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Important: you will not become a cryptographer 

What you will learn?
What security properties different algorithms offer, and how can 
algorithms be combined to secure a system

What you will NOT learn?
Cryptanalysis
How to prove formally that a scheme is secure
How to securely implement cryptographic schemes

High level introduction to applied cryptography does not qualify you to design 
cryptographic primitives or protocols!

To do these you need a 
cryptographer
(or to become one)



Why does cryptography matter?

Data in transit Data at rest

What would be the TCB?



ENSURE SECURITY PROPERTIES
Cryptography can be used to ensure the confidentiality and integrity of data in 
transit or at rest

BUILD SECURE FUNCTIONALITY
Cryptography can be used, among many others, to build authentication protocols, 
to protect from denial of service, or to support anonymous communications

What can we do with cryptography?
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Key Vocabulary

https://i.stack.imgur.com/2yBJf.png

https://crypto.stackexchange.com/questions/39735/whats-a-cryptographic-primitive-really

Cryptographic primitives
universal, exchangeable cryptographic building blocks

(What exactly a primitive is depends on the level of 
abstraction)

Secure functions where
- either you can't break it down any further or 
- either there is no security argument for its individual parts



Information

Plaintext:
“Hello world”

Cryptographic
Algorithm

Read

Confidentiality: information cannot be accessed by unauthorized parties 

Read

Read

Bob the sender
Gru the 

intended 

receiver

Evil minion 

the Adversary

Evil minion 

the Adversary

The origins of cryptography: the quest for confidentiality

Ciphertext:
“0x018EFE9FF664CE3097DD

0362BEDF3512”



Information

Plaintext:
“Hello world”

Cryptographic
Algorithm

Ciphertext:
“0x018EFE9FF664CE3097DD

0362BEDF3512”

Encryption

Decryption

As opposed to encoding, encryption cannot be reversed without a KEY

The origins of cryptography: the quest for confidentiality
Confidentiality: information cannot be accessed by unauthorized parties 



11

Cryptographic algorithms for confidentiality
1. Generate key k (and make sure intended receiver has it)

Requires secure generation and sharing protocols

2. Encrypt message m -> Enc(k,m)

3. Send encrypted message Enc(k,m)

4. Decrypt message Dec(k,m) -> m

Cryptographic algorithms for confidentiality

Encryption
Algorithm

k

m
Enc(k,m)

Decryption
Algorithm

Enc(k,m)

k
m



zkvvx pxfvyhello worldkhoor zruoghello world

The first cryptographic algorithms
Caesar’s cipher (50 BC)

Rotate the alphabet

Encrypt Decrypt

Kamasutra cipher (400 AD)
Permute the alphabet

Encrypt/Decrypt: substitute by opposite letter

Key: HOWBUGIACRYEVZXPJQMSNTFDKL

HOWBUGIACRYEV
ZXPJQMSNTFDKL

Problem??

Key: number of positions to shift (Julius Caesar used 3) 



zkvvx pxfvyhello worldkhoor zruoghello world

The first cryptographic algorithms
Caesar’s cipher (50 BC)

Rotate the alphabet

Encrypt Decrypt

Kamasutra cipher (400 AD)
Permute the alphabet

Encrypt/Decrypt: substitute by opposite letter

khoor zruoghello world

Key: HOWBUGIACRYEVZXPJQMSNTFDKL

HOWBUGIACRYEV
ZXPJQMSNTFDKL

zkvvx pxfvyhello world

Problem??

Frequency analysis!

Key: number of positions to shift (Julius Caesar used 3) 



Key k
pre-shared

Enc(k,m) = m Å k

Obtaining perfect secrecy: One Time Pad (OTP)
Key = string k of random bits as long as the message

Key k

Message YEAH (ASCII Hex: 59454148)
Binary 01011001010001010100000101001000

OTP-Key 01110101000111010100101001001010

Encryption 00101100010110000000101100000010

Å

m



Key k
pre-shared

Enc(k,m) = m Å k

Obtaining perfect secrecy: One Time Pad (OTP)
Key = string k of random bits as long as the message

Key k

Message YEAH (ASCII Hex: 59454148)
Binary 01011001010001010100000101001000

OTP-Key 01110101000111010100101001001010

Encryption 00101100010110000000101100000010

Dec(k,m) = Enc(k,m) Å k

Å

Å
01110101000111010100101001001010

01011001010001010100000101001000

01011001010001010100000101001000

same

m



Key k
pre-shared

Enc(k,m) = m Å k

Obtaining perfect secrecy: One Time Pad (OTP)
Key = string k of random bits as long as the message

Key k

Message YEAH (ASCII Hex: 59454148)
Binary 01011001010001010100000101001000

OTP-Key 01110101000111010100101001001010

Encryption 00101100010110000000101100000010

NOPE (ASCII Hex: 4e4f5045)
01001110010011110101000001000101

01110101000111010100101001001010

00111011010100100001101000001111

sameÅ Å

m



Key k
pre-shared

Enc(k,m) = m Å k

Key = string k of random bits as long as the message

Key k

Message YEAH
Binary (ASCII) 01011001010001010100000101001000

OTP-Key 01110101000111010100101001001010

Encryption 00101100010110000000101100000010

YEAH
01001110010011110101000001000101

11100001010000010111101011010001

10101111000011100010101010010100

same

different

Obtaining perfect secrecy: One Time Pad (OTP)

m

Dec(k,m) = Enc(k,m) Å k



Key k
pre-shared

Enc(k,m) = m Å k

Key = string k of random bits as long as the message

Key k

Message YEAH
Binary (ASCII) 01011001010001010100000101001000

OTP-Key 01110101000111010100101001001010

Encryption 00101100010110000000101100000010

YEAH
01001110010011110101000001000101

11100001010000010111101011010001

10101111000011100010101010010100

same

different

Delete “k” – it must never be reused! 
(msg1 Å pad) Å (msg2 Å pad) → (msg1 Å msg2) 

Reveals where msg differ
Frequency analysis works
ASCII patterns (space or letter)

00- 01-

Obtaining perfect secrecy: One Time Pad (OTP)

m

Dec(k,m) = Enc(k,m) Å k



Why do we not use OTPs?

Key as long as the message (nowadays USBs contain several GB)
and pre-shared! 

Key cannot be reused

No integrity!

Moscow–Washington hotline

”Each country delivered keying tapes used 
to encode its messages via its embassy 

abroad” 
https://en.wikipedia.org/wiki/Moscow%E2%80%93Washington_hotline

Key must be random!

Obtaining perfect secrecy: One Time Pad (OTP)



Security should not depend on the secrecy of the encryption method (or 
algorithm), only the secrecy of the keys. 

Modern algorithms are based on mathematically difficult problems - for 
example, prime number factorization, discrete logarithms, etc. 

Modern cryptographic algorithms are too complex to be executed by 
humans. 

Modern cryptography
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Symmetric encryption ciphers

Encryption of plaintext and decryption of ciphertext are done using 

THE SAME KEY

Two types of ciphers:
Stream ciphers
Block ciphers

Integrity mechanism:
Message Authentication Code (MAC)



What is a symmetric cryptographic key?
Fixed-size input to symmetric cryptographic primitives.

The size of the key influences the level of security provided

Key properties
Known to both parties

Partners must agree on the key before starting using the primitive

It is reused 
The key is pre-shared once* and then reused

* keys do have a “duration”

It must be secret
Revealing the key eliminates any protection provided by the primitive
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Stream Ciphers Arbitrary length 
pseudo-random
stream

Unless one knows the key 
one cannot distinguish it 

from a random string

SECURITY ARGUMENT

KEYSTREAM GENERATOR

Fixed Size Key (k)

Initialization Vector (IV)
stream(k, IV)

Message (m)

Å Enc(k,m)

STREAM CIPHER



What is an Initialization Vector (IV)?

Initialization Vector: Fixed-size input to iterative cryptographic primitives

Important properties:
No IV reuse under the same key

Goal: messages encrypted with the same key look different (even the same message)

It does not need to be secret! Keeping the key secret is enough
But must be unpredictable in some block cipher modes



Stream Ciphers Arbitrary length 
pseudo-random
stream

Unless one knows the key 
one cannot distinguish it 

from a random string

Key k
pre-shared

Key k

SECURITY ARGUMENT

Fresh IV (public)

IV, Enc(k, m) = stream(k, IV) Å m
m

Dec(m) = stream(k, IV) Å Enc(k, m)

KEYSTREAM GENERATOR

Fixed Size Key (k)

Initialization Vector (IV)
stream(k, IV)

Message (m)

Å Enc(k,m)

STREAM CIPHER



Stream Ciphers Arbitrary length 
pseudo-random
stream

Unless one knows the key 
one cannot distinguish it 

from a random string

SECURITY ARGUMENT

KEYSTREAM GENERATOR

Fixed Size Key (k)

Initialization Vector (IV)
stream(k, IV)

Message (m)

Å Enc(k,m)

STREAM CIPHER

Remaining downsides?

Key as long as the message (nowadays USBs contain several GB)
and pre-shared!

Key must be random!
No integrity

Key cannot be reused Better than before, 

though still necessary



Stream ciphers
ST
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Speed: algorithms are linear in time and constant in space 

Low error propagation: errors in one bit do not affect subsequent symbols

Low diffusion: all information of a plaintext symbol is contained in one encrypted symbol

Susceptibility to insertions/ modifications: text can be inserted, difficult to detect 



Stream ciphers
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Speed: algorithms are linear in time and constant in space 

Low error propagation: errors in one bit do not affect subsequent symbols

Low diffusion: all information of a plaintext symbol is contained in one encrypted symbol

Susceptibility to insertions/ modifications: text can be inserted difficult to detect 

Trivium (80 bit key, < 4000 gates in HW)
Salsa20 (128/256 bit key, Random access)

More stream ciphers: https://en.wikipedia.org/wiki/ESTREAM

Don’t design your own



Block Ciphers

ENCRYPTION
ALGORITHM

Key k

Message m
Enc(k,m)

BLOCK CIPHER

ENCRYPTION
ALGORITHM

DECRYPTION
ALGORITHM

Without k: a ciphertext block looks 
the same as a random block

SECURITY ARGUMENT

short random string (e.g. 128 bits)

Encryption algorithm: Converts plaintext m to ciphertext c



Block Ciphers

Decryption algorithm:  Concerts ciphertext c to plaintext m.
The inverse of Encryption → Dec(k; Enc(k; m)) = m

ENCRYPTION
ALGORITHM

Key k

Message m
Enc(k,m)

BLOCK CIPHER

DECRYPTION
ALGORITHM

Key k

Ciphertext c=Enc(k,m)
m

ENCRYPTION
ALGORITHM

DECRYPTION
ALGORITHM

Without k: a ciphertext block looks 
the same as a random block

SECURITY ARGUMENT

short random string (e.g. 128 bits)

Encryption algorithm: Converts plaintext m to ciphertext c



ENC DEC

k

m mC=Enc(k,m)

Block Ciphers

Key k
pre-shared

Key k
k

The algorithms work on blocks that are the size of the key 

Typically 128/256 bits

Messages are longer than a block! Requires iteration

Block ciphers’ mode of operation



Mode 1: ELECTRONIC CODE BOOK (ECB)
Straightforward scheme: encrypt & decrypt single blocks

Ek

mi C=Enc(mi)

m = m1 m2     m3     m4

Ek Ek Ek

ENCk

C1 C2     C3     C4

m = m1m2m3m4

mi are the same 

size as the key!



Mode 1: ELECTRONIC CODE BOOK (ECB)
Straightforward scheme: encrypt & decrypt single blocks

Ek

mi C=Enc(mi)

m = m1 m2     m3     m4

Ek Ek Ek

ENCk

C1 C2     C3     C4

m = m1m2m3m4

Dk Dk Dk Dk

C1 C2     C3     C4

DECK mC=E(m)

m = m1 m2     m3     m4

mi are the same 

size as the key!



Mode 1: ELECTRONIC CODE BOOK (ECB)
Straightforward scheme: encrypt & decrypt single blocks

Ek

mi C=Enc(mi)

Problematic!

m = m1 m2     m3     m4

Ek Ek Ek

ENCk

C1 C2     C3     C4

m1=m2 → C1=C2

https://en.wikipedia.org/wiki/Block_cipher#/media/File:Tux_ecb.jpg

DON’T USE!!

m = m1m2m3m4

Dk Dk Dk Dk

C1 C2     C3     C4

DECK mC=E(m)

m = m1 m2     m3     m4

mi are the same 

size as the key!



Add IV and propagate information across blocks to introduce randomness 

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#/media/File:CBC_encryption.svg

CBC Encryption

C0 = IV

Ci = Enc(k; miÅ Ci-1)

Mode 2: CIPHER BLOCK CHAINING (CBC)

mi C=Enc(mi)ENCk

m = m1m2m3

ENCk



https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#/media/File:CBC_encryption.svg

CBC Decryption

C0 = IV

mi = Dec(k; Ci) XOR Ci-1

Mode 2: CIPHER BLOCK CHAINING (CBC)

C = C1C2C3

DECk

DECK mC=E(m)

Add IV and propagate information across blocks to introduce randomness 



https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#/media/File:CBC_encryption.svg

CBC Decryption

C0 = IV

mi = Dec(k; Ci) XOR Ci-1

Mode 2: CIPHER BLOCK CHAINING (CBC)

C = C1C2C3

DECk

DECK mC=E(m)

What if IV is incorrect? The 
full decryption is wrong?

Can you decrypt a block 
alone? What do you need?

Add IV and propagate information across blocks to introduce randomness 



Use increasing nonce to add randomness without dependencies between blocks

CTR Encryption

Ci = Enc(k; Nonce+i) Å mi

Mode 3: COUNTER MODE (CTR)

mi C=Enc(mi)ENCk

m = m1m2m3

ENCk



Use increasing nonce to add randomness without dependencies between blocks

CTR Encryption

Ci = Enc(k; Nonce+i) Å mi

Mode 3: COUNTER MODE (CTR)

mi C=Enc(mi)ENCk

m = m1m2m3

Counter
ENCk



Use increasing nonce to add randomness without dependencies between blocks

CTR Encryption

Ci = Enc(k; Nonce+i) Å mi

Nonce = number used only 

once

Mode 3: COUNTER MODE (CTR)

mi C=Enc(mi)ENCk

m = m1m2m3

ENCk

Counter



Use increasing nonce to add randomness without dependencies between blocks

CTR Encryption

Ci = Enc(k; Nonce+i) Å mi

Nonce = number used only 

once

Mode 3: COUNTER MODE (CTR)

mi C=Enc(mi)ENCk

m = m1m2m3

ENCk

Counter

Do we need the decryption 
algorithm??



CTR Decryption

Ci = Enc(k; Nonce+i) Å mi

Mode 3: COUNTER MODE (CTR)

C = C1C2C3

ENCk

ENCK mC=E(m)

Use increasing nonce to add randomness without dependencies between blocks



Summary: Block ciphers
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High diffusion: information from one plaintext symbol is diffused into several 
ciphertext symbols 

Immunity to tampering: difficult to insert symbols without detection

Slow: an entire block must be accumulated before encryption / decryption can begin

Error propagation: in some modes of operation errors affect several bits/blocks

*Different modes of operation offer different trade-offs and these weaknesses/strengths may actually not apply.
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Summary: Modes of operation
Electronic Code Book (ECB)

✅ Directly encrypt and decrypt single blocks
❌ Large information leakage due to lack of randomness across ciphertext blocks

Cipher Block Chaining (CBC)
✅ Avoids ECB problems: Each ciphertext block adds randomness to encryption of 

following block
❌ Propagates errors and no parallel encryption

Counter mode (CTR)
✅ Uses a nonce and an increasing counter to introduce randomness across ciphertext 

blocks
✅ Parallel encryption and decryption



Summary: Block ciphers
ST
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High diffusion: information from one plaintext symbol is diffused into several 
ciphertext symbols 

Immunity to tampering: difficult to insert symbols without detection

Slow: an entire block must be accumulated before encryption / decryption can begin

Error propagation: difficult to insert symbols without detection

AES – The Advanced Encryption Standard
128/256 bit key, NIST Standard, HW support

More: https://en.wikipedia.org/wiki/Block_cipher#Notable_block_ciphers

Don’t design your own
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Cryptography for integrity

Information

Plaintext:
“Banana”

Plaintext:
“Apple”

Integrity: information cannot be modified by unauthorized parties 

Write

Bob the sender

Gru the 

intended 

receiver
Evil minion 

the Adversary

breaking integrity



Cryptography for integrity

Information

Plaintext:
“Banana”

Cryptographic
Algorithm

Plaintext:
“Banana”

Integrity: information cannot be modified by unauthorized parties 

Write

Bob the sender

Gru the 

intended 

receiver

Evil minion 

the Adversary

cannot break 

integrity



Integrity from symmetric encryption:
Message Authentication Codes (MAC)

MESSAGE
AUTHENTICATION

CODE

Fixed (short) Size Key (k)

Message (m)

Short output (MAC)

Hard to generate 
(m, MAC(k;m))

without knowing k
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Message Authentication Codes (MAC)

m, MAC(k;m)

Key k
pre-shared

Key k

MESSAGE
AUTHENTICATION

CODE

Fixed (short) Size Key (k)

Message (m)

Short output (MAC)

m

Hard to generate 
(m, MAC(k;m))

without knowing k
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Message Authentication Codes (MAC)

m, MAC(k;m)

Key k
pre-shared

Key k

MESSAGE
AUTHENTICATION

CODE

Fixed (short) Size Key (k)

Message (m)

Short output (MAC)

Hard to generate 
(m, MAC(k;m))

without knowing k

TWO PROPERTIES:
1) m cannot be tampered with
2) message comes from Bob/Gru

m



Integrity from symmetric encryption:
Message Authentication Codes (MAC)

m, MAC(k;m)

Key k
pre-shared

Key k

MESSAGE
AUTHENTICATION

CODE

Fixed (short) Size Key (k)

Message (m)

Short output (MAC)

Hard to generate 
(m, MAC(k;m))

without knowing k

TWO PROPERTIES:
1) m cannot be tampered with
2) message comes from Bob/Gru

Mutual authentication
but cannot authenticate sender towards 3rd parties!

Message can be 
repudiated!

m



Example MAC: CBC-MAC

Turning a block cipher into a MAC

C0 = 0  [any fixed IV]

Ci = Enc(k; miÅ Ci-1)

MAC(k; m1... mx) = Cn

MAC(k;m)



Example MAC: CBC-MAC

Turning a block cipher into a MAC

C0 = 0  [any fixed IV]

Ci = Enc(k; miÅ Ci-1)

MAC(k; m1... mx) = Cn

MAC(k;m)

CBC-MAC is deterministic
Only output is the final value!

Differences with respect to CBC



Example MAC: CBC-MAC

Turning a block cipher into a MAC

C0 = 0  [any fixed IV]

Ci = Enc(k; miÅ Ci-1)

MAC(k; m1... mx) = Cn

MAC(k;m)

CBC-MAC is deterministic
Only output is the final value!

Differences with respect to CBC

Limitation:
Only secure if the length of 
m is known!



How to obtain confidentiality and integrity?

Bellare, M., & Namprempre, C. Authenticated encryption: Relations among notions and analysis of the generic composition paradigm. 
International Conference on the Theory and Application of Cryptology and Information Security, 2000.
Bellare, M., Kohno, T., & Namprempre, C. Breaking and provably repairing the SSH authenticated encryption scheme: A case study of the 
Encode-then-Encrypt-and-MAC paradigm. ACM Transactions on Information and System Security, 2004.
https://en.wikipedia.org/wiki/Authenticated_encryption

ENCRYPT-AND-MAC

No integrity on the ciphertext → Cipher can be attacked
need to decrypt to know if valid

Integrity of the plaintext can be verified

May reveal information about the plaintext → repeated 
msg, recall the IV of the MAC is fixed (can be solved with a 
counter)

MAC



How to obtain confidentiality and integrity?

Bellare, M., & Namprempre, C. Authenticated encryption: Relations among notions and analysis of the generic composition paradigm. 
International Conference on the Theory and Application of Cryptology and Information Security, 2000.
Bellare, M., Kohno, T., & Namprempre, C. Breaking and provably repairing the SSH authenticated encryption scheme: A case study of the 
Encode-then-Encrypt-and-MAC paradigm. ACM Transactions on Information and System Security, 2004.
https://en.wikipedia.org/wiki/Authenticated_encryption

MAC-THEN-ENCRYPT

No integrity of ciphertext
(in theory) possible to change ciphertext and have a 
valid MAC

need to decrypt to know if valid

Integrity of the plaintext can be verified

No information on the plaintext either, since it is encrypted

MAC



How to obtain confidentiality and integrity?

Bellare, M., & Namprempre, C. Authenticated encryption: Relations among notions and analysis of the generic composition paradigm. 
International Conference on the Theory and Application of Cryptology and Information Security, 2000.
Bellare, M., Kohno, T., & Namprempre, C. Breaking and provably repairing the SSH authenticated encryption scheme: A case study of the 
Encode-then-Encrypt-and-MAC paradigm. ACM Transactions on Information and System Security, 2004.
https://en.wikipedia.org/wiki/Authenticated_encryption

ENCRYPT-THEN-MAC

Integrity of ciphertext → ensures you only read valid 
messages! Cipher cannot be attacked!

Integrity of the plaintext can be verified

No information on the plaintext either, since it is encrypted

MAC



Galois counter mode - GCM (one pass)
Encrypt-then-authenticate-then-translate - EAX (Two passes)

In practice… (out of the course scope)
Authenticated Encryption with Associated Data (AEAD)

https://www.fi.muni.cz/~xsvenda/docs/AE_comparison_ipics04.pdf

Associated data Tag

Nonce

New constructions to avoid home-made combinations


