'

PrL

Computer Security and Privacy
(COM-301)
Applied cryptography
Carmela Troncoso

SPRING Lab
carmela.troncoso@epfl.ch

Some slides/ideas adapted from: George Danezis, Yoshi Kohno

RR

Important: you will not become a cryptographer

High level introduction to applied cryptography does not qualify you to design
cryptographic primitives or protocols!

What you will learn?

What security properties different algorithms offer, and how can
algorithms be combined to secure a system

What you will NOT learn?
Cryptanalysis To do these you need a

How to prove formally that a scheme is secure cryptographer

How to securely implement cryptographic schemes (or to become one)

Why does cryptography matter?

[~ Sp—
/ \ Py
- - /
AN /
N - =
1)
Data in transit Data at rest

What would be the TCB?

What can we do with cryptography?

ENSURE SECURITY PROPERTIES

Cryptography can be used to ensure the confidentiality and integrity of data in
transit or at rest

BUILD SECURE FUNCTIONALITY

Cryptography can be used, among many others, to build authentication protocols,
to protect from denial of service, or to support anonymous communications

Key Vocabulary

Cryptographic primitives
universal, exchangeable cryptographic building blocks

Security
Primitives
Secure functions where
- either you can't break it down any further or

- either there is no security argument for its individual parts

(What exactly a primitive is depends on the level of
abstraction)

https://crypto.stackexchange.com/questions/39735/whats-a-cryptographic-primitive-really

https://i.stack.imgur.com/2yBJf.png

Arbitrary
length hash
functions

Unkeyed One-way
Primitives permutations

Random
sequences

Symmetric-key
ciphers

Arbitrary
length hash
functions
(MAC’s)

Symmetric-key
Primitives

Signatures

Pseudorandom
sequences

Identification
primitives

Public-key
ciphers

Public-key

- Signatures
Primitives

Identification
primitives

Block ciphers

Stream
ciphers

The origins of cryptography: the quest for confidentiality

Confidentiality: information cannot be accessed by unauthorized parties

Information

Ciphertext:

“0x018EFE9FF664CE3097DD
0362BEDF3512"

Plaintext:

“Hello world”

Bob the sender Gru the
Read intended
D receiver
Evil minion Evil minion

the Adversary the Adversary

The origins of cryptography: the quest for confidentiality

Confidentiality: information cannot be accessed by unauthorized parties

Information
Plaintext: Ciphertext:
“Ox018EFE9FF664CE3097DD
“Hello world” " 0362BEDF3512”
Encryption
>
< Decryption

As opposed to encoding, encryption cannot be reversed without a KEY

Cryptographic algorithms for confidentiality

1. Generate key k (and make sure intended receiver has it)

Requires secure generation and sharing protocols

k

’ i Enc(k,m
2. Encrypt message m -> Enc(k,m) o Er:crv[ot;‘on (k,m)
Algorithm

3. Send encrypted message Enc(k,m)

Enc(k,m)

. H m
Decryption
Igorithm
4. Decrypt message Dec(k,m) -> m BN Algori

k

11

The first cryptographic algorithms

Caesar’s cipher (50 BC)

Rotate the alphabet

Key: number of positions to shift (Julius Caesar used 3)

A|B|C|D|E|F
A|B|C|D|E|F

Decrypt

hello world ——— khoor zruog

Problem??

Kamasutra cipher (400 AD)

Permute the alphabet

Key: HOWBUGIACRYEVZXPJOMSNTFDKL

HOWBUGIACRYEV
ZXPJQMSNTEDKL

Encrypt/Decrypt: substitute by opposite letter

hello world =—— zkvvx pxfvy

The first cryptographic algorithms

Caesar’s cipher (50 BC)

Rotate the alphabet

Key: number of positions to shift (Julius Caesar used 3)

A|B|C|D|E|F
A|B|C|D|E|F

Decrypt

hello world —— khoor zruog

abcdefghijkImnopgrstuvwxyz

Problem??

Kamasutra cipher (400 AD)

Permute the alphabet

Key: HOWBUGIACRYEVZXPJQOMSNTFEFDKL

HOWBUGIACRYEV
ZXPJQMSNTEDKL

Encrypt/Decrypt: substitute by opposite letter

hello world ——— zkvvx pxfvy

Frequency analysis!

Obtaining perfect secrecy: One Time Pad (OTP)

Key = string k of random bits as long as the message

pre-shared
Keyk === ==============="=====-= >
.o@h, Enc(k,m) =m @ k
m — \..J: >
Message YEAH (ASCII Hex: 59454148)
Binary o 01011001010001010100000101001000
OTP-Key 01110101000111010100101001001010

Encryption 00101100010110000000101100000010

Obtaining perfect secrecy: One Time Pad (OTP)

Key = string k of random bits as long as the message

pre-shared
Keyk === ==============="=====-= >
.o@h, Enc(k,m) =m @ k
m — \..J: >
Dec(k,m) = Enc(k,m) @ k
Message YEAH (ASCII Hex: 59454148)
Binary 01011001010001010100000101001000
OTP-Key 01110101000111010100101001001010
Encryption @ 00101100010110000000101100000010)
01110101000111010100101001001010 same

Obtaining perfect secrecy: One Time Pad (OTP)

Key = string k of random bits as long as the message

Message
Binary
OTP-Key
Encryption

pre-shared

Enc(k,m)=m ® k

>
YEAH (ASCII Hex: 59454148) NOPE (ASCII Hex: 4e4f5045)
01011001010001010100000101001000 sam 01001110010011110101000001000101
01110101000111010100101001001010 4—e>®01110101000111010100101001001010
00101100010110000000101100000010 00111011010100100001101000001111

Obtaining perfect secrecy: One Time Pad (OTP)

Key = string k of random bits as long as the message

pre-shared
Keyk === ==============="=====-= >
.O@), Enc(k,m)=m @ k
m — \..J: >
Dec(k,m) = Enc(k,m) @ k
Message YEAH same YEAH
Binary (ASCII) 01011001010001010100000101001000 €¢=====p 01001110010011110101000001000101
OTP-Key 01110101000111010100101001001010 €= 11100001010000010111101011010001

Encryption

00101100010110000000101100000010 different 14141111000011100010101010010100

Obtaining perfect secrecy: One Time Pad (OTP)

Key = string k of random bits as long as the message

pre-shared
Keyk === ==============="=====-= >
.Q@), Enc(k,m)=m @ k
m —» \..J: >
Dec(k,m) = Enc(k,m) @ k
Message YEAH same YEAH
Binary (ASCII) 01011001010001010100000101001000 «@e==p 01001110010011110101000001000101
OTP-Key 01110101000111010100101001001010 €= 11100001010000010111101011010001
Encryption 00101100010110000000101100000010 different 145101111000011100010101010010100

Reveals where msg differ
Frequency analysis works

ASCII patterns (space or letter)
00- 01-

Delete “k” — it must never be reused!
(msgl @ pad) ® (msg2 @ pad) — (msgl @ msg?2)

Obtaining perfect secrecy: One Time Pad (OTP)

Why do we not use OTPs?

Key as long as the message (nowadays USBs contain several GB)
and pre-shared! <———— Moscow—\Washington hotline

”Each country delivered keying tapes used
to encode its messages via its embassy

Key must be random! abroad”

https://en.wikipedia.org/wiki/Moscow%E2%80%93Washington_hotline

Key cannot be reused

No integrity!

Modern cryptography

Security should not depend on the secrecy of the encryption method (or
algorithm), only the secrecy of the keys.

Modern algorithms are based on mathematically difficult problems - for
example, prime number factorization, discrete logarithms, etc.

Modern cryptographic algorithms are too complex to be executed by
humans.

'

PrL

Computer Security and Privacy
(COM-301)
Applied cryptography
Symmetric encryption

Carmela Troncoso
SPRING Lab
carmela.troncoso@epfl.ch

Some slides/ideas adapted from: George Danezis, Yoshi Kohno

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

Symmetric encryption ciphers

Encryption of plaintext and decryption of ciphertext are done using

THE SAME KEY

Two types of ciphers:
Stream ciphers
Block ciphers

plaintext ciphertext

Integrity mechanism:
Message Authentication Code (MAC)

28

What is a symmetric cryptographic key?

Fixed-size input to symmetric cryptographic primitives.
The size of the key influences the level of security provided

Key properties
Known to both parties
Partners must agree on the key before starting using the primitive
Cryptographic algorithms for confidentiality
It is reused |
The key is pre-shared once* and then reused e ——

Requires secure generation and sharing protocols

* keys d O h ave a “d U ratiO n" 2) Encrypt message m -> Enc(k,m)

3) Send encrypted message Enc(k,m)

4) Decrypt message Dec(k,m) ->m

It must be secret
Revealing the key eliminates any protection provided by the primitive

PFL il

RR

'

Computer Security and Privacy
(COM-301)
Applied cryptography
Symmetric encryption - Confidentiality

Carmela Troncoso
SPRING Lab
carmela.troncoso@epfl.ch

Some slides/ideas adapted from: George Danezis, Yoshi Kohno

Stream Ciphers

Fixed Size Key (k)

Initialization Vector (IV)

Arbitrary length
pseudo-random
stream

STREAM CIPHER

KEYSTREAM GENERATOR

stream(k, 1V)

SECURITY ARGUMENT

Unless one knows the key
one cannot distinguish it
from a random string

Message (m)

» Enc(k,m)

What is an Initialization Vector (IV)?

Initialization Vector: Fixed-size input to iterative cryptographic primitives

Important properties:
No IV reuse under the same key
Goal: messages encrypted with the same key look different (even the same message)

It does not need to be secret! Keeping the key secret is enough
But must be unpredictable in some block cipher modes

SECURITY ARGUMENT

Stream Ciphers

Arbitrary length Unless one knows the key
pseudo-random one cannot distinguish it
stream from a random string
STREAM CIPHER
Fixed Size Key (k)
—> stream(k, IV) | Enclk
Initialization Vector (IV) KEYSTREAM GENERATOR ! > Enc(k,m)
—
Message (m)
pre-shared
Keyk «+—-—====="====="======"=====+<= > Keyk
Gy IV, Enc(k, m) = stream(k, IV) ® m

. Dec(m) = stream(k, IV) © Enc(k, m)
Fresh IV (public)

Stream Ciphers

SECURITY ARGUMENT

Arbitrary length Unless one knows the key
pseudo-random one cannot distinguish it
stream from a random string

STREAM CIPHER

Fixed Size Key (k)

Initialization Vector (IV)

stream(k, 1V)

KEYSTREAM GENERATOR i > Enc(k,m)

Message (m)

Remaining downsides? -

and pre-shared!

“ey-earmot-be-rensed-

Key must be random!

| No integrity

Stream ciphers

Speed: algorithms are linear in time and constant in space

Low error propagation: errors in one bit do not affect subsequent symbols

Low diffusion: all information of a plaintext symbol is contained in one encrypted symbol

Susceptibility to insertions/ modifications: text can be inserted, difficult to detect

WEAKNESSES

Stream ciphers

é Speed: algorit ,

: Don’t design your own

= Low error proj symbols

0

v Low diffusion: ¢ one encrypted symbol
2

4

g Susceptibility tc fficult to detect

Trivium (80 bit key, < 4000 gates in HW)

Salsa20 S128/256 bit kex, Random access!

More stream ciphers: https://en.wikipedia.org/wiki/ESTREAM

Block Ciphers

BLock CIPHER

short random string (e.g. 128 bits)

Key k —>
ENCRYPTION Enc(k,m)
Message m —> ALGORITHM
SECURITY ARGUMENT

Without k: a ciphertext block looks
the same as a random block

Encryption algorithm: Converts plaintext m to ciphertext c

Block Ciphers

BLock CIPHER

short random string (e.g. 128 bits)

®

Key k —>

Message m —>

ENCRYPTION DECRYPTION
ALGORITHM ALGORITHM
Key k
ENCRYPTION » Enc(k,m) Vi DECRYPTION
. ALGORITHM
ALGORITHM Ciphertext c=Enc(k,m)
SECURITY ARGUMENT

Without k: a ciphertext block looks
the same as a random block

Encryption algorithm: Converts plaintext m to ciphertext c

Decryption algorithm: Concerts ciphertext c to plaintext m.

The inverse of Encryption - Dec(k; Enc(k; m)) =m

Block Ciphers

pre-shared
Key k "———k-——————————-T(———" Key k
;%’ m — ENC ——> C=Enc(k,m) —»| DEC » m ?

The algorithms work on blocks that are the size of the key
Typically 128/256 bits
Messages are longer than a block! Requires iteration

Block ciphers’ mode of operation

Mode 1: ELecTRONIC CoDE Book (ECB)

Straightforward scheme: encrypt & decrypt single blocks

,,
g’ m; —>| ENC, » C=Enc(m,)

m-= m1m2m3m4

m; are the same m m, M3 "My
size as the key! l l i l

El |E| [E] [E,
oy v o4

c, C C C,

Mode 1: ELecTRONIC CoDE Book (ECB)

Straightforward scheme: encrypt & decrypt single blocks

Foo

ENC,

—) M —

m-= m1m2m3m4

m; are the same
size as the key!

m; m, mz™*m

l3

» C=Enc(m,)

‘4

E.| [E| |E
v oy oy

Ey
v

c, C C C,

C=E(m)—>! DECy

m!

CZ c3
l l l l
#

Mode 1: ELecTRONIC CoDE Book (ECB)

Straightforward scheme: encrypt & decrypt single blocks

; Y m; —>| ENC, » C=Enc(m,) Cw m ?
m = mym,mzm, ¢, G ¢ (
I |
m; are the same m; m, M3 "My Dy| |Dk| |Dk| |Dy
size as the key! l i i l ‘ ‘ ‘ ‘
E.' |El |Exl |Eg m; m, mg my
vy oy

¢, C C G

Problematic! m;=m, — C;=C, DON’T USE!!

https://en.wikipedia.org/wiki/Block_cipher#/media/File:Tux_ecb.jpg

Mode 2: CiPHER BLock CHAINING (CBC)

Add IV and propagate information across blocks to introduce randomness

Plaintext

T oo OOOTIT I

Initialization Vector (1V)

Plaintext

ITTTITITT 7T ——
block cipher block cipher
Key Key encryption Key encryption
OTTTTITITITT] OITTTITITIT1] [(TTTTTITITTTT]
Ciphertext Ciphertext Ciphertext

» C=Enc(m,)

Plaintext

i

i

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#/media/File:CBC_encryption.svg

CBC Encryption
Co=1IV
C. = Enc(k; m;® C,,)

Mode 2: CiPHER BLock CHAINING (CBC)

Add IV and propagate information across blocks to introduce randomness

C=E(m)=—> DECx > m

CBC Decryption
C= clczc Co=1IV
m; = Dec(k; C;) XOR C,

Clphertext Ciphertext Ciphertext
DJIIIII]I]ID |I]I]IIID]]]] OTTTITTTT7T1
block cnpher block cipher
Key Key decryption Key decryption
Initialization Vector (1V)
OTTTITTTIT T —— —_— —_—
OTTTTTTTT7T1] [OTTTTITTT7T1] (ITITTITTTT1]
Plaintext Plaintext Plaintext

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#/media/File:CBC_encryption.svg

Mode 2: CiPHER BLock CHAINING (CBC)

Add IV and propagate information across blocks to introduce randomness

C=E(m)=—> DECx > m

CBC Decryption

C= clczc Co=1IV
m; = Dec(k; C;) XOR C,

Clphertext Ciphertext Ciphertext
D]III]ID:D:D |IIIIID]]]]]] OITITTITTTT1]
l.
Kev Key —= bJZi‘?yﬂi’.ﬁﬁ' ey —=| “gecryption. What if IV is incorrect? The
Initialization Vector (1V) i i ?
il 49 % full decryption is wrong?
(EEEEEEEENNEEN (NN I
Plaintext Plaintext Plaintext Can you decrypt a block

alone? What do you need?

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#/media/File:CBC_encryption.svg

Mode 3: CounTer MoDE (CTR)

Use increasing nonce to add randomness without dependencies between blocks

‘i' m; —>| ENC, » C=Enc(m,)

m=m;m,mj;
CTR Encryption
Nonce Counter Nonce Counter Nonce Counter CI = EnC(k; Nonce+|) @ mi

c59bcf35. 00000000 c59bcf35. 00000001 c59bcf35. 00000002
ITTITTTTTTT ITTITITTTTT (EENEEENEERNEE]

}
block cipher block cipher
Key _ key encryption Key encryption

Plaintext —»? Plaintext ? Plaintext
ITIIITI111T11]

[OTTTTTTTT7T7 OTTTITTT17T OTTTITTTT7T1
Ciphertext Ciphertext Ciphertext

Mode 3: CounTer MoDE (CTR)

Use increasing nonce to add randomness without dependencies between blocks

;..z:' m; — ENC, » C=Enc(m))

m =m;m,m;
CTR Encryption
C. = Enc(k; Nonce+i) @ m,

Nonce Counter
c59bcf35. 00000002

Nonce Counter Nonce Counter
c59bcf3s. 00000000 c59bcf3s. 00000001

OTTTTTTTTTTT] OTTITTITTTTT OTTITTITTTTT
} } }
block cipher block cipher
Key _ key encryption Key encryption
Plaintext —»? Plaintext ? Plaintext ? cou nte r
OTTITTITTTTT
[OTTTTTTTT7T7 OTTTITTT17T OTTTITTTT7T1

Ciphertext Ciphertext Ciphertext

Mode 3: CounTer MoDE (CTR)

Use increasing nonce to add randomness without dependencies between blocks

Nonce = number used only

S once
200,
\‘..a:' m; — ENC, » C=Enc(m,)

CTR Encryption
C. = Enc(k; Nonce+i) @ m,

Nonce Counter
c59bcf35. 00000002

Nonce Counter Nonce Counter
c59bcf35 00000000 c50bhcf3s. 00000001

OTTITTITTTTT OTTITTITTTTT
' 4
block cipher Ke block cipher
Key encryption y encryption
Plaintext —>? Plaintext T Plaintext ? Cou nte r
OTTITTITTTTT
[OTTTTTTTT7T7 OTTTITTT17T OTTTITTTT7T1

Ciphertext Ciphertext Ciphertext

Mode 3: CounTer MoDE (CTR)

Use increasing nonce to add randomness without dependencies between blocks

Nonce = number used only

once

» C=Enc(m,)

CTR Encryption
C. = Enc(k; Nonce+i) @ m,

Nonce Counter
c59bcf35. 00000002

Nonce Counter Nonce Counter
c59bcf35 00000000 c50bhcf3s. 00000001

OTTITTITTTTT OTTITTITTTTT
} }
block cipher Ke block cipher
Key encryption y encryption
Plaintext —>? Plaintext T Plaintext ? Cou nte r
OTTITTITTTTT

[OTTTTTTTT7T7 OTTTITTT17T OTTTITTTT7T1

Ciphertext Ciphertext Ciphertext

Do we need the decryption
algorithm??

Mode 3: CounTer MoDE (CTR)

Use increasing nonce to add randomness without dependencies between blocks

C= C1CZC3
CTR Decryption

Nonce Counter Nonce Counter
c58bcf35. 00000000 c58bcf35. 00000001

Nonce Counter C, = Enc(k; Nonce+i) ® m,

c59bcf35. 00000002

OTTTTTIITTTT OTTTTTTITTTT] OTTTTTTITTTT]
! } |
by e block cipher block cipher
Key m n Key encryption Key encryption
Ciphertext—»? Clphertext—>? |phertext—>?
OTTTTTTITTTT OTTTTTTITTTT OTTTTTTITTT1

Plaintext Plaintext Plaintext

Summary: Block ciphers

High diffusion: information from one plaintext symbol is diffused into several
ciphertext symbols

Immunity to tampering: difficult to insert symbols without detection

Slow: an entire block must be accumulated before encryption / decryption can begin

Error propagation: in some modes of operation errors affect several bits/blocks

WEAKNESSES

*Different modes of operation offer different trade-offs and these weaknesses/strengths may actually not apply.

Summary: Modes of operation

Electronic Code Book (ECB)

Directly encrypt and decrypt single blocks
X Large information leakage due to lack of randomness across ciphertext blocks

Cipher Block Chaining (CBC)

¥ Avoids ECB problems: Each ciphertext block adds randomness to encryption of

following block
X Propagates errors and no parallel encryption

Counter mode (CTR)

Uses a nonce and an increasing counter to introduce randomness across ciphertext
blocks
Parallel encryption and decryption

Summary: Block ciphers

STRENGTHS

WEAKNESSES

High diffusig
ciphertext s

ad into several

Don’t design your own

’/ﬂ

Immunity tc action

Slow: an ent decryption can begin

Error propag

AES - The Advanced Encryption Standard
128/256 bit key, NIST Standard, HW support

More: https://en.wikipedia.org/wiki/Block_cipher#Notable block ciphers

'

PrL

Computer Security and Privacy
(COM-301)
Applied cryptography
Symmetric encryption - Integrity

Carmela Troncoso
SPRING Lab
carmela.troncoso@epfl.ch

Some slides/ideas adapted from: George Danezis, Yoshi Kohno

RR

Cryptography for integrity

Integrity: information cannot be modified by unauthorized parties

Information

Plaintext: Plaintext:

“Banana”

llApplell

st ;! Gru the
- intended
Evil minion receiver
Bob the sender the Adversary
breaking integrity

Cryptography for integrity

Integrity: information cannot be modified by unauthorized parties

Information

Plaintext:
“Banana”

Plaintext:
“Banana”

vﬁﬁﬁkjﬁ o
. “ St - Gru the
e o 3 e ded
’ Evil minion intende
the Adversary receiver
Bob the sender cannot break

integrity

Integrity from symmetric encryption:
Message Authentication Codes (MAC)

Fixed (short) Size Key (k) Hard to generate

—_— MESsAGE Short output (MAC) (m, MAC(k;m))
Message (m) AUTHENTICATION ' without knowing k
-_— CoDE

Integrity from symmetric encryption:
Message Authentication Codes (MAC)

. . Hard to generate
Fixed (short) Size Key (k)
—_— MESsAGE Short output (MAC) (m, MAC(k;m))
Message (m) AUTHENTICATION ' without knowing k
-_— CoDE
pre-shared
Keyk «+—-—====="=========="="=====+<= > Keyk

Foo m, MAC(k;m)
m — ﬁ" >

Integrity from symmetric encryption:
Message Authentication Codes (MAC)

. . Hard to generate
Fixed (short) Size Key (k)
—_— MESsAGE Short output (MAC) (m, MAC(k;m))
Message (m) AUTHENTICATION ' without knowing k
-_— CoDE
pre-shared
Keyk «+—-—====="=========="="=====+<= > Keyk
.OO"y m, MAC(k;m)

TWO PROPERTIES:
1) m cannot be tampered with <
2) message comes from Bob/Gru

Integrity from symmetric encryption:
Message Authentication Codes (MAC)

. . Hard to generate
Fixed (short) Size Key (k)
() — MESsAGE Short output (MAC) (m, MAC(k;m))
Message (m) AUTHENTICATION ' without knowing k
-_— CoDE

pre-shared

Keyk «+—-—====="=========="="=====+<= > Keyk

Fo'o m, MAC(k;m)

TWO PROPERTIES:
1) m cannot be tampered with <
2) message comes from Bob/Gru

Messag? can be Mutual authentlcat!on \ ; .
repudiated! but cannot authenticaté sender towards 3" parties!

Example MAC: CBC-MAC

Turning a block cipher into a MAC

CO =0 [any fixed IV]
C. = Enc(k; m,; @ C,)
MAC(k; m;... m,) =C,

U™

D

m

Y

Example MAC: CBC-MAC

Turning a block cipher into a MAC

CO =0 [any fixed IV] m1 m?2 mx
C, = Enc(k; m;® C, ,) 0__@; ’{‘5 _ {5
MAC(k; m;... m,) =C, ,
k E k E E
L |
MAC (k;m)

CBC-MAC is deterministic

Differences with respect to CBC _ ,
Only output is the final value!

Example MAC: CBC-MAC

Limitation:
Only secure if the length of
Turning a block cipher into a MAC .y 8
m is known!
CO =0 [any fixed IV] m1 m?2 mx
C, = Enc(k; m;® C, ,) 0_,é§ {‘5 R 'jb
MAC(k; m;... m,) =C, ,
k E k E k E
|
MAC (k;m)

CBC-MAC is deterministic

Differences with respect to CBC . ,
Only output is the final value!

How to obtain confidentiality and integrity?

ENCRYPT-AND-MAC

No integrity on the ciphertext — Cipher can be attacked
need to decrypt to know if valid

! v

Encryption K€Y \MC function

l l /Integrity of the plaintext can be verified
 Ciphertext | MAC

May reveal information about the plaintext — repeated
x msg, recall the IV of the MAC is fixed (can be solved with a

counter)

Bellare, M., & Namprempre, C. Authenticated encryption: Relations among notions and analysis of the generic composition paradigm.
International Conference on the Theory and Application of Cryptology and Information Security, 2000.

Bellare, M., Kohno, T., & Namprempre, C. Breaking and provably repairing the SSH authenticated encryption scheme: A case study of the
Encode-then-Encrypt-and-MAC paradigm. ACM Transactions on Information and System Security, 2004.
https://en.wikipedia.org/wiki/Authenticated_encryption

How to obtain confidentiality and integrity?

MAC-THEN-ENCRYPT

x No integrity of ciphertext

(in theory) possible to change ciphertext and have a
MAC funcion 1 valid MAC
L need to decrypt to know if valid

| Key —

Encryption *—— / Integrity of the plaintext can be verified

V/ No information on the plaintext either, since it is encrypted

Bellare, M., & Namprempre, C. Authenticated encryption: Relations among notions and analysis of the generic composition paradigm.
International Conference on the Theory and Application of Cryptology and Information Security, 2000.

Bellare, M., Kohno, T., & Namprempre, C. Breaking and provably repairing the SSH authenticated encryption scheme: A case study of the
Encode-then-Encrypt-and-MAC paradigm. ACM Transactions on Information and System Security, 2004.
https://en.wikipedia.org/wiki/Authenticated_encryption

How to obtain confidentiality and integrity?

ENCRYPT-THEN-MAC

/ Integrity of ciphertext — ensures you only read valid

* messages! Cipher cannot be attacked!

Encryption

/ Integrity of the plaintext can be verified

MAC function

/ No information on the plaintext either, since it is encrypted

Bellare, M., & Namprempre, C. Authenticated encryption: Relations among notions and analysis of the generic composition paradigm.
International Conference on the Theory and Application of Cryptology and Information Security, 2000.

Bellare, M., Kohno, T., & Namprempre, C. Breaking and provably repairing the SSH authenticated encryption scheme: A case study of the
Encode-then-Encrypt-and-MAC paradigm. ACM Transactions on Information and System Security, 2004.
https://en.wikipedia.org/wiki/Authenticated_encryption

In practice... (out of the course scope)
Authenticated Encryption with Associated Data (AEAD)

New constructions to avoid home-made combinations

K

!

Associated data M — AE [— C,@ Tag

A

N)

Galois counter mode - GCM (one pass)
Encrypt-then-authenticate-then-translate - EAX (Two passes)

https://www.fi.muni.cz/~xsvenda/docs/AE_comparison_ipics04.pdf

