
C programming cheatsheet
(preliminaries to follow the lecture)

C language 101: concepts for the lecture
(not a programming course)

Low-level general-purpose programming language
very efficient
very prevalent (Windows, iOS, IoT)

1. #include <stdio.h>

2. int print_hello()

3. {

4. printf("Hello, World!\n");

5. return 0;

6. }

7. x = print_hello()

Libraries included (other c functions that do
not show in the program)

Function header

Start function
Instruction within function (prints Hello

World in the screen)
Return value “0”

End function

Call function

Store the
value returned
by print_hello()

The function
returns an int

C language 101: concepts for the lecture
(not a programming course)

1. int addNumbers(int a, int b)
2. {
3. int result;
4. result = a+b;
5. return result; // return statement
6.}

Function receives 2 integers (a, b) and
returns an integer

A local variable, only exists
inside the function

C language 101: concepts for the lecture
(not a programming course)

* Indicates a pointer: a pointer is a special variable
that stores addresses rather than values

& Returns the address of a
variable

1. int* pc, c;
2. c = 5;
3. pc = &c;
4. printf("%d", *pc);

Returns the content of in the address
pointed by a pointer

(in this case, the content of the
address pointed by pc is the address

of the variable c)

C language 101: concepts for the lecture
(not a programming course)
Layout of a C program

Executable instructions (code). It is under the heap
and the stack with the goal of avoiding that it gets

rewritten

global variables and static variables that are
initialized by the programmer

global variables and static variables that are initialized to
zero or do not have explicit initialization in source code

dynamic memory allocation
(malloc, calloc,…)

LIFO structure
function variables, along with information

that is saved each time a function is called

C language 101: concepts for the lecture
(not a programming course)

char big_array[100];
char huge_array[1000];
int global = 0;

int useless() { return0; }

int main() {
void *p1, *p2, *p3;
int local = 0;
p1 = malloc(28);
p2 = malloc(8);
p3 = malloc(32);

}

Layout of a C program

C language 101: concepts for the lecture
(not a programming course)
Calling a function

int __printf (const char *format, ...) {
Code to print things;

}

int main {
/* code doing stuff */
printf(“You scored %d\n”, score)
/* code doing stuff */
}

Return address
0x8048464

score

Stack

stuff from main function

End C programming cheatsheet
(preliminaries to follow the lecture)

Computer Security (COM-301)
Software security

Memory safety
Carmela Troncoso

SPRING Lab
carmela.troncoso@epfl.ch

Some slides/ideas adapted from: Tuomas Aura, Yoshi Kohno, Trent Jaeger

Why all the fuzz with overflows…

Memory corruption

Unintended modification of memory location due to missing / faulty safety check

void vulnerable(int user1, int *array) {
// missing bound check for user1
array[user1] = 42;

}

void vulnerable(char *buf) {
free(buf);
buf[12] = 42;

}

Memory safety: temporal error

Memory safety: spatial error

void vulnerable() {
char buf[12];
char *ptr = buf[11];
*ptr++ = 10;
*ptr = 42;

}

Memory safety: spatial error

void vulnerable()
{
int authenticated = 0;
char buf[80];

gets(buf);
…
}

Gets(buf): reads a line from stdin and stores it into the string pointed to by buf

How can you exploit this?

Variable that stores
whether the user is

authenticated to call a
function that reads secrets

If we give more than 80
characters from stdin, it will
overwrite authenticated!

(both are in the stack)

If the value is !=0 the user
will be authenticated!

19

#include<stdio.h>
int main(int argc, char** argv) {
char buffer[100];
strncpy(buffer, argv[1]);
printf(buffer);
return 0;
}

http://codearcana.com/posts/2013/05/02/introduction-to-format-string-exploits.html
https://owasp.org/www-community/attacks/Format_string_attack

Uncontrolled Format String (CWE-134)
What would this print if argv[1] = “You scored %d\n”?

Return address
0x8048464

?????

stuff from main function

4 bytes from the stack!

And if it was printf(“You scored %d %d %d %d”)?

And if it was printf(“You scored %s”)?

Format string can read beyond the parameters
e.g, if input = '%4$p” → Read from 4th parameter (even if it does not exist)

Format string can write to memory
e.g, if input = '%6$n” → Write to the address pointed to by 6th parameter

http://codearcana.com/posts/2013/05/02/introduction-to-format-string-exploits.html
https://owasp.org/www-community/attacks/Format_string_attack

20

#include<stdio.h>
int main(int argc, char** argv) {
char buffer[100];
strncpy(buffer, argv[1]);
printf(“%s”, buffer);
return 0;
}

SOLVING THE PROBLEM

The programmer should decide the format of the
string. That ensures that no extra argument, read
or write, can be used.

http://codearcana.com/posts/2013/05/02/introduction-to-format-string-exploits.html
https://owasp.org/www-community/attacks/Format_string_attack

http://codearcana.com/posts/2013/05/02/introduction-to-format-string-exploits.html
https://owasp.org/www-community/attacks/Format_string_attack

Attack scenario: code injection

Force memory corruption to set up attack
Redirect control-flow to injected code

Code Heap Stack

Code injection attack

void vuln(char *u1) {
// strlen(u1) < MAX?
char tmp[MAX];
strcpy(tmp, u1);
...

}
vuln(&exploit);

Next stack frame

Code injection attack

void vuln(char *u1) {
// strlen(u1) < MAX?
char tmp[MAX];
strcpy(tmp, u1);
...

}
vuln(&exploit);

1st argument: *u1
Next stack frame

Code injection attack

void vuln(char *u1) {
// strlen(u1) < MAX?
char tmp[MAX];
strcpy(tmp, u1);
...

}
vuln(&exploit);

Return address
1st argument: *u1
Next stack frame

Code injection attack

void vuln(char *u1) {
// strlen(u1) < MAX?
char tmp[MAX];
strcpy(tmp, u1);
...

}
vuln(&exploit);

Return address
Saved base pointer

tmp[MAX]

1st argument: *u1
Next stack frame

Code injection attack

void vuln(char *u1) {
// strlen(u1) < MAX?
char tmp[MAX];
strcpy(tmp, u1);
...

}
vuln(&exploit);

Return address
Saved base pointer

tmp[MAX]

1st argument: *u1
Next stack frame

Shellcode
(executable attack code)

Code injection attack

Memory safety Violation
void vuln(char *u1) {

// strlen(u1) < MAX?
char tmp[MAX];
strcpy(tmp, u1);
...

}
vuln(&exploit);

Return address
Saved base pointer

tmp[MAX]

1st argument: *u1
Next stack frame

Shellcode
(executable attack code)

Don't care

Code injection attack

Memory safety

Integrity *C

Violation
void vuln(char *u1) {

// strlen(u1) < MAX?
char tmp[MAX];
strcpy(tmp, u1);
...

}
vuln(&exploit);

Return address
Saved base pointer

tmp[MAX]

1st argument: *u1
Next stack frame

Shellcode
(executable attack code)

Don't care
Points to shellcode

Code injection attack

Memory safety

Integrity *C

Violation
void vuln(char *u1) {

// strlen(u1) < MAX?
char tmp[MAX];
strcpy(tmp, u1);
...

}
vuln(&exploit);

Return address
Saved base pointer

tmp[MAX]

1st argument: *u1
Next stack frame

Shellcode
(executable attack code)

Don't care
Points to shellcode

Location &C

Memory safety

Integrity *C

Violation
void vuln(char *u1) {

// strlen(u1) < MAX?
char tmp[MAX];
strcpy(tmp, u1);
...

}
vuln(&exploit);

Return address
Saved base pointer

tmp[MAX]

1st argument: *u1
Next stack frame

Shellcode
(executable attack code)

Don't care
Points to shellcode

Location &C

Usage *&C

Code injection attack

Memory safety

Integrity *C

Violation
void vuln(char *u1) {

// strlen(u1) < MAX?
char tmp[MAX];
strcpy(tmp, u1);
...

}
vuln(&exploit);

Return address
Saved base pointer

tmp[MAX]

1st argument: *u1
Next stack frame

Shellcode
(executable attack code)

Don't care
Points to shellcode

Usage *&C

Location &C

Attack Code
injection

Code injection attack

Data Execution Prevention

• Enforces code integrity on page granularity
• Execute code if eXecutable bit set

• W^X ensures write access or executable
• Mitigates against code corruption attacks
• Low overhead, hardware enforced, widely deployed

• Weaknesses and limitations
• No-self modifying code supported

Attack scenario: code reuse

• Find addresses of gadgets
• Force memory corruption to set up attack
• Redirect control-flow to gadget chain

Code Heap Stack

Control-flow hijack attack

void vuln(char *u1) {
// strlen(u1) < MAX?
char tmp[MAX];
strcpy(tmp, u1);
...

}
vuln(&exploit);

Next stack frame

Control-flow hijack attack

void vuln(char *u1) {
// strlen(u1) < MAX?
char tmp[MAX];
strcpy(tmp, u1);
...

}
vuln(&exploit);

1st argument: *u1
Next stack frame

Control-flow hijack attack

void vuln(char *u1) {
// strlen(u1) < MAX?
char tmp[MAX];
strcpy(tmp, u1);
...

}
vuln(&exploit);

Return address
1st argument: *u1
Next stack frame

Saved base pointer

Control-flow hijack attack

void vuln(char *u1) {
// strlen(u1) < MAX?
char tmp[MAX];
strcpy(tmp, u1);
...

}
vuln(&exploit);

Return address
Saved base pointer

tmp[MAX]

1st argument: *u1
Next stack frame

Control-flow hijack attack

void vuln(char *u1) {
// strlen(u1) < MAX?
char tmp[MAX];
strcpy(tmp, u1);
...

}
vuln(&exploit);

Return address
Saved base pointer

tmp[MAX]

1st argument: *u1
Next stack frame

Don't care

Control-flow hijack attack

void vuln(char *u1) {
// strlen(u1) < MAX?
char tmp[MAX];
strcpy(tmp, u1);
...

}
vuln(&exploit);

Return address
Saved base pointer

tmp[MAX]

1st argument: *u1
Next stack frame

Don't care

Don't care

Memory safety Violation

Control-flow hijack attack

void vuln(char *u1) {
// strlen(u1) < MAX?
char tmp[MAX];
strcpy(tmp, u1);
...

}
vuln(&exploit);

Return address
Saved base pointer

tmp[MAX]

1st argument: *u1
Next stack frame

Don't care

Don't careDon't care
Points to &system()

Memory safety

Integrity

Location

*C

&C

Violation

Control-flow hijack attack

void vuln(char *u1) {
// strlen(u1) < MAX?
char tmp[MAX];
strcpy(tmp, u1);
...

}
vuln(&exploit);

Return address
Saved base pointer

tmp[MAX]

1st argument: *u1
Next stack frame

Don't care

Don't careDon't care
Points to &system()

Memory safety

Integrity

Location

*C

&C

Violation

Base pointer after system()
Return address after system

Control-flow hijack attack

void vuln(char *u1) {
// strlen(u1) < MAX?
char tmp[MAX];
strcpy(tmp, u1);
...

}
vuln(&exploit);

Return address
Saved base pointer

tmp[MAX]

1st argument: *u1
Next stack frame

Don't care

Don't careDon't care
Points to &system()

Memory safety

Integrity

Location

*C

&C

Violation

Base pointer after system()

1st argument to system()
Return address after system

Control-flow hijack attack

void vuln(char *u1) {
// strlen(u1) < MAX?
char tmp[MAX];
strcpy(tmp, u1);
...

}
vuln(&exploit);

Return address
1st argument: *u1
Next stack frame

Points to &system()

Memory safety

Integrity

Location

*C

&C

Violation

Base pointer after system()

Usage

Attack

*&C

Control-flow
hijack

1st argument to system()
Return address after system

Address Space Layout Randomization

• Goal: prevent the attack from reaching a target address

• Randomizes locations of code and data regions
• Probabilistic defense
• Depends on loader and OS

• Weaknesses and limitations
• Undefined behavior: prone to information leaks
• Some regions remain static (on x86)
• Performance impact (~10%)

Stack canaries

Stack canaries

• Protect return instruction pointer on stack
• Compiler modifies stack layout
• Probabilistic protection

• Weaknesses and limitations
• Prone to information leaks
• No protection against targeted writes / reads

Status of deployed defenses

• Data Execution Prevention (DEP)
• Address Space Layout Randomization

(ASLR)
• Stack canaries
• Safe exception handlers

• Pre-defined set of handler addresses

Memory

text

data

stack

0x400 RWX

0x800 RWX

0xfff RWX

0x400 R-X

0x800 RW-

0xfff RW-

0x4?? R-X

0x8?? RW-

0xf?? RW-

Software testing

Testing is the process of executing a program to find errors

Error: deviation between observed behavior and specified
behavior (a violation of the underlying specification)

Functional requirements
Operational requirements
Security requirements?

50

Security testing

51

Complete testing of all
Control-flows: test all path through the program
Data-flow: test all values used at each location

Achieving this would be equivalent to solving the “halting problem”
Practical testing is limited by state explosion

“Testing can only show the presence
of bugs, never their absence.”

(Edsger W. Dijkstra)

Control-Flow vs. Data-Flow

52

void program() {
int a = read();
int x[100] = read();

if (a >=0 && a <= 100) {
x[a] = 42;

}
...

}

How to test security properties

Manual Testing: testing is designed by a human
- Code review
- Heuristic test cases

Automated testing: testing is decided algorithmically
- Algorithms designed to run the program and find bugs
- Algorithms enhanced by means to enforce properties

54

Manual testing

Exhaustive: cover all inputs
Not feasible due to massive state space

Functional: cover all requirements
Depends on specification

Random: automate test generation
Incomplete (what about that hard check?)

Structural: cover all code
Works for unit testing

55

Automated testing

Static analysis
Analyze the program without executing it
Imprecision by lack of runtime information, e.g. aliasing

Symbolic analysis
Execute the program symbolically
Keeping track of branch conditions
Not scalable

Dynamic analysis (e.g., fuzzing)
Inspect the program by executing it
Challenging to cover all paths

56

Coverage: testing needs a metric

Why use Coverage?
Intuition: A software flaw is only detected if the flawed statement is executed!
Effectiveness of test suite therefore depends on how many statements are executed.

Statement coverage
how many statements (e.g., an assignment, a comparison, etc.) in the program
have been executed

Branch coverage
how many branches among all possible paths have been executed

57

Coverage: testing needs a metric
int func(int elem, int *inp, int len) {
int ret = -1;
for (int i = 0; i <= len; ++i) {
if (inp[i] == elem) { ret = i; break; }

}
return ret;

}

58

Test input: elem = 2, inp = [1, 2], len = 2 results in full statement coverage.

Loop is never executed to termination, where the out of bounds access happens.
Statement coverage does not imply full coverage.

Current practice is branch coverage

Fuzzing

A random testing technique that mutates input to improve test
coverage

State-of-art fuzzers use coverage as feedback to mutate the inputs

59

Input Generation

Tests

Debug
Exe Coverage

Fuzzing input generation

Dumb Fuzzing is unaware of the input structure; randomly mutates input

Generation-based fuzzing has a model that describes inputs; input
generation produces new input seeds in each round

Mutation-based fuzzing leverages a set of valid seed inputs; input
generation modifies inputs based on feedback from previous rounds

Mutations can be informed by structure white-box, grey-box, black-box.

60

Sanitization

Test cases detect bugs through
Assertions

assert(var!=0x23 && "illegal value");
Segmentation faults
Division by zero traps
Uncaught exceptions
Mitigations triggering termination

How can we increase bug detection chances?
Sanitizers enforce some policy, detect bugs earlier and increase
effectiveness of testing.

61

Address Sanitizer

AddressSanitizer (ASan) detects memory errors. It places red zones around objects and
checks those objects on trigger events.

The tool can detect the following types of bugs:
Out-of-bounds accesses to heap, stack and globals
Use-after-free
Use-after-return (configurable)
Use-after-scope (configurable)
Double-free, invalid free
Memory leaks (experimental)

Slowdown introduced by AddressSanitizer is 2x.

62

Undefined behavior Sanitizer

UndefinedBehaviorSanitizer (UBSan) detects undefined behavior. It instruments code to
trap on typical undefined behavior in C/C++ programs.

Detectable errors are:
Unsigned/misaligned pointers
Signed integer overflow
Conversion between floating point types leading to overflow
Illegal use of NULL pointers
Illegal pointer arithmetic
...

Slowdown depends on the amount and frequency of checks. This is the only sanitizer that
can be used in production. For production use, a special minimal runtime library is used
with minimal attack surface. 63

Software Security: summary

Two approaches: mitigation and testing

Mitigations stop unknown vulnerabilities
Make exploitation harder, not impossible

Testing discovers bugs during development
Automatically generate test cases through fuzzing
Make bug detection more likely through sanitization

64

	C programming cheatsheet�(preliminaries to follow the lecture)
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	End C programming cheatsheet�(preliminaries to follow the lecture)
	Computer Security (COM-301)�Software security�Memory safety
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Memory safety: spatial error
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64

