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Hash functions

HASH FUNCTION
(H)

Any length message (m) Fixed short-length output (h)



THREE SECURITY PROPERTIES

PRE-IMAGE RESISTANCE

Given H(m), difficult to find m
SECOND PRE-IMAGE RESISTANCE

Given m, difficult to find an m'!=m such that H(m') = H(m)
COLLISION RESISTANCE

Difficult to find any m, m' such that H(m) = H(m')
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Hash functions

HASH FUNCTION
(H)

Any length message (m) Fixed short-length output (h)

MD5 (1991): 128 bit hash – insecure
SHA0, SHA1: 160 bits – insecure
SHA-2 (224/256 /384/512) – OK but slow
SHA-3 (224/256 /384/512) 

Don’t design 
your own
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THREE SECURITY PROPERTIES

PRE-IMAGE RESISTANCE

Given H(m), difficult to get m
SECOND PRE-IMAGE RESISTANCE

Given m, difficult to get an m‘!=m such that H(m') = H(m)
COLLISION RESISTANCE

Difficult to find any m, m' such that H(m) = H(m')

Hash functions

HASH FUNCTION
(H)

Any length message (m) Fixed short-length output (h)

USES

Support digital signatures, build HMAC, password storage, file integrity, secure commitments, 
secure logging, blockchain,…

HMAC != H(K||M)
Don’t design 
your own
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Block ciphers, Stream Ciphers, MACs

Gru and Bob need to share a secret key

Secure key distribution is a problem!

Symmetric Cryptography

Diffie, Whitfield, and Martin Hellman. "New directions in cryptography.“ Information Theory, IEEE Transactions on 22.6 (1976): 644-654



Asymmetric cryptography

Secret Key: SKBob Secret Key: SKGru

Public Key: PKBob Public Key: PKGru

Each participant has two keys:
One secret key that only they know
One public key that they can reveal

Pairs of (secret, public) keys are created with specific algorithms



Asymmetric cryptography

Secret Key: SKBob Secret Key: 
SKGru

Public Key
PKBob

Public Key
PKGru

Public Key 
Infrastructure

Public keys can be stored in a 
public repository



Asymmetric cryptography: confidentiality

Public Key
PKGru

Enc(PKGru ; m)

Secret Key: SKGruExamples:
RSA-OAEP Don’t design 

your own

Public Key 
Infrastructure

Dec(SKGru ,Enc(PKGru,m) )= m

Dec(PK,Enc(PK,m) )= 
I want to talk to

Gru



Public Key
PKBob

m, Sign(SKBob,m)

Public Key 
Infrastructure

Examples:
NIST DSA 
RSA-PSS

Don’t design 
your own

Secret Key: SKBob

Asymmetric cryptography: integrity

Verify(PKBob, m, Sign(SKBob,m))= Yes or No 



Public Key
PKBob

m, Sign(SKBob,m)

Public Key 
Infrastructure

Examples:
NIST DSA 
RSA-PSS

Don’t design 
your own

Secret Key: SKBob

Asymmetric cryptography: integrity

Verify(PKBob, m, Sign(SKBob,m))= Yes or No 

Cannot “forge” a signature 
(m, s, PK) that verifies 

without knowing sk



Properties:
Integrity of message
Authenticity sender
Non-repudiation

Application: Public Key Infrastructure: Certificates
(1) Authority signs a mapping between names, or names and 

encryption public keys. 
(2) Authority signs mapping between names and verification keys.

Digital Signatures

(why are they different from MACs?)



Properties:
Integrity of message
Authenticity sender
Non-repudiation

Application: Public Key Infrastucture: Certificates
(1) Authority signs a mapping between names, or names and 

encryption public keys. 
(2) Authority signs mapping between names and verification keys.

Digital Signatures

(why are they different from MACs?)

Encryption key pair != Signature key pair   



All together 
ASYMMETRIC CRYPTOGRAPHY

Users have two pairs of keys (secret key SK, public key PK)
Confidentiality Dec(SK,Enc(PK,m) )= m
Integrity/Authentication Sig(SK,m) = s;   Verify(PK,Sig(SK,m)) = YES/NO

Encryption Public Key
PK

Secret Encryption Key: SK

Enc(PK ; m) , Sign(SK ,m)

Verification Public Key
PK

Secret Signing Key: SK
Secret Encryption Key: SK

Secret Signing Key: SK
17

I want to talk to I want to make sure 
I am talking to  
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Asymmetric cryptography limitations

Computationally costly compared with most symmetric key algorithms of 
equivalent security

Signing and encrypting is slow

Not suitable to encrypt large amounts of data
There are not good “cipher modes”

In practice
Sign hash of messages

Hybrid encryption 
(only encrypt small symmetric key)



Digital signatures on hash functions

Public Key
PKBob

Secret Key: SKBob

m, Sign(SKBob,m)

Public Key 
Infrastructure
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Digital signatures on hash functions

Public Key
PKBob

Secret Key: SKBob

m, Sign(SKBob,h)

Public Key 
Infrastructure

h=H(m)

h = H(m)

PRE-IMAGE RESISTANCE
Given H(m), difficult to get m

SECOND PRE-IMAGE RESISTANCE
Given m, difficult to get an m‘!=m such that H(m') = H(m)

COLLISION RESISTANCE
Difficult to find any m, m' such that H(m) = H(m')

Refresher

Verify(PKBob, h, Sign(SKBob,h))= Yes or No 

I want to make sure 
I am talking to  



Hybrid encryption
Asymmetric encryption is slow, but symmetric is fast!

Public Key
PKGru

Enc(PKGru; k)

Enc(k, m1)

Step 1: establish a shared symmetric key k using “key transport”

Step 2: use the shared symmetric key k to encrypt the rest of the communication

Enc(k, m2)

Enc(k, m3)

For authentication,
add signatures!! 

NOT SO SIMPLE!
e.g. ISO 9798-3

TLS
Don’t design 
your own

I want to
talk to 



This process is repeated every time Bob wants to talk to 
Gru

Enc(PKGru; k1)

Enc(k1, m1)
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Monday

Tuesday

Enc(k1, m2)
Enc(k1, m3)

Enc(PKGru; k2)

Enc(k2, m4)
Enc(k2, m5)
Enc(k2, m6)

Enc(PKGru; k3)

Enc(k3, m7)
Enc(k3, m8)
Enc(k3, m9)

Thursday

Each of these 
exchanges with a 
new key is called
“session”

The keys k1,k2,… are 
called “Session keys”



Enc(PKGru; k1)

Enc(k1, m1)
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Monday

Tuesday

Enc(k1, m2)
Enc(k1, m3)

Enc(PKGru; k2)

Enc(k2, m4)
Enc(k2, m5)
Enc(k2, m6)

Enc(PKGru k3)

Enc(k3, m7)
Enc(k3, m8)
Enc(k3, m9)

Thursday

Access to Gru’s secret 
key gives access to the 
present/past session’s 
messages!

SKGru

What happens if the adversary gets access to Gru’s 
asymmetric key on Thursday?



Enc(PKGru; k1)

Enc(k1, m1)
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Monday

Tuesday

Enc(k1, m2)
Enc(k1, m3)

Enc(PKGru; k2)

Enc(k2, m4)
Enc(k2, m5)
Enc(k2, m6)

Enc(PKGru k3)

Enc(k3, m7)
Enc(k3, m8)
Enc(k3, m9)

Thursday

Access to Gru’s secret 
key gives access to the 
present/past session’s 
messages!

SKGru

What happens if the adversary gets access to Gru’s 
asymmetric key on Thursday?

DESIRABLE PROPERTY
FORWARD SECRECY: the secrecy of the messages in a session is 

kept even if long term keys are compromised

If the adversary learns the key of Thursday’s session, Monday and Tuesday should 
still be safe



Arithmetic modulo a number: clock arithmetic
6 (mod 12) = 6 (mod 12)
12 (mod 12) = 0 (mod 12)
14 (mod 12) = 2 (mod 12)

Arithmetic modulo a large prime p (>1024 bits)
Addition and multiplication (mod p) can be computed
Exponentiation can be computed [Given (a, x) → ax mod p?]
Discrete logarithms are HARD! [Given (a, ax mod p) → x?]

Key agreement for forward secrecy – The Math



Basic Diffie-Hellman key exchange

Secret Key: y (random!)

Shared public parameters p , g

Pb

Pa

(Pb)y= gxy (mod p) 
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Every time Bob wants to talk to Gru…

Because of the discrete logarithm hardness, an 
adversary observing these values cannot 

recover x and y, therefore cannot compute k

Secret Key: x (random!)

(Pa)x= gxy (mod p) 
Shared secret!!
k= gxy (mod p)

To encrypt messages for the session 



Basic Diffie-Hellman key exchange

Secret Key: y (random!)

Shared public parameters p , g

Pb

Pa

(Pb)y= gxy (mod p) 
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Every time Bob wants to talk to Gru…

Because of the discrete logarithm hardness, an 
adversary observing these values cannot 

recover x and y, therefore cannot compute k

Secret Key: x (random!)

(Pa)x= gxy (mod p) 
Shared secret!!
k= gxy (mod p)

To encrypt messages for the session 

After the session has ended, delete the secrets x and y.
The key can never be recovered.

Forward secrecy is achieved!!



Summary of the crypto lectures
Symmetric cryptography

• Confidentiality: Stream ciphers, Block ciphers (modes of operation!)
• Integrity / Authentication: Message Authentication Codes (MACs)

Asymmetric cryptography
• Confidentiality: Encryption
• Integrity / Authentication: Digital signatures

Hash functions
• Three security properties
• Support Digital Signatures + other functions

Hybrid encryption
best both worlds!

Forward secrecy
Diffie Hellman



Why a MAC should not be constructed as Hash(k||m)

https://www.whitehatsec.com/blog/hash-length-extension-attacks/

TAs & Carmela: Why are they designing their own crypto?!?!?
Why is this designing Crypto? You go from Hash to MAC.

COM-208 Computer networks!! 
“Computer Networking: A Top-Down Approach”: MAC = Hash(k||I am Alice)

Is it wrong?!?!?!?
Short answer: Not always

So when is it wrong?
Not exam 
material!!



Why a MAC should not be constructed as Hash(k||m)

https://www.whitehatsec.com/blog/hash-length-extension-attacks/

Many Hash functions (MD5, SHA1, SHA256) are built using the Merkle-Damgard paradigm

H(message’)

Not exam 
material!!

MAC=H(k||Alice) does not guarantee integrity
for Merkle-Damgard hash functions 

Hash length extension attacks! (given H(m) obtain H(m||stuff)
Example: H(k||this is Alice) → H(k||this is Alice, First of her name, Queen of the Andals and the First Men)



Why a MAC should not be constructed as Hash(k||m)

https://www.whitehatsec.com/blog/hash-length-extension-attacks/

Many Hash functions (MD5, SHA1, SHA256) are built using the Merkle-Damgard paradigm

H(message’)

Not exam 
material!!

MAC=H(k||Alice) does not guarantee integrity
for Merkle-Damgard hash functions 

Hash length extension attacks! (given H(m) obtain H(m||stuff)
Example: H(k||this is Alice) → H(k||this is Alice, First of her name, Queen of the Andals and the First Men)

Summary: it is not wrong, but there are many hash 
functions that follow the Merkle-Damgard paradigm. 

Safe choice: don’t do this.
If you want an HMAC, use a standardized one
e.g. https://datatracker.ietf.org/doc/html/rfc2104 
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