'
"1

C programming cheatsheet
(preliminaries to follow the lecture)

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

C language 101: concepts for the lecture
(not a programming course)

Low-level general-purpose programming language
very efficient
very prevalent (Windows, iOS, 10T)

1. #include <stdio.h>

2. int print_hello()

3.{

4. printf("Hello, World\n");
5. return O;

6.}

7. x = print_hello()

C language 101: concepts for the lecture
(not a programming course)

1. int addNumbers(int a, int b)

2.

3. Int result;

4. result = a+b;

5. return result; // return statement
6.}

C language 101: concepts for the lecture
(not a programming course)

* Indicates a pointer: a pointer is a special variable
that stores addresses rather than values

/ & Returns the address of a
_ variable

1. int* pc, c;

2.C=D5;

3. pc = &cC;
4. printf("%d", *ic);

Returns the content of in the address
pointed by a pointer
(in this case, the content of the
address pointed by pc is the address
of the variable c)

C language 101: concepts for the lecture

(not a programming course)

Layout of a C program

LIFO structure
function variables, along with information =

high

address >

that is saved each time a function is called

dynamic memory allocation
(malloc, calloc,...)

global variables and static variables that are initialized to
zero or do not have explicit initialization in source code

global variables and static variables that are
initialized by the programmer ==

uninitialized
data(bss)

Executable instructions (code). It is under the heap

initialized
data

and the stack with the goal of avoiding that it gets
rewritten

text

address

s

o N
-

AN

\

command-line arguments
and environment variables

initialized to zero
by exec

read from
program file by
exec

C language 101: concepts for the lecture

(not a programming course)

Layout of a C program

charn big_array[1100];
charthuge_array[1000];
int global=.0;

int useless() { return0;}

int main() {
void ¥p} #p2,#p3;
int local’="0;
p1 =malloc(28);
p2 = malloc(8);
p3 = malloc(32);

high

address

low
address

uninitialized
data(bss)

initialized
data

text

s

o N
-

AN

\

command-line arguments
and environment variables

initialized to zero
by exec

read from
program file by
exec

C language 101: concepts for the lecture

(not a programming course)

Calling a function

int __printf (const char *format, ...) {
Code to print things;

}

Int main {
/* code doing stuff */

printf(“You scored %d\n”, score)
/* code doing stuff¥

}

Stack

Score

0x8048464

Return address

stuff from main function

\0 | \n
% d
r |o| e

e
=

P

e
[

L

End C programming cheatsheet

(preli

minaries to follow the lecture)

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Computer Security (COM-301)
Software security
Memory safety

Carmela Troncoso
SPRING Lab
carmela.troncoso@epfl.ch

Some slides/ideas adapted from: Tuomas Aura, Yoshi Kohno, Trent Jaeger

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Why all the fuzz with overflows...

: Traveler Information

Traveler 1 - Adults (age 18 to 64)

To comply with the TSA Secure Flight program, the traveler information listed here must exactly match the
information on the government-issued photo ID that the traveler presents at the airport.

Title {optional); First Name: Middle Name: Last Name:
Dr, #]Alice Smith

T Travelers are red to enter @ middle name/initlal I one IS
Gender: Date of Birth: ‘ i

listad on their govemment-issued photo 1D.
Female = 01/24/93

Some younger ravelers are not required to present an 1D
when traveling within the U.5. Leam more

+ Known Traveler Number/Pass ID {(optional): @

+ Redress Number (optional): @

Seat Request:
) No Preference () Aisle () Window

& Traveler Information

Traveler 1 - Adults (age 18 to 64)

To comply with the TSA Secure Flight program, the traveler information listed here must exactly match the
information on the government-issued photo ID that the traveler presents at the airport.

Title (optional): First Name: Middle Name: Last Name:

_Dr. 4] Alice Smithhhhhhhhhhhhh
5 h Travelers are rEqurEn to enter a middie namﬂ.“nltlal If one is

Gender: Date of Birth: listed on thelr QovErnmEnt-Issued photo 10,

_Female b 01/24/93

Some younger travelers are not required to present an ID
when traveling within the U.S. Learn more

+ Known Traveler Number/Pass ID (optional): [?]

+ Redress Number (optional): [!]

Seat Request:
) No Preference () Aisle () Window

How could Alice exploit this?
Find a partner and talk it through.

= Traveler Information

Traveler 1 - Adults (age 18 to 64)

To comply with the TSA Secure Flight program, the traveler information listed here must exactly match the
information on the government-issued photo ID that the traveler presents at the airport.

Title {optional): First Name: Middle Name: Last Name:

Dr.)_:_]Alice Smith First
. o Travelers are I'EqUH'Eﬂ to enter a middle name/initial if one is

Gender: Date of Birth: listed on their government-|ssued photo 10D,

|_Female # 01/24/93

Some younger travelers are not required to present an 1D
when traveling within the U.5. Leam more

+ Known Traveler Number/Pass ID (optional): @

+ Redress Number (optional): [2]

Seat Request: i
) No Preference [} Aisle () Window

Passenger last name:
“Smith First Special Instrux: Give Pax Extra Champagne.”

Memory corruption

Unintended modification of memory location due to missing / faulty safety check

void vulnerable(int userl, int *array) {
Il missing bound check for userl
array[userl] = 42;

Memory safety: temporal error

void vulnerable(char *buf) {
free(buf);

buf[12] = 4z;é

®

Memory safety: spatial error

void vulnerable() {
char buf[12];

char *ptr = buf[11];
*ptr++ = 10;
*ptr = 42;

Memory safety: spatial error

void vulnerable()

{

int authenticated = 0;
char buf[80];

gets(buf);

J

How can you exploit this?

If we give more than 80
characters from stdin, it will
overwrite authenticated!

(both are in the stack)

If the value is =0 the user
will be authenticated!

Gets (buf):reads a line from stdin and stores it into the string pointed to by buf

Uncontrolled Format String (cwe-134)

What would this printif argv[1] = “You scored %d\n”?

4 bytes from the stack!

0x8048464
Return address

stuff from main function

And if it was printf(*You scored %d %d %d %d”)?

And if it was printf(*You scored %s”)?

Format string can read beyond the parameters
e.g, if input = '%4Sp” > Read from 4th parameter (even if it does not exist)

Format string can write to memory
e.g, if input = '%65n” - Write to the address pointed to by 6t parameter

http://codearcana.com/posts/2013/05/02/introduction-to-format-string-exploits.html
https://owasp.org/www-community/attacks/Format string attack

http://codearcana.com/posts/2013/05/02/introduction-to-format-string-exploits.html
https://owasp.org/www-community/attacks/Format_string_attack

SOLVING THE PROBLEM

The programmer should decide the format of the
string. That ensures that no extra argument, read
or write, can be used.

http://codearcana.com/posts/2013/05/02/introduction-to-format-string-exploits.html
https://owasp.org/www-community/attacks/Format string attack

20

http://codearcana.com/posts/2013/05/02/introduction-to-format-string-exploits.html
https://owasp.org/www-community/attacks/Format_string_attack

Attack scenario: code injection

Force memory corruption to set up attack
Redirect control-flow to injected code

Code injection attack

void vuln(char *ul) {
// strlen(ul) < MAX?
char tmp[MAX];
strcpy(tmp, ul);

}
q vuln(&exploit);

Code injection attack

void vuln(char *ul) {
// strlen(ul) < MAX?
char tmp[MAX];
strcpy(tmp, ul);

}
q vuln(&exploit);

Code injection attack

void vuln(char *ul) {
// strlen(ul) < MAX?
char tmp[MAX];
strcpy(tmp, ul);

}
q vuln(&exploit);

Code injection attack

q void vuln(char *u1) {
// strlen(ul) < MAX?
char tmp[MAX];
strcpy(tmp, ul);

}
vuln(&exploit);

Code injection attack

void vuln(char *ul) {
// strlen(ul) < MAX?
char tmp[MAX];

ﬂ strcpy(tmp, ul);
}
vuln(&exploit);
Shellcode

(executable attack code)

Code injection attack

void vuln(char *ul) {
// strlen(ul) < MAX?
char tmp[MAX];

ﬂ strcpy(tmp, ul);
}
vuln(&exploit);
Shellcode

(executable attack code)

Don't care

Code injection attack

void vuln(char *ul) {
// strlen(ul) < MAX?
char tmp[MAX];

‘ strcpy(tmp, ul);
}
vuln(&exploit);
Shellcode

(executable attack code)

Don't care

Points to shellcode

Code injection attack

void vuln(char *ul) {
// strlen(ul) < MAX?
char tmp[MAX];

ﬂ strcpy(tmp, ul);
}
vuln(&exploit);
Shellcode

(executable attack code)

Don't care

Points to shellcode

Code injection attack

void vuln(char *ul) {
// strlen(ul) < MAX?
char tmp[MAX];
‘ strcpy(tmp, ul);

}
vuln(&exploit);

Shellcode
(executable attack code)

Don't care

Points to shellcode

Code injection attack

void vuln(char *ul) {
// strlen(ul) < MAX?
char tmp[MAX];
‘ strcpy(tmp, ul);

}
vuln(&exploit);

Shellcode
(executable attack code)

Don't care

Points to shellcode

Data Execution Prevention

* Enforces code integrity on page granularity
* Execute code if eXecutable bit set

e WAX ensures write access or executable

* Mitigates against code corruption attacks
* Low overhead, hardware enforced, widely deployed

* Weaknesses and limitations
* No-self modifying code supported

Virtual address space

Ox00000000
Ox00010000

Ox10000000

il

text

Physical address space

Dx00000000

DO

|:| page belonging to process
[| page not belonging to process

Attack scenario: code reuse

* Find addresses of gadgets
* Force memory corruption to set up attack
* Redirect control-flow to gadget chain

Control-flow hijack attack

void vuln(char *ul) {
// strlen(ul) < MAX?
char tmp[MAX];
strcpy(tmp, ul);

}
q vuln(&exploit);

Control-flow hijack attack

void vuln(char *ul) {
// strlen(ul) < MAX?
char tmp[MAX];
strcpy(tmp, ul);

}
q vuln(&exploit);

Control-flow hijack attack

void vuln(char *ul) {
// strlen(ul) < MAX?
char tmp[MAX];
strcpy(tmp, ul);

}
q vuln(&exploit);

Control-flow hijack attack

q void vuln(char *u1) {
// strlen(ul) < MAX?
char tmp[MAX];
strcpy(tmp, ul);

}
vuln(&exploit);

Control-flow hijack attack

void vuln(char *ul) {
// strlen(ul) < MAX?
char tmp[MAX];

L strcpy(tmp, ul);

}
vuln(&exploit);

Don't care

Control-flow hijack attack

void vuln(char *ul) {
// strlen(ul) < MAX?
char tmp[MAX];
L strcpy(tmp, ul);

}
vuln(&exploit);

Don't care

Don't care

Control-flow hijack attack

void vuln(char *ul) {
// strlen(ul) < MAX?
char tmp[MAX];

L strepy(tmp, ul);
}
vuln(&exploit);
Don't care
Don't care
Points to &system()

Control-flow hijack attack

void vuln(char *ul) {
// strlen(ul) < MAX?
char tmp[MAX];

L strcpy(tmp, ul);
}
vuln(&exploit);
Don't care
Don't care

Points to &system()

Base pointer after system()
Return address after system

Control-flow hijack attack

void vuln(char *ul) {
// strlen(ul) < MAX?
char tmp[MAX];

L strcpy(tmp, ul);
}
vuln(&exploit);
Don't care
Don't care

Points to &system()

Base pointer after system()
Return address after system
1st argument to system()

Control-flow hijack attack

void vuln(char *ul) {
// strlen(ul) < MAX?
char tmp[MAX];
ﬁ strcpy(tmp, ul);

}
vuln(&exploit);

Points to &system()

Base pointer after system()
Return address after system
1st argument to system()

Address Space Layout Randomization

* Goal: prevent the attack from reaching a target address

 Randomizes locations of code and data regions
* Probabilistic defense
* Depends on loader and OS

* Weaknesses and limitations
* Undefined behavior: prone to information leaks
* Some regions remain static (on x86)
e Performance impact (~10%)

Stack canaries

Stack canaries

* Protect return instruction pointer on stack
* Compiler modifies stack layout
* Probabilistic protection

* Weaknesses and limitations
* Prone to information leaks
* No protection against targeted writes / reads

Stack
growth

Vulnerable Buffer

buf{0]

bufn]

Canary Value

Return Address

0x0000

OXFFFF

Status of deployed defenses

* Data Execution Prevention (DEP) Memory
* Address Space Layout Randomization 0x400 RWX
(ASLR) oxt
 Stack canaries
* Safe exception handlers 0x8060 RWX
* Pre-defined set of handler addresses data

Oxfff RWX

stack

Software testing

Testing is the process of executing a program to find errors

Error: deviation between observed behavior and specified
behavior (a violation of the underlying specification)
Functional requirements
Operational requirements
Security requirements?

Security testing

Complete testing of all
Control-flows: test all path through the program
Data-flow: test all values used at each location

Achieving this would be equivalent to solving the “halting problem”
Practical testing is limited by state explosion

51

Control-Flow vs. Data-Flow

void program() {
int a = read();
int x[100] = read();

if (a>=0 && a <= 100) {
x[a] = 42;
}

How to test security properties

Manual Testing: testing is designed by a human
- Code review
- Heuristic test cases

Automated testing: testing is decided algorithmically
- Algorithms designed to run the program and find bugs
- Algorithms enhanced by means to enforce properties

Manual testing

Exhaustive: cover all inputs
Not feasible due to massive state space

Functional: cover all requirements
Depends on specification

Random: automate test generation
Incomplete (what about that hard check?)

Structural: cover all code
Works for unit testing

Automated testing

Static analysis
Analyze the program without executing it
Imprecision by lack of runtime information, e.g. aliasing

Symbolic analysis
Execute the program symbolically
Keeping track of branch conditions
Not scalable

Dynamic analysis (e.g., fuzzing)
Inspect the program by executing it
Challenging to cover all paths

Coverage: testing needs a metric

Why use Coverage?
Intuition: A software flaw is only detected if the flawed statement is executed!
Effectiveness of test suite therefore depends on how many statements are executed.

Statement coverage
how many statements (e.g., an assighnment, a comparison, etc.) in the program
have been executed

Branch coverage
how many branches among all possible paths have been executed

Coverage: testing needs a metric

int func(int elem, int *inp, int len) {
int ret = -1;
for (inti=0;i<=len; ++i) {
if (inp[i] == elem) { ret =i, break; }
}

}

Test input: elem = 2, inp =[1, 2], len = 2 results in full statement coverage.

ret;

Loop is never executed to termination, where the out of bounds access happens.
Statement coverage does not imply full coverage.

Current practice is branch coverage

Fuzzing

A random testing technique that mutates input to improve test
coverage

State-of-art fuzzers use coverage as feedback to mutate the inputs

\

Coverage

59

Fuzzing iInput generation

Dumb Fuzzing is unaware of the input structure; randomly mutates input

Generation-based fuzzing has a model that describes inputs; input
generation produces new input seeds in each round

Mutation-based fuzzing leverages a set of valid seed inputs; input
generation modifies inputs based on feedback from previous rounds

Mutations can be informed by structure white-box, grey-box, black-box.

Sanitization

Test cases detect bugs through
Assertions
assert(var!=0x23 && "illegal value");
Segmentation faults
Division by zero traps
Uncaught exceptions
Mitigations triggering termination

How can we increase bug detection chances?

Sanitizers enforce some policy, detect bugs earlier and increase
effectiveness of testing.

Address Sanitizer

AddressSanitizer (ASan) detects memory errors. It places red zones around objects and
checks those objects on trigger events.

The tool can detect the following types of bugs:
Out-of-bounds accesses to heap, stack and globals
Use-after-free
Use-after-return (configurable)

Use-after-scope (configurable)
Double-free, invalid free
Memory leaks (experimental)

Slowdown introduced by AddressSanitizer is 2x.

Undefined behavior Sanitizer

UndefinedBehaviorSanitizer (UBSan) detects undefined behavior. It instruments code to
trap on typical undefined behavior in C/C++ programs.

Detectable errors are:
Unsigned/misaligned pointers
Signed integer overflow
Conversion between floating point types leading to overflow
lllegal use of NULL pointers
lllegal pointer arithmetic

Slowdown depends on the amount and frequency of checks. This is the only sanitizer that

can be used in production. For production use, a special minimal runtime library is used
with minimal attack surface.

Software Security: summary

Two approaches: mitigation and testing

Mitigations stop unknown vulnerabilities
Make exploitation harder, not impossible

Testing discovers bugs during development
Automatically generate test cases through fuzzing
Make bug detection more likely through sanitization

	C programming cheatsheet�(preliminaries to follow the lecture)
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	End C programming cheatsheet�(preliminaries to follow the lecture)
	Computer Security (COM-301)�Software security�Memory safety
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Memory safety: spatial error
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64

