
Computer Security and Privacy
Access Control

Carmela Troncoso

SPRING Lab

carmela.troncoso@epfl.ch

Some slides/ideas adapted from: Philippe Oechslin, George Danezis, Ninghui Li

Computer Security and Privacy
Access control Introduction

Carmela Troncoso

SPRING Lab

carmela.troncoso@epfl.ch

Some slides/ideas adapted from: Philippe Oechslin, George Danezis, Ninghui Li

What is “access control”?

3

What is “digital” access control?

Example questions access control systems need to answer:
- Can Alice read file “/users/Bob/readme.txt”?

- Can Bob open a TCP socket to “http://www.abc.com/”?

- Can Charlie write to row 15 of the table GRADES?

ACCESS CONTROL: Security mechanism that ensures that
“all accesses and actions on objects by principals are WITHIN the security policy”

“authorized”
“has permission”

“unauthorized”
“access denied”

Only events within the security policy
4

Applications
Online Social Networks, Email server, Cloud storage

Middleware
Databases Management Systems (DBMS)

Operating System
control access to files, directories, ports,…

Hardware
Memory, register, privileges

Why is so important to learn about access
control?

5

Access control is the first line of defense. Thus, it is used everywhere

Where does access control (usually) fit?

Authentication
(later in course)

Authorization

The system needs to bind the actor
to a principal before authorization

abstract entity that is authorized to act

(users, connections, processes)

The system needs to decide whether
the principal is authorized

Access control
The mechanisms that do

authentication and
authorization are in the

Trusted Computing Base!

6

What NOT to do: “Checks soup”

- All over the program, add checks

- implementing the decision in-line based on the policy

7

Implementing access control

#some code that needs to access file3.txt

if (action == read) and ((userID == Alice) or (userID == Bob) :
open(file3.txt, ‘r’)

elif (action == write) or (userID == Bob) then:
open(file3.txt,’w’)

else:
print(“The user does not have access to file3.txt”)

What you SHOULD DO: Systematic calls to “reference monitor”
- All over the program add checks that call the monitor

- Checks authorisation required, and provide evidence as to the principals and objects

- “Central” subsystem establishes whether the checks pass or not

8

Implementing access control

if (subject.isPermitted(“user:delete:jsmith ”)){
 //delete the ‘jsmith’ user
} else {
 //don’t delete ‘jsmith’
}

Apache Shiro
https://shiro.apache.org

Least common
mechanism??

Who decides the access policy? Two approaches

DISCRETIONARY ACCESS CONTROL (DAC)

- Object owners assign permissions
- Ownership of resources

- Windows, Linux, macOS
- Social Networks

9

- Central security policy assigns permissions
- Organizations with need for central controls

- Military – focus on confidentiality
- Hospital environment – focus on confidentiality

 and integrity
- Banking – focus on integrity

MANDATORY ACCESS CONTROL (MAC)

Computer Security (COM-301)
Discretionary Access control

Carmela Troncoso

SPRING Lab

carmela.troncoso@epfl.ch

Some slides/ideas adapted from: Philippe Oechslin, George Danezis, Ninghui Li

Implementing Discretionary Access Control

- Object owners assign permissions
- Ownership of resources

- Windows, Linux
- Social Networks

11

How??

Permissions establish which subjects can access which
objects

But in a system there are many subjects and objects.

There can be many subjects, many objects, and many
combinations of permissions combining subjects and
objects, how can we handle?

Discretionary Access Control policies are often
conceptualized as an Access Control Matrix

12

Subjects (principals): entity within an IT system

a user, a process, a service

Objects(assets): resources that (some) subject may access or use

a file, a folder, a row in a database, the system’s memory, a machine in the network,

a printer, a page in a website

Operations: in abstract, subjects can observe and/or alter objects

read, write, append, execute

B. Lampson. Protection. Proc. 5th Princeton Conf. on Information Sciences and Systems, Princeton, 1971.
Reprinted in ACM Operating Systems Rev. 8, 1 (Jan. 1974), pp 18-24.

ACCESS CONTROL MATRIX: an abstract representation of all permitted triplets of
(subject, object, access right) within a system

The Access Control Matrix

file1 file2 file3
Alice read

write read

Bob read
write

read
write

Can Alice read file1?
Can Bob write file1?
Can file3 be written by Alice?

S … Alice, Bob

O … file1, file2, file3

A … read, write

Access control matrix:

13

Access Control Matrix - Example

Not suitable for direct implementation!
what if there are thousands of files or hundreds of users?

14

The Access Control Matrix is an abstract concept

O(f·u)

1 bit per file, 1 user 78KB

3 bits per file, 1 user 236KB

3 bits per file, 10 users 2.36MB

Two more issues:
usually very sparse – extremely inefficient
error prone – hard to have a global view

629601

file1 file2 file3
Alice read

write read

Bob read
write

read
write

17

Notice blanks are not stored!!

Access Control Lists (ACLs)
Associate permissions to objects

Permissions are associated to objects

file1: {(Alice,read/write)}
file2: {(Bob, read/write)}
file3: {(Alice,read),(Bob,read/write)}

file1 file2 file3
Alice read

write read

Bob read
write

read
write

18

can store close/with the resource
easy to determine who can access a resource
easy to revoke rights by resource

difficult to check at runtime
difficult to audit all rights of a user
difficult to remove all permissions from a user

(better remove authentication!)
difficult delegation

Notice blanks are not stored!!

Access Control Lists (ACLs)
Associate permissions to objects

Permissions are associated to objects

file1: {(Alice,read/write)}
file2: {(Bob, read/write)}
file3: {(Alice,read),(Bob,read/write)}

19

Role Based Access Control (RBAC)

Systems have too many subjects! that come and go!
Large dynamic ACLs ☹

Subjects are similar to each other: assign same rights
e.g., a doctor has the same privileges as another doctor

1) assign permissions to roles

2) assign roles to subjects

3) subjects select an active role – they have the permissions of the active role

R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role-Based Access Control Models. IEEE Computer, 29(2):38--47, 1996

20

Problem 1: Role Explosion
- Temptation to create fine grained roles, denying benefits of RBAC

Problem 2: Simple RBAC has limited expressiveness
- Problems with implementing least privilege

- Some roles are relative: “Carmela's Doctor” vs. “Any Doctor”

Problem 3: Difficult to implement separation of duty
- “Two doctors are needed to authorize a procedure”

- RBAC Mechanism needs to ensure they are distinct!

RBAC Problems

21

Group Based Access Control

Systems have too many subjects! that come and go!
Large dynamic ACLs ☹

Observation: Some permissions are always needed together
e.g., access to sockets and network interface always go hand in hand

1) assign permissions to access objects to groups

2) assign subjects to groups

3) subjects have the permissions of all their groups

R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role-Based Access Control Models. IEEE Computer, 29(2):38--47, 1996

24

Group based access control

write read/writeread

subjects

groups

objects

group1 group2 group3

file1 file2 file3

Alice Bob

Negative
permissions

What would you check first: Negative permissions or group permissions?

Negative permissions to implement fine-grained policies

27
Mark S. Miller , Ka-Ping Yee, and Jonathan Shapiro. Capability myths demolished. Technical Report SRL2003-02, Johns Hopkins University
Systems Research Laboratory, 2003

file1 file2 file3
Alice read

write read

Bob read
write

read
write

Permissions associated to subjects

Alice:{(file1,read/write),(file3,read)}
Bob:{(file2,read/write),(file3,write)}

Notice blanks are not stored!!

Capabilities
Associate permissions to subjects

28

can store with the subject (portable!)
easy to audit all subject permissions
delegating is “simple”

revoking permission on one object is hard
transferability, once the capability is given

 how can we prevent sharing?
authenticity, how to check?

Mark S. Miller , Ka-Ping Yee, and Jonathan Shapiro. Capability myths demolished. Technical Report SRL2003-02, Johns Hopkins University
Systems Research Laboratory, 2003

file1 file2 file3
Alice read

write read

Bob read
write

read
write

Permissions associated to subjects

Alice:{(file1,read/write),(file3,read)}
Bob:{(file2,read/write),(file3,write)}

Notice blanks are not stored!!

Capabilities
Associate permissions to subjects

31

A recurrent problem in access control

In these cases the subject (with authority) is implicit

open(“file1”, “rw”)

(the subject is missing, it is understood it is the process owner)

AMBIENT AUTHORITY is used by a subject if for an action to succeed it only needs to
specify the operation and the names of the involved object(s)

no need to repeat the subject all the time (usability)

least privilege becomes harder to enforce
confused deputy problem!

The program cannot check permissions!

The confused deputy problem

Problem with ambient authority:
A privileged program can be tricked to misuse its authority

(Confused deputy problem)

35

The confused deputy problem

Confused
deputy

Security breach!!

36

The confused deputy input output bill

Alice write read read

Compiler read
read
write

read
write

PAY-PER-USE COMPILER

- Compiler receives (input,output)
- Compiles the program input and:
 writes usage into bill

writes errors into output

CAN ALICE CHANGE THE bill?

AND AVOID PAYING?

ACL
input: {(Alice, write), (Compiler, read)}
output: {(Alice, read), (Compiler, read/write)}
bill: {(Alice, read), (Compiler, read/write)}

37

The confused deputy input output bill

Alice write read read

Compiler read
read
write

read
write

PAY-PER-USE COMPILER

- Compiler receives (input,output)
- Compiles the program input and:
 writes usage into bill

writes errors into output

CAN ALICE CHANGE THE bill?

AND AVOID PAYING?

Alice
Pay-per-use
Compiler

(input,bill)

bill is corrupted!!!

1. Compiles input
2. Writes errors in output=bill

ACL
input: {(Alice, write), (Compiler, read)}
output: {(Alice, read), (Compiler, read/write)}
bill: {(Alice, read), (Compiler, read/write)}

Real problem. Ambient authority is used for convenience in many real systems, OS
services, web servers,…

Solutions:
1) Re-implement access control in the privileged process

2) Let privileged process check authorization for Alice.

3) Capabilities can help!

39

How to avoid confused deputies

In the previous example…
- Compiler has capabilities to the file bill.
- To compile Alice must give access to the debugging file output

- Cannot give a capability for writing on bill!
- Cannot confuse anyone!

Discretionary Access Control: owners establish permissions

Conceptualized as an Access Control Matrix

Implemented in two flavors:

 Access control list: permission associated to objects

Capabilities: permission associated to owners

When relying on access control, it is always important to think about confused
deputies

40

Summary

Computer Security and Privacy
Discretionary Access Control
Examples: Linux & Windows

Carmela Troncoso

SPRING Lab

carmela.troncoso@epfl.ch

Some slides/ideas adapted from: Philippe Oechslin, George Danezis, Ninghui Li

We saw that many of the systems we use nowadays rely on discretionary
access control:

- Social networks
- Cloud file sharing systems
- Operative systems

Discretionary Access Control in Real life

- User Identities (UIDs) and Group Identities (GIDs)

- Originally 16-bit (now 32-bit) numbers.

- Special UIDs: -2, 0, 1, …

- User Information
- Each user has own directory /home/username
- User accounts: /etc/passwd

username:password:UID:GID:info:home:shell

- Users belong to one or more groups
- Primary group (/etc/passwd), other groups (/etc/group)

Unix: Principals & Groups

Security Architecture

44

- Everything is a file

- Each user “owns” a set of files

- Each file as a simple Access Control List to express the access control policy to the file
- System files are owned by special users that can make system operations

- All user processes run by a user run with that user’s privileges

Ambient authority!!

- Files have ACLs attached to them

- Each file is assigned an owner UID and GID

- Each file has 9 permission bits
– 3 actions: Read, write, execute

– 3 subjects owner, group, other

- Different semantics between files and directories
- Directories: Read → List files, Write → Add file, Exec → “cd”

- 3 attributes: “suid”, “sgid”, and “sticky”

File Access Control Lists

Example of UNIX ACLs

drwxrwxr-x 1 catronco catronco 4096 Sep 16 14:23 exampledir
-rwxrwxrw- 1 catronco catronco 8600 Sep 15 15:20 hello
-rw-rw-rw- 1 catronco catronco 150 Sep 15 15:14 hello.c
-rw-rw--w- 1 catronco catronco 45 Sep 15 15:07 test1.txt

directories owner

gro
up

oth
ers

files

owner

gro
up

links size last
modified

filename

Owner can change permissions on files

chmod
+r, -w,

666, 662
+t or 1666, +s or 4666

filename

Compare:

 UID / GID of process trying to perform action

with:

state of file (Owner, Group, mode bits)

Order matters in the comparison

1. If UID says you are owner: check bits for owner.

2. If not owner, but your group is owner, check GID with bits for group.

3. Otherwise check bits for “other”

UNIX Access control in action

root user is never denied access

Super users

50

Special “root” user account
- User ID 0
- Access system files and special operations
- Can access anything: (almost all) security checks disabled
- root is in the TCB!!

Never login as root!

 - Some distributions assign no password

 - Use “sudo” or “su” command

 - Difference?

($ sudo su catronco)

Super users

51

Special “root” user account
- User ID 0
- Access system files and special operations
- Can access anything: (almost all) security checks disabled
- root is in the TCB!!

Normal users also need to access system services
but these services need to run with system privileges

suid / sgid mechanism

Never login as root!

 - Some distributions assign no password

 - Use “sudo” or “su” command

 - Difference?

($ sudo su catronco)

Setuid and setgid bits serve to indicate that a file is not run with the
privileges of the launcher, but with the privileges of the owner user/group

Specially useful to run programs that require root, respecting the least
privilege principle, e.g., to change a password:

ls -l /bin/passwd
-rwsr-xr-x. 1 root root 27768 Aug 20 2020 /bin/passwd

Special rights: suid/sgid

Special rights: suid/sgid

Chen, H., Wagner, D., and Dean, D. “Setuid Demystified”. In USENIX Security Symposium 2002
Kamp, P.H., and Watson, R.N. “Jails: Confining the omnipotent root”. Proceedings of SANE 2000

How do you know if a suid program does what it is meant to do? and only what it is meant to do?

-rwxr-xr-x 1 root root 3492656 Dec 4 2017 python2.7

Setuid Root programs are dangerous! (in TCB)

Special rights: sticky bit

“Restricted deletion bit” (chmod +t)

Directories:

prevents unprivileged users from removing or renaming a file in the directory

unless they own the file

Example: /tmp folder. Users can only edit their own files

Files:

historically prevented program from being moved from swap for fast load

current: linux ignores the bit

Special user (User ID -2)

- owns no files

- belongs to no user

- Safer user to execute code you do not know, particularly obfuscated code

- Limits damages if they misbehave / get compromised

Special rights: Nobody

Principals = users, machines, groups,…
Objects = files, Registry keys, printers, …

Access control:

Each object has a discretionary access control list (DACL)

Each process (or thread) has an access token with
Login user account (process “runs as” this user)
All groups of which the user is a member(recursively!)
All privileges assigned to these groups

What about Windows?

 Compare DACL with the
process’ access token when

creating a handle to the object

What about Windows? DACL
List of Access Control Entries (ACEs)

https://docs.microsoft.com/en-us/windows/desktop/secauthz/dacls-and-aces

Type: negative / positive

Principal

Permissions: more fine grained than UNIX

Why negative first?

+ Flags and others…

Least Privilege by default
Run as administrator

