Modeles stochastiques pour les communications

Test 1: Solutions

Faculté 1&C, bieme semestre

Abbréviations: v.a. = variable aléatoire.

Question 1

1. Nous pouvons d’abord calculer la probabilité que D > d, correspondant & 1’aire hachurée
(voir Figure 1) :

P(D>d)=(1-Vv2d)?=1-2V2d+2d? d e [O\H

Nous avons donc ensuite :

Fp(d)=P(D<d)=1-P(D>d)=2d(V2-d),de [ \H
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Figure 1: Illustration de 'exercice 1 de la Question 1.
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fo(d) = Fp(d) = {
3. Méthode 1 (échange des intégrales) :

E[X] = /OOO zfx(x)dr

_ /OOO (/0 dy) fx(w) da
- [ (/yoofX(a:)da:> dy

= /0 P(X >y)dy.



Méthode 2 (par parties, en supposant que E[X] < o0) :

/ P(X >z)dx = P(X>z) 1 dx
0 0 A’—/\\vf
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= E[X].
4. Méthode utilisant 3. :
%

P(D > z)dx
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Méthode traditionnelle :

1

E[D] = /Of 22 (V2 - 20) dz
= /V1§ (2\@35 — 4x2> dx
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Question 2

1.
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2. Intuitivement, le fait de savoir qu’un appareil a déja plusieurs années augmente la proba-
bilité qu’il soit de bonne qualité, et donc la probabilité qu’il dure encore quelques années
de plus. T n’est donc pas sans mémoire.

Plus formellement, on peut vérifier par exemple que :

P(T>3|T>2) = P(J;D(ZTB’ZTZ)E 2 _ igi;’; LP(T>(3-2)=P(T>1).




Sachant (& 'aide de 'Ex. 1) que P(T'=1) = % et P(T = 2) = 2, on calcule :

PT>9)=1-P(T=1)=",
P(TZ?,):1—P(T:1)—P(T:2):%,
P(TZ3]T22):§$§;);:1;#1:P(T21).

On a donc montré que T n’est pas sans mémoire.

3. D’apres I'Ex. 1, nous avons :

13 2ty

PlT=5)=—F+—5= .
( ) 3-25+29 3-29
De plus, on a :
1 1 1
PT=5|X=2)==—=—
(T=5]X=2) =55 =5
1 3t 3
Pl=5|X=4)=--—=—
Donc :
PT=5|X=2)-P(X=2) 24 16
P(X=2|T=5)= PT=5) :24+34:§,
PT=5|X=4) - P(X =4) 34 81
PX=41T=5)= P(T =5) T 23t 9T
Question 3

L fx(z;t) = 56(2) + 367" 1(0 400)-
2. EX(t)] =L ["ze " do = 1.

3. On commence par le cas |to — 1| < T :

On définit I’événement A = {X (¢) a une transition entre ¢ et t2}.

X(t2)]
X(to) | A]- P(A) +E[X (t1)X (t2) | A] - P(A).

Rx(tl,tg) = E[
= E|

(t1
(t1

~—

X
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Comme P(A) = P(D < |ta — t1]) = @, on a:

|ta — t1] T — |tg — t1]

+E[X (1)’ ——

Rx(t1,t2) = E[X (t1)]E[X (t2)]

Sachant que E[X (t1)] = E[X (t2)] = & et E[X(t1)?] = [, #%¢~ dx = 1, on obtient :

to — t1 T— 1ty — 1
Rx(t1,t2) = | T | + |T |, pour |tg —t1| < T.
1

Le cas |t — t1| > T donne simplement Rx (t1,t2) = E[X (t1)X (t2)] = (E[X (t1)])* = ;-

4. I’Ex. 2 indique que pux(t) = px Vt, et 'Ex. 3 indique que Rx(t,t —7) = Rx(7) Vt. La
moyenne de X étant constante et sa fonction d’auto-corrélation ne dépendant que de la
différence de temps 7, on peut conclure de X est stationnaire au sens large.



5. Une condition suffisante est que Cx (1) = Rx(7) — u% — 0 pour 7 — +oo. On a vu a
I'Ex. 3 que pour 7 > T, Rx(7) = i. De plus, on a calculé a 'Ex. 1 que ux = % Donc
Cx (1) =0 pour 7 > T et le processus est ergodique par rapport & sa moyenne.

Question 4

1. On a Rx(0) = E[X2(t)] = fj;o Sx(f)df = 4 et, comme la moyenne est nulle, fx(x;t)
est la densité d'une v.a. Gaussienne avec moyenne j = 0 et variance 0 = 4 :

1 z?
fx@(z:t) = on exp <8>

2. On n’a pas suffisamment d’informations parce que fX(tl)X(t2)(x17x2;tlat2) est la densité
d’un vecteur aléatoire Gaussien dont on connait la moyenne mais pas la matrice de covari-

ance :
o <Rx(t1,t1) Rx(tl,t2)>
Rx(t2,t1) Rx(ta,t2))"

Il nous manque donc les valeurs Rx (t2 —t1) = Rx(t1,t2) = E[X (t1) X (t2)] pour t1 # ta.



