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COM-202: Signal Processing

Chapter 8.a: Stochastic and adaptive signal processing



adaptive signal processing (aka “machine learning”)



Adaptive Signal Processing

m deterministic signals are completely known; e.g. x[n] = sin((7/5) n)
m deterministic signals are not interesting!!
m interesting signals are not known in advance; e.g. s[n] = what I'm going to say next

m how can we design processing systems for “unknown” signals?



Adaptation and learning

Goals of machine learning:

m design a system that can learn a specific task
m learning should be data-driven (using training data)

m system should be robust to data variability (generalization property)



Example: recognizing

s
(255)
231
94
(142 )

cats

@
=@

0,
- ©
Ch

Wl'k

Wuzsﬁ ;

w12287

“it's a cat”

00000000

qb — 0.73



Inference

Feed-Forward Neural Network

Inputs enter Input has
the input layer weights
assigned to it
Outputsare
predicted  Predicted
Inputs output
Outputs ® : Error - difference
between predicted
output and actual
Actual output
Output

InputLayer Hidden Layer Output Layer



Backpropagation

Backpropagation

Error is sent back to
each neuron in backward

Gradient of error is direction

calculated with respect to
each weight

‘v'
e'

Input Layer HiddenLayer Output Layer

Outputs Error - difference

Error— between predicted

Predicted output and actual
output output




In signal processing terms

Goals of machine learning:

m design a filter that can implement a specific response
m filter design should be data-driven (using training signals)

m the filter should be robust to input variability



Adaptive signal processing

X H

')
U/

m x: non-deterministic (unknown) input

m H adaptive filter with /earned impulse response h
m d = xxh: filter's output

m d: desired (target) output

me=d—d: error signal driving the filter's adaptation



Example: handsfree telephony
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Feedback problem

8 D)

B ."
(e = s

m A speaks, voice is played by B's loudspeaker

m B’s microphone captures A's voice from loudspeaker
m signal is amplified and fed back to A and cycle repeats

m result: high-pitched noise (Larsen's effect)

echo

\\j



Adaptive echo cancellation

(O : v B

goal: make H learn how x becomes d by making e as small as possible
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Challenges of adaptive echo cancellation

‘H must simulate the combined effects of loudspeaker, microphone and room

m transfer functions of mike, speaker, room are not known
m room’s transfer function may change over time

m input signal is unknown
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Learning and generalization

m adaptive systems must be able to learn and generalize
m input signals are not known exactly...

m ... but we must be able to “categorize” them!

m categorization requires comparison
m comparison results should be robust to variations in sample values

m comparisons should work also for somewhat “random” inputs



The key ingredient

m the inner product is the fundamental similarity metric in signal processing
m we will use it to build a robust descriptor for random signals

m we will use it to drive the learning process of adaptive systems

oo

(xy)= > x*[nly[n]

n=—oo
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Brief recap of vector notation and operator algebra

signal  sample at time n

X x[n]
Rx x[—n]
S~ x[n — d]

STIRx
RS x[—n+d]
S9Rx
RS~ Ix x[=n—dl

time reversal and shift:
X[=(n = d)] = x[=m]m=n—a = (RX)[n — d] = (S~ /Rx)[n]
x[=n+d] = x[m + d]m=—n = (S¥X)[-n] = (RSIx)[n]
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Convolution and time operations

o

(xxy)kl= D x[nly[k — 1]

n=—0o0

o0

(Rxxy)kl = D x[=nlylk —n]

n=—oo

o0

= > Amlyl-(=k —m)]

m=—0o0

= (x* Ry)[—K]
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Convolution and time operations

Rx xy = R(x * Ry)
x* Ry = R(Rx y)
Rx xRy = R(x xy)

Sxxy=x%8% =S xxy)
Sx x Sy = ST (x x y)
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correlation, autocorrelation & spectral density



Correlation

The cross-correlation (or just correlation) between two finite-energy signals is defined as

[e.e]

rylkl = (x,8%y) = > x*[nly[n+ K]

n=—o0

m o [k] measures the similarity between x and y at a relative shift of k samples

m k is usually called the /ag
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Correlation and convolution

o0

rxy[k] = Z x*[n]y[n + K]

n=—oo

o0

= Y X mlyl-m A

m=—0o0

o0

= Y (Rx")[mly[k — m]

m=—0o0

= (Rx* s y)[k]

ry = Rx* xy
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Convolution
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Convolution

x[n]

y[k — n]

> X[nly[k — n]
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Convolution

x[n]

y[k — n]

> X[nly[k — n]
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Convolution
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Convolution

ylk —n] x[n]

> X[nly[k — n]
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Convolution

x[n]

y[k — n]

> X[nly[k — n]
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Correlation

yln+ K] x[n]

> X[nly[n + K]
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Correlation

yln+ K] x[n]

> X[nly[n + K]
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Correlation

yln+ K] x[n]

> X[nly[n + K]
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Correlation

yln+ K] x[n]

> X[nly[n + K]
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Correlation

yln+ K] x[n]

> X[nly[n + K]
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Correlation

yln+ K] x[n]

> X[nly[n + K]
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Cross-correlation: the order does matter

ry = Rx* xy

rye = Ry* % x
= R(y" * Rx)
=R(Rx* xy)*

_ *
=Rry,

ryx[K] = 1o [=K]
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Autocorrelation

[e.e]

KK = (3,85 = S0 X [olxln+ K

n=—oo

r, = Rx" * x

m compare signal with a shifted copy of itself
m measures signal's self-similarity over time

m well-defined for square-summable (energy) signals

N
N



Properties of the autocorrelation

r, = Rx" *x

m y = 8% = r, = r, (shift-invariance)
m r, = Rr} (Hermitian symmetry)
m r,[0] = ||x||?> (value in zero is total energy)

m |r[0]| > |rx[K]| (peak magnitude in zero)



Proof of the last point

m intuition: a signal is maximally similar to itself!
m proof (assume x[n] € R to keep things simpler): for any two reals we have

(a— b)?> = a* 4 b*> — 2ab = ab = [a* + b* — (a — b)?]/2

and so
rdkl= Y x[nlx[n+ K]
I <, 1 < 1 & 5
=5 > Xll+5 Y Xtk =5 D (xlnl = xln+K])

o0

=0l =5 3 (xlol — xln+ K < 1]

n=—oo



Application: delay estimation via correlation

m assume y = S, with x known and d unknown

m we want to find d

m the cross-correlation is ry, = Rx* x S9x = S4(Rx* * x) = Sr,

m we know |ry[0] > |r[m]| for all m # O therefore r,, will have a peak in —d

m we can find d by looking for the peak of r,,

d = —arg max{ry[n]}

m this works also if the signal is buried in noise



Detection in noise via cross-correlation

x[n] = a"u[n], y[n] = x[n—100] + n[n], n[n] = random noise

10
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Autocorelation example: delta sequence

x[n] = ad[n]

ndkl=a > o[nld[n + k] = a°5[]

n=—oo

= a%6[K]
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Autocorelation example: rect

x[n] = rect (ﬁ)

o) N

re[k] = Z x[n]x[n+ k] = Z rect <

n=—00 n=—N

ON+1— |k| |k| <2N
0 k| > 2N

= (2N + 1 — |k]|) rect(n/(4N))

n-+k

>_

min{N,N+k}

2

n=max{—N,—N+k}

1



Autocorelation example: rect

10

x[n] = rect(n/(2N)), N =15

— éO — ‘20 — 5.0 6 1‘0 2‘0 3‘0
re[k] = (2N + 1 — |k|) rect(n/(4N))

. . QTTTHHHIHHNTTTQ . .

—30 —20 —10 0 10 20 30
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Autocorelation example: exponential decay

x[n] = a"u[n]

k] = Z x[n)x[n+ k] = Z a"a"kuln + k] = Z a’ntk
n=—00 n=0 n=max{0,—k}
ak Z?O:O a2n k 2 0
T a2 = alk (Zzozo U a2n) k<0
alkl

122
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Autocorelation example: exponential decay

x[n] = a"u[n], a=10.8

0 mTTTm..,..-

I I
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The autocorrelation is a robust descriptor

o= N W N

y[n]
HTTT,.
—‘30 - ‘20 - ‘10 6 1‘0 2‘0 3‘0
ry[K]
. -.._qo"ﬂﬂﬂﬂHHTTTTT”Q”.- . |
—30 —20 —10 0 10 20 30
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To understand why, let’s move to the frequency domain

DTFT {r.} = DTFT {Rx" *x)}
— DTFT{Rx"} - DTFT {x}
=X"-X
= X?
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Energy spectral density

P.(w) = DTFT {r} (w) = | X(w)[?

m square magnitude of DTFT is the signal’s spectral distribution energy

m DTFT of autocorrelation retains where the energy of the signal is

phase information is discarded: the shape of the signal in time does not matter

m autocorrelation is invariant to shifts and shape changes
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Example revisited: same magnitude, different phase

(] "] y =hxx
x[n] = a"u[n
|H(w)| =1 (allpass filter)

D N N

2

Pe(w) = [X(w)? = ‘ﬁ Py(w) =Y (w)? = [Hw)]? |X(w)]* = Px(w)
re[k] = al¥l /(1 — a?) ry =ry

— |
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Autocorrelation of a filtered signal

y=hxx

ry =Ry" xy
= (Rh* * Rx*) % (h x x)
= Rh*h % Rx* % x

=rp kI

Py(w) = [H(w)[* Pe(w)
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Autocorrelation of a filtered signal

m autocorrelation of the output is the autocorrelation of the input filtered by |H(w)|?
m filters act on a signal’'s PSD “as intended” (lowpass, highpass, etc)

m phase information is discarded since |H(w)|? is real-valued
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Example revisited: same magnitude, different phase

x[n] = a"u[n], y[n] = (h*x)[n], h[n] allpass

; NTTT...

T T T T T T T

-30 —-20 —10 0 10 20 30

Py(w) = [1 — ae/*| 2

| A |
0 T T T
-7 —7/2 0 /2 ™




Intuition

m signals same energy distribution in frequency can look very different in time
m spectral energy distribution is a more robust characterization of a signal

m autocorrelation captures this robust feature
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What about power signals?

power signals have infinite energy but their energy per unit of time
(i.e. their power) is finite: if x is a power signal, define

il — {X[n] n| < N
0 |n| > N

lim |xy]|? = oo
—00

x|
| e
NN+ 1 =

40



Autocorrelation of power signals

for power signals the correlation is the limit of the normalized partial correlation:

ro— lim v
X Nooo 2N + 1
RXh * Xpy
= |im =SV 7A
N 2N £ 1

similarly, for a cross-correlation,

; i Rxy * yn
= im —F——
Y N 2N +1
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Spectral density for power signals

m for an energy signal the squared DTFT shows the spectral energy distribution
m a truncated power signal x, is an energy signal
m if |[xy||?/(2N + 1) tends to the average power...

m ...then [Xy(w)[?/(2N + 1) should tends to the power spectral distribution



Spectral density for power signals

[Xn(w)I? = Xy (w) Xn(w)
= DTFT {Rx}y} DTFT {x}

=DTFT {Rx}y * xn}
- Xn(w)]? . Rxy ok xpy
lim 2NV prET XN T XN

= DTFT{r.}

43



Power Spectral Density

the Power Spectral Density (PSD) of a power signal x is defined as

Py(w) = DTFT {ry} (w)

m shows the power distribution in frequency for the signal
m for a filtered power signal y = h x x, the previous result holds:
2
Py(w) = [H(w)[Px(w)
m again, phase information is discarded
[Important: the PSD of a power signal is not the square magnitude of its DTFT. The DTFT of a power signal

does not exist and their spectral representation is a generalized DTFT that contains Dirac deltas.
Mathematically it makes no sense to square a Dirac delta.]
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Example: constant signal

x[n] = a

1 N
W[k = lim ———— 2
gl Nf‘mzNan_:N'a'

= [al?

Px(w) = |3 (w)
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Example: unit step

x[n] = au[n]

N
! )
_ 3 k
rlk] = Jim_ 2N+1n:0|‘3'| uln + K}

. N+1—max{0, k}
12 :
= lal” fim_ 2N +1

ER
2

Px(w) = (|al*/2)d(w)
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Example: complex exponential

x[n] = ae/“on

k= Z a2 (4un) efenln k)
—N

1
00 2N +1

N
— 2 jwok lim
‘a‘ ¢ NI—>oo 2N _Z:

— ‘a‘2ejwok

Px(w) = |a]*é(w — wo)
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Example: trigonometric functions

x[n] = cos(won) = (1/2)(e/*0" + e~Jwom)

N
1 1 . . . ]
T = —jwon won wo(n+k) —jwo(n+k)
rX[k]—Nllm N 1n§ 4(e + e/om) (e +e )

= lim

N
NN+ 1 Z [(1/2) cos(wok) + (1/2) cos(2won + wok)]

= (1/2) cos(wok)

Py (w) = (1/2)d(w % wo)
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So which is it? Energy or Power?

In practice, it doesn't matter:
m real-world signals have a finite amount of samples

m we can only compute an estimate of the autocorrelation

m estimates are always normalized
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The autocorrelation in practice

assume we know x[n] only for n =0,1,... , N —1
the empirical sample autocorrelation is defined as:

N—1—|k|
1
Ak =5 > Xn+Iklxn], —N<k<N
n=0

number of terms in the sum for 7 [k] is N — |k|
as |k| — N, the sum of fewer terms is divided by N: biased estimate
the bias compensates for the smaller amount of data

rule of thumb: N > 4kyax, with knax the maximum needed lag
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random signals and white noise



Discrete-time random signals

n[n] = a new random value at each n
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Example: binary random signal

For each new sample, toss a fair coin:

(n] +1 if the outcome of the n-th toss is head
n| =
g —1 if the outcome of the n-th toss is tail

m each sample is either +1 or —1 with 50-50 probability

m each sample is statistically independent from all others















Properties of the binary random signal

let's look at 2N 4 1 samples around n = 0 for large N:

m the average will go to zero (every +1 cancels a —1, and both values equally likely):

1 N
N +1 > =0
n=—N

m the energy grows linearly with N:

Z In[n]|? = Z 1=2N+1

n=—N n=—N

m the whole sequence is a power signal since

1
li 2 _
N 2N + 1 ZN i
n=—
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Looking for an invariant description

m every time we generate a new binary random signal it looks different
m however, the underlying generation mechanism is always the same (coin toss)

m can we obtain a description of the random signal that does not depend on the actual
sequence of sample values?

let’s try with the autocorrelation
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Autocorrelation of the binary random signal

ikl = Jim N1

N

> alnlnln + K]

n=-—

m if k = 0 each term in the sum is n?[n] = 1 and thus r,[0] = 1

m if k # 0, because of statistical independence, each term in the sum is

(+1)(+1)=+1

_J(=D)(+1) = -1

lrlnln =K = (=
(=1)(-1) = +1

as N grows, r,[k] = 0

25% prob.
25% prob.
25% prob.
25% prob.

{

+1 50% prob.
—1 50% prob.
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Autocorrelation and PSD of the binary random signal

rylk] = O[]
Pp(w) =1
m the binary random signal is self-similar only at lag zero

m the power spectral density is the same at all frequencies

m the binary random signal is an example of white noise
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Discrete-Time Random Processes

x[n] |——X[n]

m a discrete-time random process generates an infinite-length sequence of random sample
values

m what is the distribution of each sample?

m what are the statistical relations between samples?
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Characterization of Discrete-Time Random Processes

m infinite-length sequence of interdependent random variables

m a full characterization requires knowing the joint probability density functions
fetnolxim]--x[me_1] (X0, X1, - -+ 5 Xk—1)

for all possible sets of k indices {ng,n1, -+ ,nk_1} and for all k € Z

m clearly impossible to handle
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Manageable Random Processes: Wide-Sense Stationarity

In WSS random processes:

m mean of each sample does not change with time: E [x[n]] = my

m the statistical interdependence betweem two samples depends only on their time
separation:
E [x[n]x[m]] = cx[m — n]

[WSS is the statistical equivalent to time invariance for systems: the properties of the process do not depend on
the absolute observation time, only on the time difference between observations]
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Computing expectations, the theory

if x is a random variable with probability density function £ (7)

E[ = /Oo T f(r)dr

—00
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Computing expectations, the practice

if x is a random variable and we observe M of its realizations X, we can approximate the
expected value with the empirical average

M

1 -1
E[x] ~ Z Xn
n=0

N

as the number of observation grows,

1 M-1
W 7 2 %o = N



Computing expectations, the practice

suppose X is a real-valued, WSS random process and we observe 2N 4+ 1 samples of a
realization. The autocorrelation of the observation is

N
Z x[n]x[n + k] =~ E [x[n]x[n + k]] = K]

n=—N

1

ralkl = oy

as the number of observation grows, the empirical autocorrelation and the probabilistic
correlation align

r<[k] = E [x[n]x[n + K]]
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Stochastic signal processing in one slide (WSS processes)

m WSS random processes are equivalent to power signals

m they are characterized by their autocorrelation:
r«[k] = E [x[n]x[n + k]] = (Rx = x)[K]
m in the frequency domain, they are described by their spectral density
Py(w) = DTFT {r.}
m filters designed for deterministic signals still work (in magnitude) in the stochastic case
y=hsxx = P, (w)=|HW)?Px(w)

m we lose the concept of phase since we don't know the shape of a realization in advance
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White noise

md() [—— nln]

a discrete-time random sequence 7[n] is called white noise if

m the random samples have zero mean: E [x[n]] =0 for n € Z
m the random values have finite variance: E [|x[n]|?] = r[0] = 0727

m each sample is independent of all others: E [x[n]x[n + k|| = ry[k] =0 for k # 0
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Example: White Gaussian Noise (WGN)

N(0,0%) —— nln]

N

1 _
e
oV ?2m

QN‘ 3

f(7) =
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Properties of white noise

m statistical independence and finite variance 0'% implies
_ 2
r,=o0,0

m zero mean implies that, for any statistically independent signal x,

rx =0
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PSD of white noise

2
Pn(w) = Un
m white noise has equal power at all frequencies

m origin of the name: white light contains energy over the entire visible spectrum

m the PSD does not depend on the distribution of random values, only on the variance
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Filtered white noise

m 7)[n] white noise sequence

m h[n] impulse response of stable filter

m y[n] = (nx h)[n]

Py(w) = |H(w)|* o
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Wold’s theorem

m white noise: each random sample is statistically independent, r,[k] = [k]
m random signals: random samples are correlated, r[k] # 0[k]

m any random signal can be obtained by filtering white noise
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the autocorrelation as a robust descriptor



Autocorrelation of noisy signal

consider a signal corrupted by independent, additive white noise

y=x+1
ry =R(x+mn)x(x+mn)
=Ty + Iy + Vx4 I
since signal and noise are independent
=ry+ 07275

Py(w) = Px(w) + 0,27
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Example: autocorrelation of a decaying exponential
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Example: autocorrelation of rectangular pulse
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Example: autocorrelation of a sinusoid
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adaptive filters



Goals of adaptive signal processing

m use standard processing tools (filters)
m automatically adapt the filter coefficients as a function of the input data
m implement a robust (stable) adaptation

m be able to “follow” changes in the input
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Typical problem setup

')
U/

m Xx: non-deterministic (unknown) input

m H adaptive filter with /earned impulse response h
m d = xxh: filter's output

m d: desired (target) output

me=d—d: error signal driving the filter's adaptation
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Adaptive filters

how can we learn the filter's coefficients so that d ~ d?

m it's not realistic to expect the error signal to be zero (e = 0)...
m ... but we can try to minimize its power (or energy)
m we define a cost function expressing e in terms of h

m finding the optimal filter coefficient becomes a minimization problem

7



Mean Squared Error (MSE)

J(h) = [le]* = |d — h+x||?

hopt = arg min {J(h)}
h

the optimal filter minimizes the squared norm of the error
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Why a quadratic cost function?

m a quadratic cost function means convex optimization: a global minimum always exists
m expression for the error easily differentiable
m output will be orthogonal to error

m the minimization problem will only involve correlations: robust to noise and randomness
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Mean Squared Error minimization

J(h) = |le||?

since the cost function is quadratic and positive, it has a global minimum

to find it, we set to zero the partial derivatives wrt each value of the impulse response:

9 2
8_h,-HGH =0

(to lighten the notation, we'll write h; instead of h[i])
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Different cases, same notation

the MSE may take different forms:

[e.e]
m for energy signals: |le||® = Z e?[n]
n=—o0
] M-l

m for finite-length signals: |e|> = N Z e?[n]

n=-—0

1 N

f ignals: [le[> = Ii 2

m for power signals: ||e]| MmN T nz_:Ne [n]

m for random signals: |le||®> = E [e2[n]]

all these cases are covered by the same notation if we use the autocorrelation: ||e|> = r[0]
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Different cases, same notation

m in all cases the differentiation can be moved inside the autocorrelation sum

m let's use [|e||? = re[0] = E [?[n]] for instance

dlel* E 9 e?[n]
oh; Oh;



Partial derivatives of the instantaneous squared error

d e%[n] 0 e[n]
“oh = 2e[n]8—h,-

e[n] = d[n] = hix[n — K]
k

9 e[n]
ah;

= —x[n—1i]

3;h[n] <Z hi x[n — K]x[n — i] — d[n]x[n — I])
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Averaged partial derivatives

10e]* _1_[9€n]
2 oh 2 Ohj

=E [Z hi x[n — Kx[n — i] — d[n]x[n — i]

k

=" heElx[n — Kx[n — )] ~ E [d[n]x[n — ]

k
= (hxr)[—i] — rax[—1]
= (h*r)[i] = rxali]
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Optimal Least Squares solution

m the optimal M-taps filter is found by setting all partial derivatives to zero
(h x r)[i] = rxdli] i=012,...,M—-1

m that is, we need to solve a linear system of M equations:

M-1
S hlmlnli—ml =rglil,  i=01,....M—1
m=0

m this requires the computation of :
e M values of the input's autocorrelation

e M values of the cross-correlation between input and desired signal
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Optimal Least Squares solution in matrix form

hopt = R_lg
h=[h0] hl1] h2] ... AM—1]]"
[ 0] re[1] 2] ... M —1]]
ry(1] r«[0] rnll] ... M —=2]
R = r[2] ri[1] 0] ... r[M—3]
M=1 rM=2 ... ... rl] |

g=[rald] rall] ral2l ... ralM—1]]7



Intuition

m the optimal MSE filter depends only on correlations
m correlations are robust wrt additive noise and changes in signal shape
m implicitly, MSE minimization only relies on spectral distributions

m the algorithm works identically for energy, power, and random signals
(under the hood, we use the appropriate method to compute the correlation values)
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Let’s take a look at the cost function

J(h) = [le]|* = re[0]
re=Rexe=R(d—hxx)x(d—hxx)
=rg+ (rp*ryx) — (hxrg) — R(h*xrg)

J(h) = ry[0] + (rp * r)[0] — 2(h x rgy)[0]
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Error surface for M-tap adaptive FIR

FIR convolutions can be expressed as row-column multiplications:

(h % rg)[0] = Z h[ilre[0—i]=h'Tg

h=T[h m ... hy_1]
g = [rdX[O] rdX[—l] . rdX[—M + 1]]
= [rxd[O] rxd[l] e er[M — 1]]
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Error surface for M-tap adaptive FIR

similarly:

(rp * 1ry)[0] = (Rh * ry * h)[0]

M-1 M-1
= > (0= K] > Alilndlk —il]
k=0 i=0

=h"Rh
[ 0] re[1] nl2] ...
re[1] r«[0] (1] ...

R = rx[2] rx[]-] rX[O]

_rX[M: —1] rX[I\/I: —2]

rM —1]]
re[M —2]
re[M = 3]

rX.[O] J

90



Error surface

J(h)=ryg[0) +h"Rh —2h'g

m error surface is an elliptic paraboloid with axes proportional to /1/);,
where )\; are R's eigenvalues

m the autocorrelation of the input determines the shape of the error surface

m the minimum achievable MSE is for hgpe = R-1g:

Pe(hopt) = rd[o] - gTR_lg
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Error surface for M =2

=i o] 8] 2 o

m for M = 2 we can plot the error surface

m let's assume ryy = 0 (e.g. input is uncorrelated to desired output)

Ivd [0]
er[].]

|



Error surface for white noise input
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Error surface for correlated input

[t

ho

7
—
= —
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So, how is it done in practice?

the optimal solution requires M values of auto- and cross-correlations

in practice we compute empirical correlations using the data we have:

N—1—||
1

sk < Rk =5 > xnlx(n+ (]
n=0

this requires collecting input data first (post-processing)

m what if we want to adapt in real time?
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Error minimization by gradient descent

m most machine learning problems require finding the minimum of a cost function
m a closed form solution exists only in very simple cases (convex optimization)

m in general, the minimum is found iteratively via gradient descent

m think of a ball rolling down a bumpy surface until it hits the bottom

m caveat: complicated error surfaces may have local minimal
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Gradient descent for nonconvex cost function
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Gradient descent

problem setup:
m assume J(h) is a differentiable multivariate function (h=[hy h1 ... hy_1])

m the gradient for J is the vector:

_ [aJ(h) 9J(h) aJh) 17
T 0he O T Bhmg

VJ(h)

to find a (local) minimum with the gradient descent algorithm:

m start with a estimate hg for the location of the minimum

m iteratively update the estimate by moving in the direction of steepest descent
hpt1 =h, —a, VJ(h,)

m the learning factor o, < 1 is a “brake” to prevent overshoots
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Gradient descent for convex (MSE) minimization

m for J(h) = ||d — h % x||? the i-th partial derivative is (h * x)[i] — r][i] and so
VJ(h) =2(Rh —g)
m iteration:

hos1 = (1 — aR)h, + ag

n—1

h, = (1-aR)"hg + ag Y (I - aR)¥
k=0

m gradient descent leads to the closed-form solution we found before, but it illustrates the
effects of the shape of the error surface and of the learning factor
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Gradient descent for white noise input

T

ho
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Gradient descent for white noise input

ho
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ial guess

ini

good

Gradient descent for correlated input
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ial guess

SO-SO 1ni

Gradient descent for correlated input
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Gradient descent for correlated input

learning factor too large
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Real-time operation

m so far we still need to gather data first to compute R and g
m crazy idea: replace the mean squared error by the instantaneous squared error
m this does not require averaging and can work in real time

m the result is one of the most successful adaptive DSP algorithms!
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Gradient of the instantaneous squared error

instead of using J(h) = ||e||?, use the instantaneous error

J(h) = €*[n]

we computed the partial derivatives of the instantaneous error gradient earlier:

0, e2[n]
on 2l

deln]

= —2e¢[n] x[n — ]

and so the instantaneous gradient is

VJ(h) = —2e[n]x,

with x, = [x[n] x[n—1] x[n—2] ... x[n—M+1]]"
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The LMS adaptive filter
m start with an initial guess for the filter coefficients:
T
ho = [ho[0] ho[1] ... ho[M —1]]
m for each new input sample x[n]:
o compute the filter's output h7x, = S} " hy[k]x[n — K]
e compute the instantaneous error e[n] = d[n] —h[x,

e update the filter coefficients the gradient VJ(h,) = —2¢[n]x,

e[n] = d[n] — h]x,
hpr1 =h, + aye[n] x,
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LMS convergence for white noise input

ho
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LMS convergence for correlated input
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Analysis of the LMS filter

algorithm is extremely simple and low-cost

m it works very very well

it keeps adapting all the time: can handle changing conditions
m used in almost all telecommunication devices

m theoretical analysis extremely difficult, however (like Al ;)
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Example: adaptive echo cancellation
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Example: adaptive echo cancellation

unwanted echo

<

‘\~ - (( > voice

\l/
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Example: adaptive echo cancellation

> S'! ?
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\\j
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Echo cancellation as adaptive filtering

~

. d
x— H *
e [
()
/

m Xx: speaker’s voice (random signal)

d=h=x*xx

m d: echo picked up by microphone
m h: unknown impulse response of room + loudspeaker + mike

m e: residual echo (error signal driving the adaptation)
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Training the filter at each end

m most of the time only one person talks at a time
m “desired” signal is local echo, so we can subtract it
m people move, volume changes: H is time varying!

m use the LMS filter
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Example: simple echo model
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Echo impulse response

M =100,a = —0.8,A = 0.6
T T T T T T
0 100 200 300 400 500
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Running the LMS adaptation

white input, averaged MSE over 200 experiments

T
0 2500

iterations

5000
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LMS can catch up with changes

echo delay changes from M = 100 to M = 90 at n = 3000

T
0 2500 5000

iterations
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