
COM-202: Signal Processing

Chapter 7: Continuous-time Signal Processing



Overview:

The analogue world

Continuos-time Fourier transform

Continuous-time LTI theory

Band-limitied signals
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Two models of the world

Analog/continuous versus discrete/digital
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Two models of the world

digital worldview:

arithmetic

combinatorics

computer science

DSP

analog worldview:

calculus

distributions

system theory

electronics
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Two models of the world, two languages

digital worldview:

countable integer index n

finite-energy sequences x ∈ ℓ2(Z)

frequency ω ∈ [−π, π]

DTFT: ℓ2(Z) 7→ L2([−π, π])

analog worldview:

real-valued time t (sec)

finite-energy functions x ∈ L2(R)

frequency f ∈ R (Hz)

CTFT: L2(R) 7→ L2(R)
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Translating between languages: interpolation

x [n] sound card

Ts system clock
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Translating between languages: sampling

sound card x [n]

Ts system clock
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Bridging the gap

x [n]

sampling

x(t)

interpolation
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Today, processing is as digital as possible

analog to digital

digital to analog

analog to digital to analog
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Digital processing of signals from the analog world

input is continuous-time: x(t)

output is discrete-time: y [n]

processing is on sequences: x [n], y [n]

analog world
processing
for analysis

digital world

examples: storage and compression (MP3, JPG), control systems, monitoring
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Digital processing of signals to the analog world

input is discrete-time: x [n]

output is continuous-time: y(t)

processing is on sequences: x [n], y [n]

digital world
processing
for synthesis

analog world

examples: telecommunication front-ends, music synthesizers, biomedical
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Digital processing of signals from/to the analog world

input is continuous-time: x(t)

output is continuous-time: y(t)

processing is on sequences: x [n], y [n]

analog world processing analog world

examples: end-to-end telecommunication, sound effects, digital photography
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The continuous-time Fourier transform



About continuous time

time: real variable t

signal x : R 7→ C: complex functions of a real variable

finite energy: x ∈ L2(R) (square integrable functions)

inner product in L2(R)

〈x, y〉 =

∫

∞

−∞

x∗(t)y(t)dt

energy: ||x||2 = 〈x, x〉
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About continuous time: convolution

convolution is an operation between two signals that produces a third signal:

y = x ∗ h

convolution for the individual output sample

y(t) = (x ∗ h)(t) =

∫

∞

−∞

x(τ)h(t − τ)dτ
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Real-world frequency

frequency: number of repetitions per second

f expressed in Hz (1/sec)

alternatively, angular frequency in rad/s: Ω = 2πf

period for periodic signals is T =
1

f
=

2π

Ω
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Fourier analysis

in discrete time max angular frequency is ±π

in continuous time no max frequency: f ∈ R

concept is the same: similarity to sinusoidal components

X (f ) = 〈e j2πft , x(t)〉
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Continuous-time Fourier transform

Analysis formula

X (f ) = 〈e j2πft , x(t)〉

=

∫

∞

−∞

x(t)e−j2πftdt ← not periodic!

Synthesis formula

x(t) =

∫

∞

−∞

X (f )e j2πftdf
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Fourier analysis (in rad/s)

X (jΩ) = 〈e jΩt , x(t)〉

=

∫

∞

−∞

x(t)e−jΩtdt ← not periodic!

x(t) =
1

2π

∫

∞

−∞

X (jΩ)e jΩtdΩ

Laplace transform computed on the imaginary axis
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When does CTFT converge?

For square integrable sequences: x ∈ L2(R)

For absolutely integrable sequences: x ∈ L1(R) ← easy to show, lets do it now

X (f ) =

∫

∞

−∞

x(t)e−j2πftdt ≤

∫

∞

−∞

|x(t)e−j2πft |dt

≤

∫

∞

−∞

|x(t)||e−j2πft |dt ≤

∫

∞

−∞

|x(t)|dt <∞
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Example

x(t) = e−at2
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x
(t
)
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Example

X (f ) =
√

π/a e−
π
2

a
f 2

√

π/a

−50 −40 −30 −20 −10 0 10 20 30 40 50

X
(f
)
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What about other interesting signals?

Dirac delta: x(t) = δ(t)?

Constants: x(t) = 1?

Sinusoids: x(t) = e j2πf0t , x(t) = cos (2πf0t), x(t) = sin (2πf0t)?

21



Example

x(t) = cos(2πf0t)

1/f0 2/f0 3/f0−1/f0 0

−1

0

1

x
(t
)
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Example

X (f ) = (1/2)δ(f ± f0)

f0−f0 0
0

1

X
(f
)
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Parseval’s Relation

∫

∞

−∞

|x(t)|2dt =

∫

∞

−∞

|X (f )|2df

“Energy is conserved”
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Convolution property

(x ∗ y)(t)
CTFT
←→ X (f )Y (f )

Convolution in time is multiplication in frequency
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Modulation prorperty

x(t)y(t)
CTFT
←→ (X ∗ Y )(f )

Multiplication in time is convolution frequency
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Continuous-time LTI theory



Linear, time-invariant systems (in continuous time)

x H y

H(α x1 + β x2) = αHx1 + βHx2

HSt0x = St0Hx
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Impulse response

h = Hδ

Same fundamental result: Impulse response also fully characterizes a continuous-time LTI
system!
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Recall: in discrete time...

Every signal is a linear combination of atomic time elements

x =

∞
∑

k=−∞

x [k] δk ,

δk = S−k
δ

δk [n] = δ[n − k] =

{

1 n = k

0 n 6= k .
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Recall: in discrete time...

Filter’s output from impulse response

Hx = H

(

∞
∑

k=−∞

x [k]S−k
δ

)

using linearity...

=

∞
∑

k=−∞

H(x [k]S−k
δ) using linearity...

=

∞
∑

k=−∞

x [k]S−kHδ using time invariance...

=

∞
∑

k=−∞

x [k]S−kh
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Every CT signal is a linear combination of Dirac deltas

x(t) =

∫

∞

−∞

x(τ)δ(t − τ)dτ,

and

x =

∫

∞

−∞

x(τ)S−τ

δdτ
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CT filter’s output from impulse response

Hx = H

(
∫

∞

−∞

x(τ)S−τ

δdτ

)

=

∫

∞

−∞

H
(

x(τ)S−τ

δ
)

dτ

=

∫

∞

−∞

x(τ)S−τH (δ) dτ

=

∫

∞

−∞

x(τ)S−τhdτ
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Analog LTI filters

x(t) H y(t)

y(t) = (h ∗ x)(t)

=

∫

∞

−∞

x(τ)h(t − τ)dτ
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Example: integrator

x(t) H y(t)

Hx is defined by

y(t) =

∫ t

−∞

x(τ)dτ
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Example: time shift

x(t) H y(t)

Hx = St0x

35



Example: “echo”

x(t) H y(t)

Hx = x+ a0S
t0x+ a1S

t1x
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Continuous vs discrete time LTI systems

Just like in discrete time:

Impulse response completely characterizes a continuous-time LTI system

Continuous-time convolution relates the input to the output via the impulse response
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Continuous vs discrete time LTI systems

Many other parallels:

Frequency response is the CTFT of the impulse response for stable systems

Transfer function is the Laplace transform of the impulse response

A continuous-time system is BIBO stable if an only if its impulse response is absolutely
integrable
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