“PFL R

Computer Security and Privacy
Access Control

Carmela Troncoso
SPRING Lab
carmela.troncoso@epfl.ch

Some slides/ideas adapted from: Philippe Oechslin, George Danezis, Ninghui Li

“PFL R

Computer Security and Privacy
Access control Introduction

Carmela Troncoso
SPRING Lab
carmela.troncoso@epfl.ch

Some slides/ideas adapted from: Philippe Oechslin, George Danezis, Ninghui Li

What is “access control”?

What is “digital” access control?

Access CoNTRoOL: Security mechanism that ensures that
“all accesses and actions on objects by principals are witHin the security policy”

Example questions access control systems need to answer:
- Can Alice read file “/users/Bob/readme.txt”?

- Can Bob open a TCP socket to “http://www.abc.com/”?
- Can Charlie write to row 15 of the table GRADES?

X

“authorized” “unauthorized”
. . o H 124
“has permission” access denied

Why is so important to learn about access
control?

Access control is the first line of defense. Thus, it is used everywhere

Applications
Online Social Networks, Email server, Cloud storage

Middleware
Databases Management Systems (DBMS)

Operating System
control access to files, directories, ports,...

Hardware
Memory, register, privileges

Where does access control (usually) fit?

The system needs to bind the actor The system needs to decide whether
to a principal before authorization the principal is authorized
abstract entity that is authorized to act The mechanisms that do
Access control authentication and

(users, connections, processes)

authorization are in the
Trusted Computing Base!

Implementing access control

What NOT to do: “Checks soup”
- All over the program, add checks
- implementing the decision in-line based on the policy

#some code that needs to access file3.txt

if (action == read) and ((userID == Alice) or (userID == Bob)
open (file3.txt, ‘r’)

elif (action == write) or (userID == Bob) then:
open (file3.txt,’'w’)

else:

print (“The user does not have access to file3.txt”)

Implementing access control

What you SHOULD DO: Systematic calls to “reference monitor”
- All over the program add checks that call the monitor
- Checks authorisation required, and provide evidence as to the principals and objects

- “Central” subsystem establishes whether the checks pass or not

/ Apache Shiro \
https://shiro.apache.org

Least common
if (subject.isPermitted(“user:delete:jsmith”)) {

//delete the ‘jsmith’ user
} else {
//don’t delete ‘jsmith’

\& %

mechanism??

Who decides the access policy? Two approaches

DiscretionARY Access ControL (DAC) Manpatory Access ControL (MAC)
- Object owners assign permissions - Central security policy assigns permissions
- Ownership of resources - Organizations with need for central controls
- Windows, Linux, macOS - Military — focus on confidentiality
- Social Networks - Hospital environment — focus on confidentiality

and integrity
- Banking — focus on integrity

STRAVA 5000 o

cPrL

Computer Security (COM-301)
Discretionary Access control

Carmela Troncoso
SPRING Lab
carmela.troncoso@epfl.ch

Some slides/ideas adapted from: Philippe Oechslin, George Danezis, Ninghui Li

Implementing Discretionary Access Control

- Object owners assign permissions f

- Ownership of resources
- Windows, Linux
- Social Networks

ilRAVA

How??

Permissions establish which subjects can access which
objects

But in a system there are many subjects and objects.
There can be many subjects, many objects, and many
combinations of permissions combining subjects and

objects, how can we handle?

Discretionary Access Control policies are often
conceptualized as an Access Control Matrix

11

The Access Control Matrix

Access ConTrRoL MATRIX: an abstract representation of all permitted triplets of
(subject, object, access right) within a system

Subjects (principals): entity within an IT system

a user, a process, a service

Objects(assets): resources that (some) subject may access or use
a file, a folder, a row in a database, the system’s memory, a machine in the network,

a printer, a page in a website
Operations: in abstract, subjects can observe and/or alter objects
read, write, append, execute

B. Lampson. Protection. Proc. 5th Princeton Conf. on Information Sciences and Systems, Princeton, 1971.
Reprinted in ACM Operating Systems Rev. 8, 1 (Jan. 1974), pp 18-24.

Access Control Matrix - Example

S ... Alice, Bob
O ... filel, file2, file3
A ... read, write

Access control matrix:

Alice

Bob

file1

read
write

file2

read
write

Can Alice read file1?
Can Bob write file1?
Can file3 be written by Alice?

file3
read

read
write

The Access Control Matrix is an abstract concept

Not suitable for direct implementation!
what if there are thousands of files or hundreds of users?

O(f-u)
=R R 1 bit per file, 1 user 78KB
LN e 3 bits per file, 1 user 236KB

indows1@Upgrade

PM 28

3 bits per file, 10 users 2.36MB

ers\catronco>

Two more issues:
usually very sparse — extremely inefficient
error prone — hard to have a global view

Access Control Lists (ACLs)

Associate permissions to objects

file1 file2
Alice reﬁ: Permissions are associated to objects
Wi
Bob read filel: {(Alice,read/write)}
write file2: {(Bob, read/write)}
file3: {(Alice,read), (Bob,read/write)}

17

Access Control Lists (ACLs)

Associate permissions to objects

file1 file2
Alice reﬁ: Permissions are associated to objects
Wi
Bob read filel: {(Alice,read/write)}
write file2: {(Bob, read/write)}
file3: {(Alice,read), (Bob,read/write)}

can store close/with the resource
easy to determine who can access a resource
easy to revoke rights by resource

difficult to audit all rights of a user

difficult to remove all permissions from a user
(better remove authentication!)

difficult delegation

I r difficult to check at runtime

18

Role Based Access Control (RBAC)

Systems have too many subjects! that come and go!
Large dynamic ACLs (X

Subjects are similar to each other: assign same rights
e.g., a doctor has the same privileges as another doctor

1) assign permissions to roles

2) assign roles to subjects

3) subjects select an active role — they have the permissions of the active role

R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role-Based Access Control Models. IEEE Computer, 29(2):38--47, 1996 19

RBAC Problems

Problem 1: Role Explosion

- Temptation to create fine grained roles, denying benefits of RBAC

Problem 2: Simple RBAC has limited expressiveness
- Problems with implementing least privilege

- Some roles are relative: “Carmela's Doctor” vs. “Any Doctor”

Problem 3: Difficult to implement separation of duty
- “Two doctors are needed to authorize a procedure”
- RBAC Mechanism needs to ensure they are distinct!

Group Based Access Control

Systems have too many subjects! that come and go!
Large dynamic ACLs (X

Observation: Some permissions are always needed together
e.g., access to sockets and network interface always go hand in hand

1) assign permissions to access objects to groups

2) assign subjects to groups

3) subjects have the permissions of all their groups

R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role-Based Access Control Models. IEEE Computer, 29(2):38--47, 1996 21

Group based access control

Negative permissions to implement fine-grained policies

---»read = e »>write — read/write

Alice Bob subjects

Negative groups

permissions

objects

What would you check first: Negative permissions or group permissions?

24

Capabilities

Associate permissions to subjects

 filef file2 file3
Alice read

Permissions associated to subjects

read Alice:{ (filel, read/write), (file3, read) }

Bob Bob:{ (file2, read/write), (file3,write) }

Mark S. Miller , Ka-Ping Yee, and Jonathan Shapiro. Capability myths demolished. Technical Report SRL2003-02, Johns Hopkins Umvers:ty
Systems Research Laboratory, 2003

Capabilities

Associate permissions to subjects

 filef file2 file3
Alice read

Permissions associated to subjects

read Alice:{ (filel, read/write), (file3, read) }

Bob:{ (file2, d ite), (file3, 1t
Bob read ob:{(file2, read/write), (file3,write) }

write

easy to audit all subject permissions transferability, once the capability is given
delegating is “simple” how can we prevent sharing?
authenticity, how to check?

can store with the subject (portable!) x revoking permission on one object is hard

Mark S. Miller , Ka-Ping Yee, and Jonathan Shapiro. Capability myths demolished. Technical Report SRL2003-02, Johns Hopkins Umvers:ty
Systems Research Laboratory, 2003

A recurrent problem in access control

AMBIENT AUTHORITY is used by a subject if for an action to succeed it only needs to
specify the operation and the names of the involved object(s)

In these cases the subject (with authority) is implicit

\\

open(“filel”, “rw”) The program cannot check permissions!

(the subject is missing, it is understood it is the process owner)

P4 . . .
m no need to repeat the subject all the time (usability)

x least privilege becomes harder to enforce
confused deputy problem!

The confused deputy problem

Problem with ambient authority:
A privileged program can be tricked to misuse its authority
(Confused deputy problem)

The confused deputy problem

Security breach!!

Confused
deputy

35

The confused deputy

PAY-PER-USE COMPILER

- Compiler receives (1nput, output)
- Compiles the program input and:
writes usage intobill
writes errors into output

CaN ALICE CHANGETHED111?

AND AVOID PAYING?

input output bill
Alice write read read
. I I
Compiler read egd egd
write write
ACL
input: {(Alice, write), (Compiler, read)}
output: {(Alice, read), (Compiler, read/write)}
bill: {(Alice, read), (Compiler, read/write)}

The confused deputy

input output bill
Alice write read read
PAY-PER-USE COMPILER
Compiler read read read
- Compiler receives (1nput, output) P write write
- Compiles the program input and: ACL
x::::z z:ffi Ii:i?)k;lil ‘ input: {(Alice, write), (Compiler, read)}
utpu output: {(Alice, read), (Compiler, read/write)}
bill: {(Alice, read), (Compiler, read/write)}

CaN ALICE CHANGETHED111?

AND AVOID PAYING?

(lnput,bill)

bill iscorrupted!!!

Pay-per-use -
Compiler

1. Compiles input
2. Writes errors in output=bill

How to avoid confused deputies

Real problem. Ambient authority is used for convenience in many real systems, OS
services, web servers, ...

Solutions:
1) Re-implement access control in the privileged process
2) Let privileged process check authorization for Alice.
3) Capabilities can help!

In the previous example...

- Compiler has capabilities to the file b1 11.

- To compile Alice must give access to the debugging file output
- Cannot give a capability for writingonbil1!
- Cannot confuse anyone!

39

Summary

Discretionary Access Control: owners establish permissions
Conceptualized as an Access Control Matrix
Implemented in two flavors:

Access control list: permission associated to objects
Capabilities: permission associated to owners

When relying on access control, it is always important to think about confused
deputies

Computer Security and Privacy
Discretionary Access Control
Examples: Linux & Windows

Carmela Troncoso
SPRING Lab
carmela.troncoso@epfl.ch

Some slides/ideas adapted from: Philippe Oechslin, George Danezis, Ninghui Li

Discretionary Access Control in Real life

We saw that many of the systems we use nowadays rely on discretionary
access control:

- Social networks

- Cloud file sharing systems

- Operative systems

Unix: Principals & Groups

- User Identities (UIDs) and Group Identities (GIDs)
- Originally 16-bit (now 32-bit) numbers.
- Special UIDs: -2,0, 1, ...

- User Information
- Each user has own directory /home /username

- User accounts: /etc/passwd
username:password:UID:GID:info:home:shell

- Users belong to one or more groups
- Primary group (/etc/passwd), othergroups(/etc/group)

Security Architecture

- Everything is a file
- Each user “owns” a set of files

- Each file as a simple Access Control List to express the access control policy to the file
- System files are owned by special users that can make system operations

- All user processes run by a user run with that user’s privileges

Ambient authority!!

File Access Control Lists

- Files have ACLs attached to them
- Each file is assigned an owner UID and GID

- Each file has 9 permission bits
— 3 actions: Read, write, execute
— 3 subjects owner, group, other

- Different semantics between files and directories
- Directories: Read — List files, Write — Add file, Exec — “cd”

- 3 attributes: “suid”, “sgid”, and “sticky”

Example of UNIX ACLs

N
©
T
@IWXIWXI—X
—IrWXIWXIYXrw-—
—IW—IXrw—IXrw-—
—ITW—IXTW——W-—

[I—‘I—‘I—‘I—‘

links

catronco
catronco
catronco
catronco

Q
&

‘catronco

catronco
catronco

catronco ‘

40
86
1

96 Sep 16 14:23
00 Sep 15 15:20
50 Sep 15 15:14
45 Sep 15 15:07

exampledir
hello
hello.c
testl.txt

size last

modified

can change permissions on files

+rl -W,

1 666, 662
|+t or 1666, +s or 4666 |

- filename

filename

UNIX Access control in action

Compare:
UID/ GID of process trying to perform action
with:

state of file (Owner, Group, mode bits)

Order matters in the comparison
1. If UID says you are owner: check bits for owner.
2. If not owner, but your group is owner, check GID with bits for group.
3. Otherwise check bits for “other”

root useris never denied access

Super users

Never login as root!

- Some distributions assign no password
- Use “sudo” or “su” command

Special “root” user account _ Difference?

-UserIDO ($ sudo su catronco)
- Access system files and special operations

- Can access anything: (almost all) security checks disabled
-root isinthe TCB!!

Il(

50

Super users

Never login as root!

- Some distributions assign no password
- Use “sudo” or “su” command

Special “root” user account _ Difference?

-UserIDO ($ sudo su catronco)
- Access system files and special operations

- Can access anything: (almost all) security checks disabled
-root isinthe TCB!!

Il(

)

0 . Normal users also need to access system services
but these services need to run with system privileges
o

o suid / sgid mechanism

51

Special rights: suid/sgid

Setuid and setgid bits serve to indicate that a file is not run with the
privileges of the launcher, but with the privileges of the owner user/group

Specially useful to run programs that require root, respecting the least
privilege principle, e.g., to change a password:

ls -1 /bin/passwd
-rwsr—-xr—-x. 1 root root 27768 Aug 20 2020 /bin/passwd

Special rights: suid/sgid

How do you know if a suid program does what it is meant to do? and only what it is meant to do?

—rwxr-xr-x 1 root root 3492656 Dec 4 2017 python2.7

Setuid Root programs are dangerous! (in TCB)

Chen, H., Wagner, D., and Dean, D. “Setuid Demystified”. In USENIX Security Symposium 2002
Kamp, P.H., and Watson, R.N. “Jails: Confining the omnipotent root”. Proceedings of SANE 2000

Special rights: sticky bit

“Restricted deletion bit” (chmod +t)

Directories:
prevents unprivileged users from removing or renaming a file in the directory
unless they own the file
Example: /tmp folder. Users can only edit their own files

Files:
historically prevented program from being moved from swap for fast load
current: linux ignores the bit

Special rights: Nobody

f’
ain

- Safer user to execute code you do not know, particularly obfuscated code

Special user (User ID -2)

- owns no files
- belongs to no user

- Limits damages if they misbehave / get compromised

What about Windows?

H 3 ae &7 - ==

1995 2001 2006-2009 2006 2012

ARRRRRN
ALY
A ALY
AAAVAAANY

(0
o
o

1985

Principals = users, machines, groups,...
Objects = files, Registry keys, printers, ...

Access control:

Each object has a discretionary access control list (DACL) Compare DACL with the
Each process (or thread) has an access token with process’ access token when
Login user account (process “runs as” this user) creating a handle to the object

All groups of which the user is a member(recursively!)
All privileges assigned to these groups

What about Windows? DACL

List of Access Control Entries (ACEs)

Why negative first?

(Object)q—@—(Thread A)
Access
denied
DACL
Andrew

Access denied Group A
ACE Rndresy Group B

1 Group € Permissions: more fine grained than UNIX

Read, write, execute
|
Access allowed

Type: negative / positive

Access token

Principal

https://docs.microsoft.com/en-us/windows/desktop/secauthz/dacls-and-aces

Least Privilege by default
Run as administrator

$2 Administrators (IC-SPRING-LPCO1\Administrators)

ACE Thread B
2 Group A + Flags a nd othe rs R @ COM-301 - Access control Properties
Write General Securty Details Previous Versions
[
Access allowed Access token Object name: C:\Users\catronco\Documents\EPFL\Teaching\C
ACE :
5 Evensone Vire Group or user names:
G A B2 SYSTEM
Read . BXe cute roup a Troncoso Camela (catronco@intranet.epfl.ch)

Pemissions for SYSTEM

To change pemissions, click Edit.

Allow Deny

Full control

Modify

Read & execute
Read

Write

Special permissions

For special pemissions or advanced settings, Advanced

click Advanced.

OK Cancel Apply

