carmela: Why are they designing their own crypto?!?!?
Why is this designing Crypto? You go from Hash to MAC.

COM-208 Computer networks!!
“Computer Networking: A Top-Down Approach”: MAC = Hash(k||I am Alice)

Is it wrong?!?!?!?
Short answer: Not always

So when is it wrong?
Not exam
material!!

Why a MAC should not be constructed as Hash(k||m)

https://www.whitehatsec.com/blog/hash-length-extension-attacks/

Many Hash functions (MD5, SHA1, SHA256) are built using the Merkle-Damgard paradigm

H(message’)

Not exam
material!!

MAC=H(k||Alice) does not guarantee integrity
for Merkle-Damgard hash functions

Hash length extension attacks! (given H(m) obtain H(m||stuff)
Example: H(k||this is Alice) → H(k||this is Alice, First of her name, Queen of the Andals and the First Men)

Why a MAC should not be constructed as Hash(k||m)

https://www.whitehatsec.com/blog/hash-length-extension-attacks/

Many Hash functions (MD5, SHA1, SHA256) are built using the Merkle-Damgard paradigm

H(message’)

Not exam
material!!

MAC=H(k||Alice) does not guarantee integrity
for Merkle-Damgard hash functions

Hash length extension attacks! (given H(m) obtain H(m||stuff)
Example: H(k||this is Alice) → H(k||this is Alice, First of her name, Queen of the Andals and the First Men)

Summary: it is not wrong, but there are many hash
functions that follow the Merkle-Damgard paradigm.

Safe choice: don’t do this.
If you want an HMAC, use a standardized one
e.g. https://datatracker.ietf.org/doc/html/rfc2104

	Computer Security and Privacy (COM-301)�Applied cryptography II
	Computer Security (COM-301)�Applied cryptography II �Hash functions
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Computer Security (COM-301)�Applied cryptography �Asymmetric cryptography
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Hybrid encryption
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Summary of the crypto lectures
	Slide Number 30
	Slide Number 31
	Slide Number 32

