
COM-202: Signal Processing

Chapter 7.c: multirate signal processing



sampling and interpolation



Sinc interpolation with timebase T

xd [n] xc(t)

T = 1/F

xc(t) =
∞
∑

n=−∞

xd [n] sinc

(

t − nT

T

)

Xc(f ) =
1

F
Xd

(

2π
f

F

)

rect

(

f

F

)

∈ F -BL
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Spectrum of interpolated signals
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Spectrum of interpolated signals
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Spectrum of interpolated signals
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Sinc sampling with frequency F

xc(t) xd [n] = xBL(nT )

cutoff fc = F/2 raw sampler at rate F

xBL(t)

xd [n] =

〈

sinc

(

t − nT

T

)

, xc(t)

〉

Xd(ω) = F Xc

(

F
[ ω

2π

]+1/2

−1/2

)

3



Sinc sampling includes an implicit antialiasing filter
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Raw sampling with frequency F

xc(t) xd [n] = x(nT )

T = 1/F

xd [n] = xc(nT )

Xd (ω) = F

∞
∑

k=−∞

Xc

( ω

2π
F − kF

)
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Example: signal Fs-bandlimited and rate F > Fs
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Example: signal Fs-bandlimited and rate F < Fs
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discrete-time processing of analog signals



Equivalent analog response: basic setup

xc(t) Hd (z) yc(t)

T = 1/F F = 1/T

xd [n] yd [n]

Hc (f )

assume xc(t) is FS -BL and F > Fs

Xd(ω) = F Xc

(

F
[

ω
2π

]+1/2

−1/2

)

, Yd(ω) = Hd (ω)Xd (ω)

Yc(f ) = (1/F )Yd (2πf /F ) rect(f /F ) = Hd (2πf /F )Xc(f )

Hc(f ) = Hd

(

2π
f

F

)
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Equivalent analog response
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DT processing of CT signals
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Example: analog bandpass with digital processing

we want to implement a bandpass filter to select frequencies from 1 kHz to 2 kHz

input signals are bandlimited with max positive frequency FN = 4 kHz

we want to use digital processing
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Example: analog bandpass with digital processing

analog bandpass filter:

filter passband is 2fc = 1 kHz (fc = 500 Hz)

filter center frequency is f0 = 1500 Hz

discrete-time processing chain

input is 8 kHz-BL so we can use a sampling frequency Fs = 8 kHz

design a FIR lowpass with cutoff ωc = 2π(fc/Fs)

modulate the impulse respose with ω0 = 2π(f0/Fs)
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Example: analog bandpass with digital processing

import scipy.signal as sp

fc, f0, Fs = 500, 1500, 8000

wc, w0 = fc / Fs, f0 / Fs

N = 61

tbp = 0.2 # 20% transition band

h = sp.signal.remez(N, [0, wc*(1-tbp), wc*(1+tbp), 0.5], [1, 0], weight=[10, 1])

h *= 2 * np.cos(2 * np.pi * w0 * np.arange(len(h)))
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Example: analog bandpass with digital processing

digital bandpass FIR
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Example: analog bandpass with digital processing

equivalent analog response
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two more ideal filters



Dual setup

xd [n] Hc (f ) yd [n]

F = 1/T T = 1/F

xc(t) yc(t)

Hd (ω)

Xc(f ) = (1/F )Xd (2π f /F ) rect(f /F )

Yc(f ) = Hc(f )Xc(f )

Yd(ω) = FYc(
ω
2πF ) = Hc (

ω
2πF )Xd (ω)

Hd (ω) = Hc(
ω
2πF )
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Delays in continuous time

x(t) H(f ) y(t) = x(t − τ)

in continuous time, delays are well defined for all τ ∈ R

H(f ) = e−j2πf τ
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Delays in discrete time

xd [n] H(ω) = e−jωτ yd [n] =?

when τ ∈ Z, then y [n] = x [n − τ ]

what happens when τ is not an integer?
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Interpretation by duality

xd [n] e−j2πf τ yd [n]

F = 1/T T = 1/F

xc(t) yc(t)

a discrete-time delay could be implemented via interpolation, delay, and resampling

equivalent filter: Hd (ω) = Hc(ω/(2π)F ) = e−jωσ with σ = τ/T ∈ R

impulse response: h[n] = sinc(n − σ)

if σ ∈ Z then h[n] = δ[n − σ] (normal delay) otherwise we have an ideal filter!
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Fractional delay
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Fractional delay
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Fractional delay
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Fractional delay
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Fractional delay
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Fractional delay
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Differentiation in continuous time

xc(t) H(f ) = j2πf yc(t)

easy to show that yc(t) = x ′c(t) =
∂
∂t xc(t)

first derivative can be computed exactly via filtering
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By duality

xd [n] j2πf yd [n]

F = 1 T = 1

xc(t) yc(t)

chain interpolates the discrete-time input, differentiates the interpolation and resamples it

equivalent filter Hd (ω) = Hc(ω/(2π)) = jω

Hd (ω) is a “digital differentiator”
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Digital differentiator, magnitude response

|Hd (ω)| = |ω|, highpass filter
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Digital differentiator, phase response

∠Hd (ω) = (π/2) sign(ω)
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Digital differentiator, impulse response

hd [n] =
1

2π

∫ π

−π
jωe jωndω

= . . . (integration by parts) . . .

=







0 n = 0
(−1)n

n
n 6= 0

the differentiator is an ideal filter
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Digital differentiator, impulse response
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multirate signal processing



Changing the sampling rate of a discrete-time signal

sinc sampling:

xc(t) ∈ Fs-BL xT [n]

sT (t) = sinc(t/T ) T

for T = Ts = 1/Fs , xTs
[n] = x [n] = Tsx(nTs)

given an arbitrary value of T can we convert x [n] into xT [n] ?

can we do this entirely in discrete time?
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Decimation and interpolation

sampling rate change factor: α = T/Ts

decimation: when T > Ts there will be fewer output samples than input samples (α > 1)

interpolation: when T < Ts there will be more output (α < 1)

we can always interpolate safely but decimation may cause loss of information
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If we went back to continuous time...

x [n] xo [n]

sTs
(t) = sinc(t/Ts) sT (t) = sinc(t/T ) T

xc(t) xBL(t)

xo [n] = xBL(nT ) = (x ∗ sT )(nT )

xc(t) =

∞
∑

k=−∞

x [k]sTs
(t − nTs)
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If we went back to continuous time...

x [n] xo [n]

sTs
(t) = sinc(t/Ts) sT (t) = sinc(t/T ) T

xc(t) xBL(t)

xo [n] = (xc ∗ sT )(nT ) =

∫

∞

−∞

xc(τ)sT (nT − τ)dτ

=

∫

∞

−∞

(

∞
∑

k=−∞

x [k]sTs
(τ − kTs)

)

sT (nT − τ)dτ

=

∞
∑

k=−∞

x [k]

∫

∞

−∞

sTs
(τ − kTs)sT (nT − τ)dτ

=

∞
∑

k=−∞

x [k]

∫

∞

−∞

sTs
(t)sT (nT − kTs − t)dt
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Two competing lowpass filters

∫

∞

−∞

sTs
(τ)sT (t − τ)dτ = (sTs

∗ sT )(t)

sT (t)
CTFT
←−−−→ T rect(Tf ) = ST (f )

interpolation (T < Ts) decimation (T > Ts)

1/(2T )

T

1/(2Ts )

Ts

STs (f )
ST (f )

0

Ts

1/(2T )

T
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If we went back to continuous time...

x [n] xo [n]

sTs
(t) = sinc(t/Ts) sT (t) = sinc(t/T ) T

xc(t) xBL(t)

xo [n] =
∞
∑

k=−∞

x [k] sinc

(

nT − kTs

max{Ts ,T}

)

=























∞
∑

k=−∞

x [k] sinc(αn − k) α = T/Ts < 1 (interpolation)

∞
∑

k=−∞

x [k] sinc(n − k/α) α = T/Ts > 1 (decimation)

good news: we can do this entirely in discrete time!
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Interpolation by an integer factor

T = Ts/N

α = 1/N

xo[n] =

∞
∑

k=−∞

x [k] sinc

(

n − kN

N

)
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Example: increasing the sampling rate by a factor of 3
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Example: increasing the sampling rate by a factor of 3
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Example: increasing the sampling rate by a factor of 3
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Example: increasing the sampling rate by a factor of 3
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The upsampling operator

(UNx)[n] =

{

x [n/N] if n is a multiple of N

0 otherwise.

x N ↑ UNx
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Interpolation by an integer factor

xo [n] =
∞
∑

k=−∞

x [k] sinc

(

n− kN

N

)

=
∞
∑

k=−∞

(UNx)[kN] sinc

(

n− kN

N

)

=

∞
∑

m=−∞

(UNx)[m] sinc

(

n −m

N

)

= (UNx ∗ sN)[n]

sN is the impulse response of an ideal discrete-time lowpass with cutoff ωc = π/N

interpolation can be performed entirely in discrete time!
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Interpolation by an integer factor in discrete time

x N ↑ xo

cutoff ωc = π/N

xo = sN ∗ UNx

interpolation first introduces N − 1 zeros for every input sample and then fills the gaps via
a lowpass filter

in practice we use a realizable lowpass with cutoff ωc = π/N
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If we went back to continuous time...

x [n] xo [n]

sTs
(t) = sinc(t/Ts) sT (t) = sinc(t/T ) T

xc(t) xBL(t)

xo [n] =























∞
∑

k=−∞

x [k] sinc(αn − k) α = T/Ts < 1 (interpolation)

∞
∑

k=−∞

x [k] sinc(n − k/α) α = T/Ts > 1 (decimation)
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Decimation by an integer factor

T = NTs

α = N

xo[n] =

∞
∑

k=−∞

x [k] sinc

(

Nn − k

N

)

= (x ∗ sN)[Nn]

sN is the impulse response of an ideal discrete-time lowpass with cutoff ωc = π/N

we discard N − 1 out of N filter output samples

decimation can be performed entirely in discrete time!
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The downsampling operator

(DNx)[n] = x [nN]

x N ↓ DNx
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Decimation by an integer factor in discrete time

x N ↓ xo

cutoff ωc = π/N

xo = DN(sN ∗ x)

decimation first “bandlimits” the input and then discards N − 1 samples out of N

in practice we use a realizable lowpass with cutoff ωc = π/N

if xc(t) ∈ (Fs/N)-BL, then sN ∗ x = x and so xo = DNx
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Rational Sampling Rate Change

α = T/Ts = M/N

x N ↑ M ↓ xo

ωc = min{π/N, π/M}
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Interpolation by an integer factor in the frequency domain

x N ↑ xo

cutoff ωc = π/N

xNU

XNU(ω) =

∞
∑

n=−∞

xNU [n]e
−jωn

=

∞
∑

n=−∞

x [n]e−jωNn = X (Nω)

Xo(ω) = X (Nω) rect

(

Nω

2π

)
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Interpolation by 2
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Interpolation by 3
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Interpolation by 4
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Decimation by an integer factor in the frequency domain

x N ↓ xo

cutoff ωc = π/N

Xo(ω) = X

(

[ω

N

]+π/N

−π/N

)
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Decimation by 2

−π −π/2 0 π/2 π
0

1

X
(ω

)

−π 0 π
0

1

X
o
(ω

)

48



Decimation by 3
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Decimation by 4
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What happens if we just downsample (no lowpass)?

x N ↓ xo = DNx

xo [n] = x [nN] = xc(nNTs) = x1(nN)

x1(t) = xc(t/Ts) ∈ 1-BL

we’re sampling a 1-BL signal with a sampling frequency F = 1/N < 1: aliasing
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Downsampling and aliasing

x [n] xo [n]

Ts = 1 T = N

x1(t) ∈ 1-BL

periodization (with possible overlap) due to raw sampling at F = 1/N

Xo(ω) =
1

N

∑

k

X1

(

ω − 2πk

2πN

)

spectrum of reconstructed 1-BL input: X1(f ) = X (2πf )

=
1

N

∑

k

X (2πf )|f=(ω−2πk)/(2πN)

=
1

N

∑

k

X

(

ω − 2πk

N

)
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Downsampling by 3, with aliasing
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practical digital to analog interpolation methods



Sinc interpolation

xd [n] xc(t)

T = 1/F

xc(t) =

∞
∑

n=−∞

xd [n] sinc

(

t − nT

T

)

Xc(f ) =
1

F
Xd

(

2π
f

F

)

rect

(

f

F

)

∈ F -BL

sinc interpolation cannot be implemented in practice (non-causal, ideal response)

interpolation kernels are analog filters, i.e. expensive to build

for cost reasons we can only use a low-order interpolator like the zero-order hold
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Realistic continuous-time interpolation

xd [n] iK (t) xc(t)

T = 1/F

xc(t) =

∞
∑

n=−∞

xd [n] iK

(

t − nT

T

)

iK (t)
CTFT
←−−−→ IK (f )

Xc(f ) =
1

F
Xd

(

2π
f

F

)

IK

(

f

F

)
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Interpolation kernels
K ik (t) IK (f )

0 i0(t) = rect(t) I0(f ) = sinc(f )
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Sinc interpolation, K =∞

Xc(f ) = Xd(2πf ) I∞(f ) (Fs = 1)
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Zero-order hold interpolation, K = 0

Xc(f ) = Xd(2πf ) I0(f ) (Fs = 1)
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First-order interpolation, K = 1

Xc(f ) = Xd(2πf ) I1(f ) (Fs = 1)
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Problems with low-order kernels

low-order kernels decay slowly in frequency and cannot filter out the replicas

idea: space out the replicas in the digital spectrum to make room

with digital multirate techniques we can do this very well

we use lots of cheap digital processing instead of expensive analog filters

xd [n] N ↑ H(z) iK (t) xc(t)

cutoff ωc = π/N F = NFs

xo [n]
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Oversampled continuous-time interpolation (N = 4)
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Oversampled interpolation: time-domain analysis

xd [n] N ↑ H(z) iK (t) xc(t)

cutoff ωc = π/N F = NFs

xo [n]

digitally oversampling xd is equivalent to densely sampling a continuous-time
interpolation of xd

by using a very good digital lowpass after the upsampler, we can approximate a sinc
interpolation in discrete time

as we increase the oversampling factor, the samples become sufficiently closer that a ZOH
interpolator is enough
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Increasing the oversampling factor before ZOH
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Increasing the oversampling factor before ZOH
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Increasing the oversampling factor before ZOH

b

b

b

b

b

b

−1

0

1

63



Increasing the oversampling factor before ZOH
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Increasing the oversampling factor before ZOH
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Increasing the oversampling factor before ZOH
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Increasing the oversampling factor before ZOH
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Increasing the oversampling factor before ZOH
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Increasing the oversampling factor before ZOH
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sampling in practice



Sinc sampling

xd [n] =

〈

sinc

(

t − nT

T

)

, xc(t)

〉

= (xc ∗ sincT )(nT )

xc(t) xd [n] = xBL(nT )

sinc(t/T ) F = 1/T

xBL(t)

sinc sampling is equivalent to an analog anti-alias filter followed by a raw sampler

in theory the filter should be an ideal lowpass with cutoff F/2

but we know we can’t implement ideal filters
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Realisting sampling

xc(t) xd [n] = xLP(nT )

hLP(t) F = 1/T

xLP(t)

in a practical sampler we use a realizable analog lowpass filter

the filter won’t be perfect so some aliasing will occur

XLP(f ) = HLP (f )Xc(f )

Xd (ω) = F
∞
∑

k=−∞

XLP

( ω

2π
F − kF

)
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Ideal case, hLP(t) = sinc(t/T )
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Realistic case, using a “cheap” lowpass
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Problems with antialiasing filters

sharp analog lowpass filters are complicated and expensive

we would like to do the difficult processing in discrete time

idea: sample at N times the nominal rate using a cheap antialias

the wider spacing will reduce overlap since most signals are lowpass

use decimation by N with a good digital lopass to go back to the intended sampling rate

xc(t) H(z) N ↓ xo [n]

hLP(t), fc = NFs/2 F = NFs ωc = π/N

xLP(t) xc(t)
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Example: two-times oversampling (F = 2Fs)
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Example: decimation of two-times oversampled signal
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