SECURITY AND PRIVACY ENGINEERING LABORATORY

Computer Security and Privacy
(COM-301)
Applied cryptography Il
Carmela Troncoso

SPRING Lab
carmela.troncoso@epfl.ch

Some slides/ideas adapted from: George Danezis, Yoshi Kohno

SECURITY AND PRIVACY ENGINEERING LABORATORY

Computer Security (COM-301)
Applied cryptography |
Hash functions

Carmela Troncoso
SPRING Lab
carmela.troncoso@epfl.ch

Some slides/ideas adapted from: George Danezis, Yoshi Kohno

Hash functions

Any length message (m)
—

HASH FUNCTION

(H)

Fixed short-length output (h)

>

Hash functions

Any length message (m)
—

HASH FUNCTION

(H)

Fixed short-length output (h)

THREE SECURITY PROPERTIES
PRE-IMAGE RESISTANCE
Given H(m), difficult to find m
SECOND PRE-IMAGE RESISTANCE

>

Given m, difficult to find an m'l=m such that H(m') = H(m)

COLLISION RESISTANCE

Difficult to find any m, m' such that H(m) = H(m')

Hash functions

Any length message (m) Fixed short-length output (h)

—— HAsH |(:IEIJ)NCTION >

MD5 (1991): 128 bit hash — insecure
SHAO, SHA1: 160 bits — insecure
SHA-2 (224/256 /1384/512) — OK but slow

THREE SECURITY PROPERTIES
PRE-IMAGE RESISTANCE

Given H(m), difficult to find m SHA-3 (224/256 /384/512)
SECOND PRE-IMAGE RESISTANCE

Given m, difficult to find an m'l=m such that H(m') = H(m) Don’t deS|gn
COLLISION RESISTANCE yORT R /A

Difficult to find any m, m' such that H(m) = H(m')

Hash functions

Any length message (m)
—

HASH FUNCTION

(H)

Fixed short-length output (h)

THREE SECURITY PROPERTIES

PRE-IMAGE RESISTANCE

Given H(m), difficult to find m

SECOND PRE-IMAGE RESISTANCE

>

Given m, difficult to find an m'l=m such that H(m') = H(m)

COLLISION RESISTANCE

Difficult to find any m, m' such that H(m) = H(m')

USES

Support digital signatures, build HMAC, password storage, file integrity, secure
commitments, secure logging, blockchains, ...

Hash functions

Any length message (m) Fixed short-length output (h)
, HASH FUNCTION .

(H)

THREE SECURITY PROPERTIES
PRE-IMAGE RESISTANCE
Given H(m), difficult to get m
SECOND PRE-IMAGE RESISTANCE
Given m, difficult to get an m‘!=m such that H(m') = H(m)
COLLISION RESISTANCE

Difficult to fIRSEUREEEEY
your own A

HMAC != H(k| | m)

USES

Support digital signatures, build HMAC, password storage, file integrity, secure commitments,
secure logging, blockchain,...

SECURITY AND PRIVACY ENGINEERING LABORATORY

Computer Security (COM-301)
Applied cryptography
Asymmetric cryptography

Carmela Troncoso
SPRING Lab
carmela.troncoso@epfl.ch

Some slides/ideas adapted from: George Danezis, Yoshi Kohno

Symmetric Cryptography

Block ciphers, Stream Ciphers, MACs
Gru and Bob need to share a secret key

Secure key distribution is a problem!

Diffie, Whitfield, and Martin Hellman. "New directions in cryptography.” Information Theory, IEEE Transac tions on 22.6 (1976): 644-654

Asymmetric cryptography

Each participant has two keys:

One secret key that only they know
One public key that they can reveal

Pairs of (secret, public) keys are created with specific algorithms

Gy
ﬁ

Secret Key: SK; Secret Key: SK,,

Public Key: PKg., Public Key: PK,,

Asymmetric cryptography

Public keys can be stored in a
public repository

Public Key

Public Key
PReos PKer
Foo
%
Secret Key: SK;,,, Secret Key:

SKGru

Asymmetric cryptography: confidentiality

Public Key
Infrastructure

| want to talk to Public Key g :
Gru K., Dec(PK,Enc(PK,m))=[]]

Enc(PKg,, ; m)

Seriee: Secret Key: SK,,

RSA-OAEP

Don’t deS|gn

yourown g4 Dec(SK,, ,Enc(PK.,,m))=m

Asymmetric cryptography: integrity

Public Key
Infrastructure

Public Key
I:)KBob

Secret Key: SK;_, Verify(PKg,,, m, Sign(SK;,,,m))=Yes or No
Examples:

NIST DSA

RSA-PSS

Don’t design

your own /A

Asymmetric cryptography: integrity

Public Key
Cannot “forge” a signature Infrastructure

(m, s, PK) that verifies
without knowing sk

Public Key

Secret Key: SK;_, Verify(PKg,,, m, Sign(SK;,,,m))=Yes or No
Examples:

NIST DSA

RSA-PSS

Don’t design

your own /A

Digital Signatures

Properties:
Integrity of message
Authenticity sender
Non-repudiation (why are they different from MACs?)

Application: Public Key Infrastructure: Certificates

(1) Authority signs a mapping between names, or names and
encryption public keys.

(2) Authority signs mapping between names and verification keys.

Digital Signatures

Properties:
Integrity of message
Authenticity sender
Non-repudiation (why are they different from MACs?)

A

Encryption key pair != Signature key pair 4\

Application: Public Key Infrastucture:

(1) Autwmg between names, or ames and

encryption public keys. l

(2) Authority signs mapping between names and verification keys.

All together

ASYMMETRIC CRYPTOGRAPHY
Users have two pairs of keys (secret key SK, public key PK)
Confidentiality Dec(SK,Enc(PK,m))=m
Integrity/Authentication Sig(SK,m) =s; Verify(PK,Sig(SK,m)) = YES/NO

Encryption Public Key

Py

Verification Public Key

{ want to make sur\é\
- lamtalkingto ¥

wanttotalkto
@ Yy

Secret Encryption Key: SK{% Secret Encryption Key: SK?

Secret Signing Key: SK 4, it QK
gning Key 3 Secret Signing Key: SK? .

Asymmetric cryptography limitations

Computationally costly compared with most symmetric key algorithms of
equivalent security

In practice
Signing and encrypting is slow Sign hash of messages

Hybrid encryption
(only encrypt small symmetric key)

Not suitable to encrypt large amounts of data
There are not good “cipher modes”

18

Digital sighatures on hash functions

Public Key
I:)KBob

Poo m, Sign(SKg,p,, M)
%

Secret Key: SK;,,

Digital sighatures on hash functions

Public Key

(\ Infrastructure
g Public Key

I:)KBob

m, Sign(SKg,,,m)

Secret Key: SK;,,,

Digital sighatures on hash functions

Refresher
SECOND PRE-IMAGE RESISTANCE

Given m, difficult to get an m‘!=m such that H(m') = H(m)
COLLISION RESISTANCE
Difficult to find any m, m' such that H(m) = H(m')

Public Key
I:)KBob

I want to make sure
- lamtalkingto ¥

-OO)', m, Sign(SKg_,,h)

h=H(m) i

Secret Key: SK;,,, h = H(m)
Verify(PKg,,, h, Sign(SKz,,,h))=Yes or No

Hybrid encryption

Asymmetric encryption is slow, but symmetric is fast! Don’tdesign og SO 9798-3

Step 1: establish 5 shared symmeric key k using "key fransporl oA _

@ For authentication,

add signatures!!

Public Key
IDKGru

| wantto &
talk to

Enc(k, m1)

<4 Enc(k, m2)

Enc(k, m3)

This process is repeated every time Bob wants to talk to

Gru

Enc(PKg,,; k1)

~N

Foo

Enc(kl, m1)

Enc(kl, m2)

Monday .
-

Enc(k1, m3)

Enc(PK.,.; k2)

Gru’

Enc(k2, m4)

Tuesday Gy
!

Enc(k2, m5)

<

Enc(k2, m6)

Enc(PKg,,; k3)

Thursday '

Enc(k3, m7)

Enc(k3, m8)

s 5

Enc(k3, m9)

Each of these
exchanges with a
new key is called
“session”

The keys k1,k2,... are
called “Session keys’

)

What happens if the adversary gets access to Gru’s
asymmetric key on Thursday?

Enc(PKg,,
m) > =
‘i_’ Enc(kl, m1 >
Monday ...) Enc(k1, m2)
' Enc(kl, m3)
Access to Gru’s secret
key gives access to the
Enc(PKg;, present/past session’s
= messages!
Tuesday Oy Enc(k2, m4)
e’ < Enc(k2, m5)
' Enc(k2, m6) .
Enc(PKg,
Enc(k3, m7
Thursday Oy nclk3, m7)

:w" < Enc(k3, m8)
Enc(k3, m9)

24

What happens if the adversary gets access to Gru’s
asymmetric key on Thursday?

Enc(PKg,,
m) > =
“f_’ Enc(kl, ml .
Monday - < Enc(k1, m2)
j Enclcl m2)
ccess to Gru’s secret
DESIRABLE PROPERTY ey gives access to the
FORWARD SECRECY: the secrecy of the messages in a session is present/ plast session’s
. . messages:
Tuesday kept even if long term keys are compromised 8
If the adversary learns the key of Thursday’s session, Monday and Tuesday should
still be safe
Enc(k3, m7)
Thursday %(%’* TE—y

Enc(k3, m9)

25

Key agreement for forward secrecy — The Math

Arithmetic modulo a number: clock arithmetic
6 (mod 12) =6 (mod 12)
12 (mod 12) =0 (mod 12)
14 (mod 12) =2 (mod 12)

Arithmetic modulo a large prime p (>1024 bits)
Addition and multiplication (mod p) can be computed
Exponentiation can be computed [Given (a, x) 2 a* mod p?]
Discrete logarithms are HARD! [Given (a, a* mod p) = x?]

Basic Diffie-Hellman key exchange
Every time Bob wants to talk to Gru...

Shared public parametersp, g

Because of the discrete logarithm hardness, an
adversary observing these values cannot
recover x and y, therefore cannot compute k

P,
‘OO" g
"/ P
g - a
Secret Key: x (random!) Shared secret!! Secret Key: y (random!)
(P,)=g® (mod p) k=g (mod p) (Py)*=g" (mod p)

To encrypt messages for the session

Ba SiC DI After the session has ended, delete the secrets x and y.

Every tim

The key can never be recovered.
Forward secrecy is achieved!!

Shared public parametersp, g

Because of the discrete logarithm hardness, an
adversary observing these values cannot
recover x and y, therefore cannot compute k

ok ez
001"
e J

% -
Secret Key: x (random!)

(P,)=g (mod p)

P,
>
Pa
Shared secret!! Secret Key: y (random!)
k=g (mod p) (P,)Y=g¥ (mod p)

To encrypt messages for the session

28

Summary of the crypto lectures

Symmetric cryptography
» Confidentiality: Stream ciphers, Block ciphers (modes of operation!)
* Integrity / Authentication: Message Authentication Codes (MACs)

Asymmetric cryptography Hybrid encryption

* Confidentiality: Encryption best both worlds!
* Integrity / Authentication: Digital signatures

Hash functions Forward secrecy

* Three security properties Diffie Hellman
e Support Digital Signatures + other functions

Why a MAC should not be constructed as Hash(k||m)

o0 TAs & Carmela: Why are they designing their own crypto?!?17?
Wi Why is this designing Crypto? You go from Hash to MAC.

COM-208 Computer networks!!
“Computer Networking: A Top-Down Approach”: MAC = Hash(k||l am Alice)

Short answer: Not always
So when is it wrong?

Not exam

material!l

https://www.whitehatsec.com/blog/hash-length-extension-attacks/

Why a MAC should not be constructed as Hash(k||m)

Many Hash functions (MD5, SHA1, SHA256) are built using the Merkle-Damgard paradigm

Blockd

0 Do
b a-Lek e
$ } !

Hash length extension attacks! (given H(m) obtain H(m||stuff)

BiockS5 | Blodd

...L firul hash
- @::Jﬁ'H(message’)

t

Example: H(k||this is Alice) — H(k||this is Alice, First of her name, Queen of the Andals and the First Men)

MAC=H(k||Alice) does not guarantee integrity
for Merkle-Damgard hash functions Not exam

material!l

https://www.whitehatsec.com/blog/hash-length-extension-attacks/

Why a MAC should not be constructed as Hash(k||m)

Many Hash functions (MD5, SHA1, SHA256) are built using the Merkle-Damgard paradigm

Padding[MESSAGE)

\L Summary: it is not wrong, but there are many hash
.Z.. P functions that follow the Merkle-Damgard paradigm.

essage’)

Safe choice: don’t do this.
Hash le If you want an HMAC, use a standardized one || stuff)

. e.g. https://datatracker.ietf.org/doc/html/rfc2104
Example: H(k||this is

MAC=H(k||Alice) does not guarantee integrity
for Merkle-Damgard hash functions

https://www.whitehatsec.com/blog/hash-length-extension-attacks/

e First Men)

	Computer Security and Privacy (COM-301)�Applied cryptography II
	Computer Security (COM-301)�Applied cryptography II �Hash functions
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Computer Security (COM-301)�Applied cryptography �Asymmetric cryptography
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Hybrid encryption
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Summary of the crypto lectures
	Slide Number 30
	Slide Number 31
	Slide Number 32

