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COM-202: Signal Processing

Chapter 7: Continuous-time Signal Processing



Overview:

The analogue world
m Continuos-time Fourier transform
m Continuous-time LTI theory

m Band-limitied signals



Two models of the world

Analog/continuous versus discrete/digital
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Two models of the world

digital worldview: analog worldview:
m arithmetic m calculus
m combinatorics m distributions
m computer science m system theory

m DSP m electronics



Two models of the world, two languages

digital worldview:

m countable integer index n
m finite-energy sequences x € (»(Z)
m frequency w € [—7, 7]

m DTFT: (Z) — Lo([—7, 7))

analog worldview:

m real-valued time t (sec)

m finite-energy functions x € L>(R)
m frequency f € R (Hz)

m CTFT: Ly(R) = L(R)



Translating between languages: interpolation

x[n] =—————| sound card |———

system clock



Translating between languages: sampling

sound card

system clock

x[n]



Bridging the gap

sampling

/N

x(t) x[n]

\__/

interpolation



Today, processing is as digital as possible

m analog to digital
m digital to analog

m analog to digital to analog



Digital processing of signals from the analog world

m input is continuous-time: x(t)
m output is discrete-time: y[n]

m processing is on sequences: x[n], y[n]

processing

analog world ——— ;
for analysis

— digital world

examples: storage and compression (MP3, JPG), control systems, monitoring



Digital processing of signals to the analog world

m input is discrete-time: x[n]
m output is continuous-time: y(t)

m processing is on sequences: x[n], y[n]

processing

digital world ————— for synthesis

— analog world

examples: telecommunication front-ends, music synthesizers, biomedical



Digital processing of signals from/to the analog world

m input is continuous-time: x(t)
m output is continuous-time: y(t)

m processing is on sequences: x[n], y[n]

analog world ——{ processing |——— analog world

examples: end-to-end telecommunication, sound effects, digital photography
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The continuous-time Fourier transform



About continuous time

m time: real variable t

signal x : R +— C: complex functions of a real variable

finite energy: x € Lo(R) (square integrable functions)

inner product in Lp(R)

xy) = [ O

—00

energy: [[x|[2 = (x,x)



About continuous time: convolution

m convolution is an operation between two signals that produces a third signal:

y=xxh

m convolution for the individual output sample

[e.e]

V() = (x % h)(£) = / x(F)h(t — 7)dr

—00
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Real-world frequency

frequency: number of repetitions per second

m f expressed in Hz (1/sec)

m alternatively, angular frequency in rad/s: Q = 27f

1 2
m period for periodic signalsis T = £ = ﬁﬂ-
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Fourier analysis

m in discrete time max angular frequency is 7
m in continuous time no max frequency: f € R

m concept is the same: similarity to sinusoidal components

X(f) = (27", x(1))
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Continuous-time Fourier transform

m Analysis formula

X(f) = (27", x(1))
:/ x(t)e 2 gt + not periodic!

—00

m Synthesis formula

x(t) = /_ T X(F)e* e df
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Fourier analysis (in rad/s)

X(jQ) = (¢, x(1))
:/ x(t)e /¥ dt <+ not periodic!
x(t) = %/ X(jQ)etdQ

m Laplace transform computed on the imaginary axis
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When does CTFT converge?

m For square integrable sequences: x € Ly(R)

m For absolutely integrable sequences: x € L1(R) < easy to show, lets do it now

xm:/ Amﬂ”mg/|qm%ﬁm

— o0 —00

g/ meﬁﬁmg/ Ix(2)|dt < o

—00 —00
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Example
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What about other interesting signals?

m Dirac delta: x(t) = 6(t)?
m Constants: x(t) =17

m Sinusoids: x(t) = &0t x(t) = cos (2rfyt), x(t) = sin (27fyt)?
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Example

[y

x(t) = cos(27fyt)

AN

VUV VYV

—1/fo 1/fo 2/fo 3/fo
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Example

X(f)

X(f) = (1/2)8(f + fy)

—fo

fo
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Parseval’s Relation

/OO Ix(t)|?dt = /OO | X (F)2df

—oo —o0

m “Energy is conserved”



Convolution property

(x * y)(t) T X(F)Y(F)

m Convolution in time is multiplication in frequency

25



Modulation prorperty

x()y(t) T (X * Y)(f)

m Multiplication in time is convolution frequency
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Continuous-time LTI theory



Linear, time-invariant systems (in continuous time)

H(axy + fx2) = aHxy + [ Hxo

HS"x = SOHx
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Impulse response

h=%#é

Same fundamental result: Impulse response also fully characterizes a continuous-time LTI
system!



Recall: in discrete time...

Every signal is a linear combination of atomic time elements

[e.e]

x= > x[k] &y,

k=—o00

S, =856
1 n=k

Seln] = o[n — K] = {0 o



Recall: in discrete time...

Filter's output from impulse response

Hx =H ( i x[k] S—k5>

k=—00

= i H(x[k] S7<8)
k=—o0

= i x[kK] STFHE
k=—o0

= i x[k]S~¥h

k=—o0

using linearity...

using linearity...

using time invariance...
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Every CT signal is a linear combination of Dirac deltas

o0

x(t) = / x(1)o(t — 7)dT,

—0Q

and
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CT filter’s output from impulse response

Hx = H ( /_ Z X(T)S—Tad7>

_ /_ Z%(X(T)s—fa) dr
_ /_ ZX(T)S—TH(é) dr

= / x(7)S "hdt
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Analog LTI filters

y(t) = (h*x)(¢)
= /_oo x(T)h(t — 7)dT
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Example: integrator

H

‘Hx is defined by

y(t):/_;

x(T)dT
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Example: time shift
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Example: “echo”

Hx = x + apSPx + a;Stx
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Continuous vs discrete time LTI systems

Just like in discrete time:

m Impulse response completely characterizes a continuous-time LTI system

m Continuous-time convolution relates the input to the output via the impulse response
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Continuous vs discrete time LTI systems

Many other parallels:

m Frequency response is the CTFT of the impulse response for stable systems
m Transfer function is the Laplace transform of the impulse response

m A continuous-time system is BIBO stable if an only if its impulse response is absolutely
integrable
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