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COM-202: Signal Processing

Chapter 7.c: multirate signal processing



sampling and interpolation



Sinc interpolation with timebase T

S iy Wy I

T=1/F

[e.e]

xe(t) = 3 xyln] sinc <t _T”T>

n=—0o0

1 f f
X(f) = 7 Xd (27TF> rect <F> € F-BL




Spectrum

Xa(w)

of interpolated signals
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Spectrum
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of interpolated signals
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Spectrum of interpolated signals
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Sinc sampling with frequency F

1 xgL(t)
Xc(t) —_— L} _)(_ —»xd[n]:xBL(nT)

cutoff fo = F/2 raw sampler at rate F

xoln] = <sinc (%) ,xc(t)>
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Sinc sampling includes an implicit antialiasing filter
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Raw sampling with frequency F

Xc(t) _— _)(_

— x4[n] = x(nT)

T=1/F

xd[n] = xc(nT)

Xaw)=F 3 Xe (%F—kF)

k=—o0



Example: signal F,-bandlimited and rate F > F;

Xc(f)

Xd(w)
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Example: signal F;-bandlimited and rate F < F;

Xe(f)
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discrete-time processing of analog signals



Equivalent analog response: basic setup

ety — [ P e P IR
i‘ T=1/F F=1/T i
S e e e, H.(f)
assume x.(t) is Fs-BL and F > F,
= Xow) = FX (FI£]13)0 Yalw) = Holw) Xa(w)

m Y (f)=(1/F)Yq(2nf/F)rect(f/F) = Hqy (2nf/F) Xc(f)

He(f) = Hg (%%)



Equivalent analog response

Hd(w)
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DT processing of CT signals

Xe(f)

X(w)

Y (f)
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Example: analog bandpass with digital processing

m we want to implement a bandpass filter to select frequencies from 1 kHz to 2 kHz
m input signals are bandlimited with max positive frequency Fy = 4 kHz

m we want to use digital processing
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Example: analog bandpass with digital processing

analog bandpass filter:
m filter passband is 2f. = 1 kHz (f. = 500 Hz)

m filter center frequency is fy = 1500 Hz

discrete-time processing chain
m input is 8 kHz-BL so we can use a sampling frequency Fs = 8 kHz
m design a FIR lowpass with cutoff w. = 27 (f./Fs)

m modulate the impulse respose with wo = 27(fy/Fs)



Example: analog bandpass with digital processing

import scipy.signal as sp

fc, £fO, Fs = 500, 1500, 8000
wc, w0 = fc / Fs, fO / Fs

N =61
tbp = 0.2 # 20% transition band

h = sp.signal.remez(N, [0, wcx(1-tbp), wcx(1+tbp), 0.5], [1, 0], weight=[10, 1])
h *= 2 * np.cos(2 * np.pi * w0 * np.arange(len(h)))
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Example: analog bandpass with digital processing

digital bandpass FIR

IR
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Example: analog bandpass with digital processing

equivalent analog response
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two more ideal filters



Dual setup

F=1/T T=1/F
m X (f)=(1/F) X427 f/F)rect(f/F)
m Y. () = H(F)X(F)

B Yy(w) = FYC(iF) = Hc(zw_ﬂF)Xd(w)
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Delays in continuous time

x(t)

H(f)

m in continuous time, delays are well defined for all 7 € R

m H(f) = e /27
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Delays in discrete time

xg[n] ———| H(w) = e /7

—> yy[n] =7

m when 7 € Z, then y[n] = x[n — 7]

m what happens when 7 is not an integer?
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Interpretation by duality

Xc(t) yc(t)
xaln] —— A e 27 e | . yilr]

F=1/T T=1/F

m a discrete-time delay could be implemented via interpolation, delay, and resampling
m equivalent filter: Hy(w) = He(w/(27)F) = e 7“7 witho =7/T €R
m impulse response: h[n] = sinc(n — o)

m if 0 € Z then h[n] = §[n — o] (normal delay) otherwise we have an ideal filter!
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Fractional delay




Fractional delay

xc(t)
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Fractional delay

ye(t)
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Fractional delay

ya[n]
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Differentiation in continuous time

xe(t) ——>| H(f) = jorf

m easy to show that yc(t) = x.(t) = 2 xc(t)

m first derivative can be computed exactly via filtering

ye(t)



By duality

N

xc(t) ye(t)
xg[n] ———> ‘T‘ jorf p——o —— yu[n]
F=1

\'
I
—

m chain interpolates the discrete-time input, differentiates the interpolation and resamples it
m equivalent filter Hy(w) = He(w/(27)) = jw

m Hy(w) is a “digital differentiator”



Digital differentiator, magnitude response

|Hq(w)| = |w|, highpass filter

|Ha(w)|

/2
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Digital differentiator, phase response

ZHg(w) = (7/2) sign(w)

/2 |
3
T
N
—7/2
T T T
w/2
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Digital differentiator, impulse response

hg[n] = iﬂ/ jwendw

—T

= ... (integration by parts). ..

0 n=0

the differentiator is an ideal filter
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Digital differentiator, impulse response
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multirate signal processing



Changing the sampling rate of a discrete-time signal

sinc sampling:

xe(t) € Fy-BL —————] [I] |

st(t) =sinc(t/T) T

mfor T = Ts=1/Fs, x7,[n] = x[n] = Tsx(nTs)
m given an arbitrary value of T can we convert x[n] into x7[n] ?

m can we do this entirely in discrete time?



Decimation and interpolation

m sampling rate change factor: a = T /T
m decimation: when T > T there will be fewer output samples than input samples (o > 1)
m interpolation: when T < T there will be more output (v < 1)

m we can always interpolate safely but decimation may cause loss of information



If we went back to continuous time...

x[n] =——— __Aﬁ* xe{t) _m_) XL(t)) . Xo[N]

sT.(t) = sinc(t/Ts) st(t) =sinc(t/T) T

Xo[n] = xg1(nT) = (x xs7)(nT)

xe(t)= Y x[Klst,(t = nTy)

k=—o00



If

we went back to continuous time...

i Y T P T

st.(t) = sinc(t/Ts) s7(t) =sinc(t/T) T

olo] = (e 57)(0T) = [ xer)sr(aT = r)dr
= /00 ( Z x[k]sT.(T — kTs)> st(nT — 7)d7
% \k=-00
= > x[K /OO st.(r — kTs)st(nT — 7)dr
k=—00 -
= s [ sr(tsrlaT — 4T~
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Two competing lowpass filters

/ T sr (P)sr(t — 7)dr = (st * s7)(t)

—00

sT(t) PASLLLIN T rect(Tf) = S7(f)

interpolation (T < Ty) decimation (T > Ty)

T
0 1/(2Ts)

1/(2T)

St,(f)
St(f)

1/(2T)
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If we went back to continuous time...

xe(t)

x[n] .‘A.* _[j]_) o) . — Xo[n]

st,(t) = sinc(t/Ts) st(t) =sinc(t/T) T

wlil= Y ksinc (%)

k=—o0
Z x[k]sinc(an — k) a=T/Ts <1 (interpolation)
_ k=—oc0
Z x[k]sinc(n — k/a) o= T/Ts>1 (decimation)
k=—0oc0

good news: we can do this entirely in discrete time!



Interpolation by an integer factor

T=Ts/N
a=1/N

Xo[n] = > x[k]sinc <

k=—o0

— kN

)
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Example: increasing the sampling rate by a factor of 3

x[n]
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Example: increasing the sampling rate by a factor of 3
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Example: increasing the sampling rate by a factor of 3
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Example: increasing the sampling rate by a factor of 3

Xo[]

I
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The upsampling operator

(Unx)[n] = {

x[n/N] if nis a multiple of N
0 otherwise.

/N-T\ UNX

X

-/
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Interpolation by an integer factor

ol = 3" xk]sinc (”‘N"N>

k=—o0

_ i (Unx)[KN] sinc <” _NkN >

k=—o0

= 3 Ctmsine (")

m=—0oQ

= (Unx = sy)[n]

m sy is the impulse response of an ideal discrete-time lowpass with cutoff we = 7/N

m interpolation can be performed entirely in discrete time!
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Interpolation by an integer factor in discrete time

—O—E— -

cutoff we = /N

B X, = Sy x UpyX

m interpolation first introduces N — 1 zeros for every input sample and then fills the gaps via
a lowpass filter

m in practice we use a realizable lowpass with cutoff w. = /N
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If we went back to continuous time...

i 7Y Sy RS RY p  E

st.(t) = sinc(t/Ts) st(t) =sinc(t/T) T
[e.e]
Z x[k]sinclan — k) «a=T/Ts <1 (interpolation)
Xo[n] = ¢ K™

Z x[k]sinc(n — k/a) a=T/Ts>1 (decimation)

k=—0o0



Decimation by an integer factor

xo[n] = _f: x[k]sinc<NnN_ k)

m sy is the impulse response of an ideal discrete-time lowpass with cutoff w. = 7/N
m we discard N — 1 out of N filter output samples

m decimation can be performed entirely in discrete time!
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The downsampling operator

(Dnx)[n] = x[nN]
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Decimation by an integer factor in discrete time

— [ —O—-

cutoff we = 7/N

m X, = Dn(spy *x)
m decimation first “bandlimits” the input and then discards N — 1 samples out of N
m in practice we use a realizable lowpass with cutoff w. = 7/N

m if x(t) € (Fs/N)-BL, then sy *x = x and so x, = Dyx
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Rational Sampling Rate Change

we = min{x/N,7/M}

()
NS

Xo



Interpolation by an integer factor in the frequency domain

X

({1

cutoff we = 7/N

X/Vu(w): Z XNU[n]e_j“’”
n=—00

= > x[n]e N = X(Nw)

n=—o0

Xo(w) = X(New) rect <¥>

™

Xo
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Interpolation by 2

. 1 ]
3
<
0 T T Y T ~<— 1 T
—br —471'/73'71' -2t -7 0 2w 3'7&\ 47 57
— 1
3
a
d \
0 = T B ———
-7 0 w/2 T
~ 1f ]
3
>
0 \ T \
-7 —m/2 0 w/2 T
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Interpolation by 3

X(3w)
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Interpolation by 4

—_ lk ]
3
<
0 7 Y T Y T Y T Y K
—571 //—477 -3 27 -7 0 7T 27 37 47r\\ 57
. \
3
NS
x
©
N3
0 T I I
0 /4 w/2 3r/4 T

—T



Decimation by an integer factor in the frequency domain

— [ —O—-

cutoff we = /N

Xo(w) = X ([%]fiﬁ)
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Decimation by 2

X(w)
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Decimation by 3

X(w)
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Decimation by 4

X(w)

s
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What happens if we just downsample (no lowpass)?

X —»@— Xo = Dpx

Xo[n] = x[nN] = xc(nNTs) = x1(nN)
x1(t) = xc(t/Ts) € 1-BL

we're sampling a 1-BL signal with a sampling frequency F = 1/N < 1: aliasing
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Downsampling and aliasing

x1(t) € 1-BL
] —— b |— X — i

T.=1 T=N

periodization (with possible overlap) due to raw sampling at F = 1/N
1 w — 21k
Xolw) = Nzijl < 2rN >
spectrum of reconstructed 1-BL input: Xi(f) = X(27f)

1
= 15 2 X@7F)|r—o-2n)2nn)
k

1 w — 21k
=X ()
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Downsampling by 3, with aliasing

X(w)

22 X(w = (2m/3)k)

(w)

/\ |

—m/2 0 w/2 T

1/3F

—3r

—27

LN LN

=r —7n/30 n/37n/374x/[3 27 3m

T

1/3

/\ |

—m/2 0 w/2 T
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practical digital to analog interpolation methods



Sinc interpolation

sl ——{ o —— (0

T=1/F

oo

()= Y walalsine (<)

n=—oo

1 f f
XA(f) = 7 Xd <27TF> rect <F> € F-BL

m sinc interpolation cannot be implemented in practice (non-causal, ideal response)

m interpolation kernels are analog filters, i.e. expensive to build

m for cost reasons we can only use a low-order interpolator like the zero-order hold

54



Realistic continuous-time interpolation

xg[n] — | ik(t) F—— xc(t)

[e.e]

()= 3 xalnlix (t_T”T>

n=—0o0

i () <5 1 (F)

X.(F) = %Xd <2w;> I <;>
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Interpolation kernels

K ik () Ik (f)
0 ip(t) = rect(t) Io(f) = sinc(f)
1F 1 F ]
0 T T 0 Y Y Y T Y Y Y
-2 —1 0 —4 -3 -2 -1 0 1 2 3 4
1 i(t) =1— [t| Io(f) = sinc?(f)
1F 1 F ]
0 \ T 0 T T I m—
-2 —1 0 —4 -3 -2 -1 0 1 2 3 4
oo iso (t) = sinc(t) loo (f) = rect(f)
1F 1 F 7]
0 et T
T NS NS
T T T 0 T T T
—6 —4 -2 0 -2 —1 0 1 2
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Sinc interpolation, K = oo

X(f) = Xa(2nf) Io(f)  (Fs =1)

Xa(w)

—

T

:‘ %
N
3
w
N

1

VAV VAV

~1/2 0 1/2

Xc(f)
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Zero-order hold interpolation, K =0

Xc(f) = Xq(27F) Io(f)

Xd(w)

—

T
ﬂ %
N
5
w
3

1

X1

3
3
>

~1/2 0 1/2
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First-order interpolation, K =1

Xd(w)

Xc(f)

Xc(f) = Xq(2nf) h(f)

AVARVARYAS AL YV VARYA

~1/2 0 1/2
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Problems with low-order kernels

m low-order kernels decay slowly in frequency and cannot filter out the replicas
m idea: space out the replicas in the digital spectrum to make room
m with digital multirate techniques we can do this very well

m we use |ots of cheap digital processing instead of expensive analog filters

Xo[n]
xq[n] @ H(z) ik(t) F— xc(t)

cutoff we = /N F = NF,
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Oversampled continuous-time interpolation (N = 4)

—_ 1 B
3
N
0 T
-7 0
—_ l B
3
N
0 T | | |
-t —3n/4 —-7/2 —w/4 0 /4 /2 3w /4
S
N
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Oversampled interpolation: time-domain analysis

Xo[n]
xd[n] @ H(z)

ik(t) F— x(t)

cutoff we = /N F = NF,

m digitally oversampling x4 is equivalent to densely sampling a continuous-time
interpolation of xg4

m by using a very good digital lowpass after the upsampler, we can approximate a sinc
interpolation in discrete time

B as we increase the oversampling factor, the samples become sufficiently closer that a ZOH
interpolator is enough



Increasing the oversampling factor before ZOH
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Increasing the oversampling factor before ZOH

/

AN
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Increasing the oversampling factor before ZOH
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Increasing the oversampling factor before ZOH
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Increasing the oversampling factor before ZOH
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Increasing the oversampling factor before ZOH
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Increasing the oversampling factor before ZOH

=
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Increasing the oversampling factor before ZOH
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Increasing the oversampling factor before ZOH

Tl
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sampling in practice



Sinc sampling

xc(t) —

il

XBL(t)

[

sinc(t/T)

1) 5ele)) = s siner)(aT)

xaln] = <sinc (t_ nt

A

—> xd[n] = XBL(nT)

F=1T

m sinc sampling is equivalent to an analog anti-alias filter followed by a raw sampler

m in theory the filter should be an ideal lowpass with cutoff F/2

m but we know we can’t implement ideal filters

64



Realisting sampling

xc(t) —

il

h[_p(t)

XLp(t)

A

—— xy4[n] = x p(nT)

F=1/T

m in a practical sampler we use a realizable analog lowpass filter

m the filter won't be perfect so some aliasing will occur

Xip(f) = Hep(F)X(f)
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Ideal case, h P(t) = sinc(t/T)

Xc(f), Xep(f)
\\\
f

Xip(f)

Xd(w)




Realistic case, using a “cheap” lowpass

Xc(F), Xep(F)

Xip(f)

Xd(w)
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Problems with antialiasing filters

m sharp analog lowpass filters are complicated and expensive

m we would like to do the difficult processing in discrete time

m idea: sample at N times the nominal rate using a cheap antialias

m the wider spacing will reduce overlap since most signals are lowpass

m use decimation by N with a good digital lopass to go back to the intended sampling rate

e () ()
xe(t) ———| 1, f— | ¥ ) (W — eln

th(t),fC: NF5/2 F = NF; wCZﬂ‘/N
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Example: two-times oversampling (F = 2F;)

Xc(F), Xep(F)

Xip(f)

Xd(w)

1 T T T T T 1
—F F/2 —F/2 0 F/2 F/2 F = 2F,
N [ [ T T T T -
—F —F/2 0 F/2 F

/2
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Example:

decimation of two-times oversampled signal

<
________ I T
-7 —7/2 0 /2 ™
E _//_\
N
T T T 1
0 /2 ™
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