
COM-202: Signal Processing

Chapter 8.a: Stochastic and adaptive signal processing



adaptive signal processing (aka “machine learning”)



Adaptive Signal Processing

deterministic signals are completely known; e.g. x [n] = sin((π/5) n)

deterministic signals are not interesting!!

interesting signals are not known in advance; e.g. s[n] = what I’m going to say next

how can we design processing systems for “unknown” signals?
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Adaptation and learning

Goals of machine learning:

design a system that can learn a specific task

learning should be data-driven (using training data)

system should be robust to data variability (generalization property)
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Example: recognizing cats
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Inference
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Backpropagation
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In signal processing terms

Goals of machine learning:

design a filter that can implement a specific response

filter design should be data-driven (using training signals)

the filter should be robust to input variability
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Adaptive signal processing

x H b

- d

d̂

e

x: non-deterministic (unknown) input

H adaptive filter with learned impulse response h

d̂ = x ∗ h: filter’s output

d: desired (target) output

e = d− d̂: error signal driving the filter’s adaptation
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Example: handsfree telephony

B

A
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Feedback problem

echo

B

A

x [n]

A speaks, voice is played by B’s loudspeaker

B’s microphone captures A’s voice from loudspeaker

signal is amplified and fed back to A and cycle repeats

result: high-pitched noise (Larsen’s effect)
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Adaptive echo cancellation

- b

H

b

d e

x

d̂

goal: make H learn how x becomes d by making e as small as possible
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Challenges of adaptive echo cancellation

H must simulate the combined effects of loudspeaker, microphone and room

transfer functions of mike, speaker, room are not known

room’s transfer function may change over time

input signal is unknown
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Learning and generalization

adaptive systems must be able to learn and generalize

input signals are not known exactly...

... but we must be able to “categorize” them!

categorization requires comparison

comparison results should be robust to variations in sample values

comparisons should work also for somewhat “random” inputs
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The key ingredient

the inner product is the fundamental similarity metric in signal processing

we will use it to build a robust descriptor for random signals

we will use it to drive the learning process of adaptive systems

〈x, y〉 =
∞
∑

n=−∞

x∗[n]y [n]
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Brief recap of vector notation and operator algebra

signal sample at time n

x x [n]

Rx x [−n]
S−dx x [n − d ]

S−dRx
x [−n + d ]

RSdx
SdRx

x [−n − d ]
RS−dx

time reversal and shift:

x [−(n − d)] = x [−m]m=n−d = (Rx)[n − d ] = (S−dRx)[n]

x [−n+ d ] = x [m + d ]m=−n = (Sdx)[−n] = (RSdx)[n]
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Convolution and time operations

(x ∗ y)[k] =
∞
∑

n=−∞

x [n]y [k − n]

(Rx ∗ y)[k] =
∞
∑

n=−∞

x [−n]y [k − n]

=

∞
∑

m=−∞

x [m]y [−(−k −m)]

= (x ∗ Ry)[−k]
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Convolution and time operations

Rx ∗ y = R(x ∗ Ry)
x ∗ Ry = R(Rx ∗ y)
Rx ∗ Ry = R(x ∗ y)

Sdx ∗ y = x ∗ Sdy = Sd (x ∗ y)

Scx ∗ Sdy = Sc+d (x ∗ y)
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correlation, autocorrelation & spectral density



Correlation

The cross-correlation (or just correlation) between two finite-energy signals is defined as

rxy [k] = 〈x,Sky〉 =
∞
∑

n=−∞

x∗[n]y [n+ k]

rxy [k] measures the similarity between x and y at a relative shift of k samples

k is usually called the lag
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Correlation and convolution

rxy [k] =

∞
∑

n=−∞

x∗[n]y [n + k]

=

∞
∑

m=−∞

x∗[−m]y [−m + k]

=

∞
∑

m=−∞

(Rx∗)[m]y [k −m]

= (Rx∗ ∗ y)[k]

rxy = Rx∗ ∗ y
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Convolution
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Convolution
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Correlation
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Correlation
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Cross-correlation: the order does matter

rxy = Rx∗ ∗ y
ryx = Ry∗ ∗ x

= R(y∗ ∗ Rx)
= R(Rx∗ ∗ y)∗

= Rr∗xy

ryx [k] = r∗xy [−k]
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Autocorrelation

rx [k] = 〈x,Skx〉 =
∞
∑

n=−∞

x∗[n]x [n + k]

rx = Rx∗ ∗ x

compare signal with a shifted copy of itself

measures signal’s self-similarity over time

well-defined for square-summable (energy) signals
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Properties of the autocorrelation

rx = Rx∗ ∗ x

y = Sdx⇒ ry = rx (shift-invariance)

rx = Rr∗x (Hermitian symmetry)

rx [0] = ‖x‖2 (value in zero is total energy)

|rx [0]| ≥ |rx [k]| (peak magnitude in zero)
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Proof of the last point

intuition: a signal is maximally similar to itself!

proof (assume x [n] ∈ R to keep things simpler): for any two reals we have

(a − b)2 = a2 + b2 − 2ab ⇒ ab = [a2 + b2 − (a − b)2]/2

and so

rx [k] =

∞
∑

n=−∞

x [n]x [n + k]

=
1

2

∞
∑

n=−∞

x2[n] +
1

2

∞
∑

n=−∞

x2[n + k]− 1

2

∞
∑

n=−∞

(x [n]− x [n + k])2

= rx [0] −
1

2

∞
∑

n=−∞

(x [n]− x [n + k])2 ≤ rx [0]
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Application: delay estimation via correlation

assume y = Sdx, with x known and d unknown

we want to find d

the cross-correlation is rxy = Rx∗ ∗ Sdx = Sd (Rx∗ ∗ x) = Sd rx
we know |rx [0] ≥ |rx [m]| for all m 6= 0 therefore rxy will have a peak in −d

we can find d by looking for the peak of rxy

d = −argmax
n
{rxy [n]}

this works also if the signal is buried in noise
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Detection in noise via cross-correlation

x [n] = an u[n], y [n] = x [n − 100] + η[n], η[n] = random noise

rxy
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Autocorelation example: delta sequence

x [n] = aδ[n]

rx [k] = a2
∞
∑

n=−∞

δ[n]δ[n + k] = a2δ[k]

= a2δ[k]
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Autocorelation example: rect

x [n] = rect
( n

2N

)

rx [k] =
∞
∑

n=−∞

x [n]x [n + k] =
N
∑

n=−N

rect

(

n+ k

2N

)

=

min{N,N+k}
∑

n=max{−N,−N+k}

1

=

{

2N + 1− |k | |k | ≤ 2N

0 |k | > 2N

= (2N + 1− |k |) rect(n/(4N))
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Autocorelation example: rect

x [n] = rect(n/(2N)), N = 5
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Autocorelation example: exponential decay

x [n] = anu[n]

rx [k] =
∞
∑

n=−∞

x [n]x [n + k] =
∞
∑

n=0

anan+ku[n + k] =
∞
∑

n=max{0,−k}

a2n+k

=

{

ak
∑∞

n=0 a
2n k ≥ 0

a−k
∑∞

n=−k a
2n = a|k|

(

∑∞
n=0 a

2n −∑−k−1
n=0 a2n

)

k < 0

=
a|k|

1− a2
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Autocorelation example: exponential decay

x [n] = anu[n], a = 0.8
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The autocorrelation is a robust descriptor

y [n]
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To understand why, let’s move to the frequency domain

DTFT {rx} = DTFT {Rx∗ ∗ x)}
= DTFT {Rx∗} · DTFT {x}
= X∗ ·X

= |X|2
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Energy spectral density

Px(ω) = DTFT {rx} (ω) = |X (ω)|2

square magnitude of DTFT is the signal’s spectral distribution energy

DTFT of autocorrelation retains where the energy of the signal is

phase information is discarded: the shape of the signal in time does not matter

autocorrelation is invariant to shifts and shape changes
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Example revisited: same magnitude, different phase

x [n] = anu[n]
y = h ∗ x

|H(ω)| = 1 (allpass filter)
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∣

∣

2
Py (ω) = |Y (ω)|2 = |H(ω)|2 |X (ω)|2 = Px(ω)

rx [k] = a|k|/(1− a2) ry = rx
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Autocorrelation of a filtered signal

y = h ∗ x

ry = Ry∗ ∗ y
= (Rh∗ ∗ Rx∗) ∗ (h ∗ x)
= Rh∗h ∗ Rx∗ ∗ x
= rh ∗ rx

Py (ω) = |H(ω)|2Px(ω)
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Autocorrelation of a filtered signal

autocorrelation of the output is the autocorrelation of the input filtered by |H(ω)|2

filters act on a signal’s PSD “as intended” (lowpass, highpass, etc)

phase information is discarded since |H(ω)|2 is real-valued
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Example revisited: same magnitude, different phase

x [n] = an u[n], y [n] = (h ∗ x)[n], h[n] allpass
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Intuition

signals same energy distribution in frequency can look very different in time

spectral energy distribution is a more robust characterization of a signal

autocorrelation captures this robust feature
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What about power signals?

power signals have infinite energy but their energy per unit of time
(i.e. their power) is finite: if x is a power signal, define

xN [n] =

{

x [n] |n| ≤ N

0 |n| > N

lim
N→∞

‖xN‖2 =∞

lim
N→∞

‖xN‖2
2N + 1

<∞

40



Autocorrelation of power signals

for power signals the correlation is the limit of the normalized partial correlation:

rx = lim
N→∞

rxN
2N + 1

= lim
N→∞

Rx∗N ∗ xN
2N + 1

similarly, for a cross-correlation,

rxy = lim
N→∞

Rx∗N ∗ yN
2N + 1

41



Spectral density for power signals

for an energy signal the squared DTFT shows the spectral energy distribution

a truncated power signal xN is an energy signal

if ‖xN‖2/(2N + 1) tends to the average power...

...then |XN(ω)|2/(2N + 1) should tends to the power spectral distribution
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Spectral density for power signals

|XN(ω)|2 = X ∗
N(ω)XN(ω)

= DTFT {Rx∗N} DTFT {xN}
= DTFT {Rx∗N ∗ xN}

lim
N→∞

|XN(ω)|2
2N + 1

= DTFT

{

lim
N→∞

Rx∗N ∗ xN
2N + 1

}

= DTFT {rx}
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Power Spectral Density

the Power Spectral Density (PSD) of a power signal x is defined as

Px(ω) = DTFT {rx} (ω)

shows the power distribution in frequency for the signal

for a filtered power signal y = h ∗ x, the previous result holds:

Py (ω) = |H(ω)|2Px(ω)

again, phase information is discarded

[Important: the PSD of a power signal is not the square magnitude of its DTFT. The DTFT of a power signal
does not exist and their spectral representation is a generalized DTFT that contains Dirac deltas.

Mathematically it makes no sense to square a Dirac delta.]
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Example: constant signal

x [n] = a

rx [k] = lim
N→∞

1

2N + 1

N
∑

n=−N

|a|2

= |a|2

Px(ω) = |a|2δ̃(ω)
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Example: unit step

x [n] = a u[n]

rx [k] = lim
N→∞

1

2N + 1

N
∑

n=0

|a|2u[n + k]

= |a|2 lim
N→∞

N + 1−max{0, k}
2N + 1

=
|a|2
2

Px(ω) = (|a|2/2)δ̃(ω)
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Example: complex exponential

x [n] = a e jω0n

rx [k] = lim
N→∞

1

2N + 1

N
∑

n=−N

|a|2(e jω0n)∗e jω0(n+k)

= |a|2e jω0k lim
N→∞

1

2N + 1

N
∑

n=−N

1

= |a|2e jω0k

Px(ω) = |a|2δ̃(ω − ω0)
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Example: trigonometric functions

x [n] = cos(ω0n) = (1/2)(e jω0n + e−jω0n)

rx [k] = lim
N→∞

1

2N + 1

N
∑

n=−N

1

4
(e−jω0n + e jω0n)(e jω0(n+k) + e−jω0(n+k))

= lim
N→∞

1

2N + 1

N
∑

n=−N

[(1/2) cos(ω0k) + (1/2) cos(2ω0n + ω0k)]

= (1/2) cos(ω0k)

Px(ω) = (1/2)δ̃(ω ± ω0)
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So which is it? Energy or Power?

In practice, it doesn’t matter:

real-world signals have a finite amount of samples

we can only compute an estimate of the autocorrelation

estimates are always normalized
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The autocorrelation in practice

assume we know x [n] only for n = 0, 1, . . . ,N − 1

the empirical sample autocorrelation is defined as:

r̂x [k] =
1

N

N−1−|k|
∑

n=0

x∗[n + |k |]x [n], −N < k < N

number of terms in the sum for r̂x [k] is N − |k |

as |k | → N, the sum of fewer terms is divided by N: biased estimate

the bias compensates for the smaller amount of data

rule of thumb: N > 4kmax, with kmax the maximum needed lag
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random signals and white noise



Discrete-time random signals

η[n] = a new random value at each n
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Example: binary random signal

For each new sample, toss a fair coin:

η[n] =

{

+1 if the outcome of the n-th toss is head

−1 if the outcome of the n-th toss is tail

each sample is either +1 or −1 with 50-50 probability

each sample is statistically independent from all others
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Binary random signal

every time we generate a signal we obtain a different realization
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Properties of the binary random signal

let’s look at 2N + 1 samples around n = 0 for large N:

the average will go to zero (every +1 cancels a −1, and both values equally likely):

1

2N + 1

N
∑

n=−N

η[n] ≈ 0

the energy grows linearly with N:

N
∑

n=−N

|η[n]|2 =
N
∑

n=−N

1 = 2N + 1

the whole sequence is a power signal since

lim
N→∞

1

2N + 1

N
∑

n=−N

|η[n]|2 = 1
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Looking for an invariant description

every time we generate a new binary random signal it looks different

however, the underlying generation mechanism is always the same (coin toss)

can we obtain a description of the random signal that does not depend on the actual
sequence of sample values?

let’s try with the autocorrelation
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Autocorrelation of the binary random signal

rη[k] = lim
N→∞

1

2N + 1

N
∑

n=−N

η[n]η[n + k]

if k = 0 each term in the sum is η2[n] = 1 and thus rη[0] = 1

if k 6= 0, because of statistical independence, each term in the sum is

η[n]η[n − k] =























(+1)(+1) = +1 25% prob.

(−1)(+1) = −1 25% prob.

(+1)(−1) = −1 25% prob.

(−1)(−1) = +1 25% prob.

=

{

+1 50% prob.

−1 50% prob.

as N grows, rη[k]→ 0
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Autocorrelation and PSD of the binary random signal

rη[k] = δ[k]

Pη(ω) = 1

the binary random signal is self-similar only at lag zero

the power spectral density is the same at all frequencies

the binary random signal is an example of white noise
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Discrete-Time Random Processes

x [n] x̆ [n]

a discrete-time random process generates an infinite-length sequence of random sample
values

what is the distribution of each sample?

what are the statistical relations between samples?
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Characterization of Discrete-Time Random Processes

infinite-length sequence of interdependent random variables

a full characterization requires knowing the joint probability density functions

fx [n0]x [n1]···x [nk−1](x0, x1, · · · , xk−1)

for all possible sets of k indices {n0, n1, · · · , nk−1} and for all k ∈ Z

clearly impossible to handle
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Manageable Random Processes: Wide-Sense Stationarity

In WSS random processes:

mean of each sample does not change with time: E [x [n]] = mx

the statistical interdependence betweem two samples depends only on their time
separation:

E [x [n]x [m]] = cx [m − n]

[WSS is the statistical equivalent to time invariance for systems: the properties of the process do not depend on
the absolute observation time, only on the time difference between observations]
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Computing expectations, the theory

if x is a random variable with probability density function fx(τ)

E [x ] =

∫ ∞

−∞
τ fx(τ)dτ
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Computing expectations, the practice

if x is a random variable and we observe M of its realizations x̆n we can approximate the
expected value with the empirical average

E [x ] ≈ 1

M

M−1
∑

n=0

x̆n

as the number of observation grows,

lim
M→∞

1

M

M−1
∑

n=0

x̆n = E [x ]
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Computing expectations, the practice

suppose x is a real-valued, WSS random process and we observe 2N + 1 samples of a
realization. The autocorrelation of the observation is

rxN [k] =
1

2N + 1

N
∑

n=−N

x [n]x [n + k] ≈ E [x [n]x [n + k]] = cx [k]

as the number of observation grows, the empirical autocorrelation and the probabilistic
correlation align

rx [k] = E [x [n]x [n + k]]
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Stochastic signal processing in one slide (WSS processes)

WSS random processes are equivalent to power signals

they are characterized by their autocorrelation:

rx [k] = E [x [n]x [n + k]] = (Rx ∗ x)[k]

in the frequency domain, they are described by their spectral density

Px(ω) = DTFT {rx}

filters designed for deterministic signals still work (in magnitude) in the stochastic case

y = h ∗ x ⇒ Py (ω) = |H(ω)|2Px(ω)

we lose the concept of phase since we don’t know the shape of a realization in advance
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White noise

rnd() η[n]

a discrete-time random sequence η[n] is called white noise if

the random samples have zero mean: E [x [n]] = 0 for n ∈ Z

the random values have finite variance: E
[

|x [n]|2
]

= rx [0] = σ2
η

each sample is independent of all others: E [x [n]x [n + k]] = rx [k] = 0 for k 6= 0
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Example: White Gaussian Noise (WGN)

N (0, σ2) η[n]

fη(τ) =
1

σ
√
2π

e−
τ
2

σ
2
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Properties of white noise

statistical independence and finite variance σ2
η
implies

rη = σ2
η
δ

zero mean implies that, for any statistically independent signal x,

rηx = 0
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PSD of white noise

Pη(ω) = σ2
η

white noise has equal power at all frequencies

origin of the name: white light contains energy over the entire visible spectrum

the PSD does not depend on the distribution of random values, only on the variance
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Filtered white noise

η[n] white noise sequence

h[n] impulse response of stable filter

y [n] = (η ∗ h)[n]

Py (ω) = |H(ω)|2 σ2
η
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Wold’s theorem

white noise: each random sample is statistically independent, rη[k] = δ[k]

random signals: random samples are correlated, rx [k] 6= δ[k]

any random signal can be obtained by filtering white noise
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the autocorrelation as a robust descriptor



Autocorrelation of noisy signal

consider a signal corrupted by independent, additive white noise

y = x+ η

ry = R(x+ η) ∗ (x+ η)

= rx + rη + rxη + rηx

since signal and noise are independent

= rx + σ2
η
δ

Py (ω) = Px(ω) + σ2
η
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Example: autocorrelation of a decaying exponential
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Example: autocorrelation of rectangular pulse
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Example: autocorrelation of a sinusoid
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adaptive filters



Goals of adaptive signal processing

use standard processing tools (filters)

automatically adapt the filter coefficients as a function of the input data

implement a robust (stable) adaptation

be able to “follow” changes in the input
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Typical problem setup

x H b

- d

d̂

e

x: non-deterministic (unknown) input

H adaptive filter with learned impulse response h

d̂ = x ∗ h: filter’s output

d: desired (target) output

e = d− d̂: error signal driving the filter’s adaptation
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Adaptive filters

how can we learn the filter’s coefficients so that d̂ ≈ d?

it’s not realistic to expect the error signal to be zero (e = 0)...

... but we can try to minimize its power (or energy)

we define a cost function expressing e in terms of h

finding the optimal filter coefficient becomes a minimization problem
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Mean Squared Error (MSE)

J(h) = ‖e‖2 = ‖d− h ∗ x‖2

hopt = arg min
h

{J(h)}

the optimal filter minimizes the squared norm of the error
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Why a quadratic cost function?

a quadratic cost function means convex optimization: a global minimum always exists

expression for the error easily differentiable

output will be orthogonal to error

the minimization problem will only involve correlations: robust to noise and randomness
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Mean Squared Error minimization

J(h) = ‖e‖2

since the cost function is quadratic and positive, it has a global minimum
to find it, we set to zero the partial derivatives wrt each value of the impulse response:

∂

∂hi
‖e‖2 = 0

(to lighten the notation, we’ll write hi instead of h[i ])
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Different cases, same notation

the MSE may take different forms:

for energy signals: ‖e‖2 =

∞
∑

n=−∞

e2[n]

for finite-length signals: ‖e‖2 =
1

N

N−1
∑

n=−0

e2[n]

for power signals: ‖e‖2 = lim
N→∞

1

2N + 1

N
∑

n=−N

e2[n]

for random signals: ‖e‖2 = E
[

e2[n]
]

all these cases are covered by the same notation if we use the autocorrelation: ‖e‖2 = re [0]
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Different cases, same notation

in all cases the differentiation can be moved inside the autocorrelation sum

let’s use ‖e‖2 = re [0] = E
[

e2[n]
]

for instance

∂ ‖e‖2
∂hi

= E

[

∂ e2[n]

∂hi

]
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Partial derivatives of the instantaneous squared error

∂ e2[n]

∂hi
= 2e[n]

∂ e[n]

∂hi

e[n] = d [n]−
∑

k

hkx [n − k]

∂ e[n]

∂hi
= −x [n − i ]

∂ e2[n]

∂hi
= 2

(

∑

k

hk x [n − k]x [n − i ]− d [n]x [n − i ]

)
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Averaged partial derivatives

1

2

∂ ‖e‖2
∂hi

=
1

2
E

[

∂ e2[n]

∂hi

]

= E

[

∑

k

hk x [n − k]x [n − i ]− d [n]x [n − i ]

]

=
∑

k

hk E [x [n − k]x [n − i ]]− E [d [n]x [n − i ]]

= (h ∗ rx)[−i ]− rdx [−i ]
= (h ∗ rx)[i ]− rxd [i ]
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Optimal Least Squares solution

the optimal M-taps filter is found by setting all partial derivatives to zero

(h ∗ rx)[i ] = rxd [i ] i = 0, 1, 2, . . . ,M − 1

that is, we need to solve a linear system of M equations:

M−1
∑

m=0

h[m]rx [i −m] = rxd [i ], i = 0, 1, . . . ,M − 1

this requires the computation of :

• M values of the input’s autocorrelation

• M values of the cross-correlation between input and desired signal
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Optimal Least Squares solution in matrix form

hopt = R−1g

h =
[

h[0] h[1] h[2] . . . h[M − 1]
]T

R =















rx [0] rx [1] rx [2] . . . rx [M − 1]
rx [1] rx [0] rx [1] . . . rx [M − 2]
rx [2] rx [1] rx [0] . . . rx [M − 3]
...

...
...

. . .
...

rx [M − 1] rx [M − 2] . . . . . . rx [0]















g =
[

rxd [0] rxd [1] rxd [2] . . . rxd [M − 1]
]T
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Intuition

the optimal MSE filter depends only on correlations

correlations are robust wrt additive noise and changes in signal shape

implicitly, MSE minimization only relies on spectral distributions

the algorithm works identically for energy, power, and random signals
(under the hood, we use the appropriate method to compute the correlation values)
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Let’s take a look at the cost function

J(h) = ‖e‖2 = re [0]

re = Re ∗ e = R(d− h ∗ x) ∗ (d− h ∗ x)
= rd + (rh ∗ rx)− (h ∗ rdx)−R(h ∗ rdx)

J(h) = rd [0] + (rh ∗ rx)[0] − 2(h ∗ rdx)[0]
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Error surface for M-tap adaptive FIR

FIR convolutions can be expressed as row-column multiplications:

(h ∗ rdx)[0] =
M−1
∑

i=0

h[i ]rdx [0− i ] = hTg

h =
[

h0 h1 . . . hM−1

]

g =
[

rdx [0] rdx [−1] . . . rdx [−M + 1]
]

=
[

rxd [0] rxd [1] . . . rxd [M − 1]
]
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Error surface for M-tap adaptive FIR

similarly:

(rh ∗ rx)[0] = (Rh ∗ rx ∗ h)[0]

=

M−1
∑

k=0

h[−(0− k)]

M−1
∑

i=0

h[i ]rx [|k − i |]

= hTRh

R =















rx [0] rx [1] rx [2] . . . rx [M − 1]
rx [1] rx [0] rx [1] . . . rx [M − 2]
rx [2] rx [1] rx [0] . . . rx [M − 3]
...

...
...

. . .
...

rx [M − 1] rx [M − 2] . . . . . . rx [0]














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Error surface

J(h) = rd [0] + hTRh− 2hTg

error surface is an elliptic paraboloid with axes proportional to
√

1/λi ,
where λi are R’s eigenvalues

the autocorrelation of the input determines the shape of the error surface

the minimum achievable MSE is for hopt = R−1g:

Pe(hopt) = rd [0]− gTR−1g
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Error surface for M = 2

J(h) = rd [0] +
[

h0 h1
]

[

rx [0] rx [1]
rx [1] rx [0]

] [

h0
h1

]

− 2
[

h0 h1
]

[

rxd [0]
rxd [1]

]

for M = 2 we can plot the error surface

let’s assume rxd = 0 (e.g. input is uncorrelated to desired output)
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Error surface for white noise input

rx = δ, R =

[

1 0
0 1

]

h1

h0

h1

h0
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Error surface for correlated input

R =

[

2 1
1 2

]

h1

h0

h1

h0
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So, how is it done in practice?

the optimal solution requires M values of auto- and cross-correlations

in practice we compute empirical correlations using the data we have:

rx [k]← r̂x [k] =
1

N

N−1−|k|
∑

n=0

x [n]x [n + |k |]

this requires collecting input data first (post-processing)

what if we want to adapt in real time?
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Error minimization by gradient descent

most machine learning problems require finding the minimum of a cost function

a closed form solution exists only in very simple cases (convex optimization)

in general, the minimum is found iteratively via gradient descent

think of a ball rolling down a bumpy surface until it hits the bottom

caveat: complicated error surfaces may have local minima!

96



Gradient descent for nonconvex cost function
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Gradient descent

problem setup:

assume J(h) is a differentiable multivariate function (h =
[

h0 h1 . . . hM−1

]

)

the gradient for J is the vector:

∇J(h) =
[

∂J(h)

∂h0

∂J(h)

∂h1
. . .

∂J(h)

∂hM−1

]T

to find a (local) minimum with the gradient descent algorithm:

start with a estimate h0 for the location of the minimum

iteratively update the estimate by moving in the direction of steepest descent

hn+1 = hn − αn∇J(hn)

the learning factor αn < 1 is a “brake” to prevent overshoots
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Gradient descent for convex (MSE) minimization

for J(h) = ‖d− h ∗ x‖2 the i -th partial derivative is (h ∗ x)[i ]− rxd [i ] and so

∇J(h) = 2(Rh− g)

iteration:

hn+1 = (I− αR)hn + αg

hn = (I− αR)nh0 + αg

n−1
∑

k=0

(I− αR)k

= R−1g = hopt if |I− αR| < 1

gradient descent leads to the closed-form solution we found before, but it illustrates the
effects of the shape of the error surface and of the learning factor

99



Gradient descent for white noise input

h1

h0

h1

h0
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Gradient descent for white noise input

h1

h0

h1

h0
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Gradient descent for correlated input: good initial guess

h1

h0

h1

h0
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Gradient descent for correlated input: so-so initial guess

h1

h0

h1

h0
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Gradient descent for correlated input: learning factor too large

h1

h0

h1

h0
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Real-time operation

so far we still need to gather data first to compute R and g

crazy idea: replace the mean squared error by the instantaneous squared error

this does not require averaging and can work in real time

the result is one of the most successful adaptive DSP algorithms!
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Gradient of the instantaneous squared error

instead of using J(h) = ‖e‖2, use the instantaneous error

J(h) = e2[n]

we computed the partial derivatives of the instantaneous error gradient earlier:

∂, e2[n]

∂hi
= 2e[n]

∂ e[n]

∂hi
= −2e[n] x [n − i ]

and so the instantaneous gradient is

∇J(h) = −2e[n]xn

with xn =
[

x [n] x [n − 1] x [n − 2] . . . x [n −M + 1]
]T
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The LMS adaptive filter

start with an initial guess for the filter coefficients:

h0 =
[

h0[0] h0[1] . . . h0[M − 1]
]T

for each new input sample x [n]:

• compute the filter’s output hT
n xn =

∑M−1
k=0 hn[k ]x [n − k ]

• compute the instantaneous error e[n] = d [n]− hT
n xn

• update the filter coefficients the gradient ∇J(hn) = −2e[n]xn

e[n] = d [n]− hTn xn

hn+1 = hn + αn e[n] xn
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LMS convergence for white noise input

h1

h0

h1

h0
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LMS convergence for correlated input

h1

h0

h1

h0
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Analysis of the LMS filter

algorithm is extremely simple and low-cost

it works very very well

it keeps adapting all the time: can handle changing conditions

used in almost all telecommunication devices

theoretical analysis extremely difficult, however (like AI ;)
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Example: adaptive echo cancellation

B

A

xB

xA
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Example: adaptive echo cancellation

H

A

unwanted echo

voice
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Example: adaptive echo cancellation

-

H Ĥ

b

d e

x

d̂
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Echo cancellation as adaptive filtering

x Ĥ b

- d = h ∗ x

d̂

e

x: speaker’s voice (random signal)

d: echo picked up by microphone

h: unknown impulse response of room + loudspeaker + mike

e: residual echo (error signal driving the adaptation)
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Training the filter at each end

most of the time only one person talks at a time

“desired” signal is local echo, so we can subtract it

people move, volume changes: H is time varying!

use the LMS filter
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Example: simple echo model

x + b d

G z−M
α

G (z) = (1− λ)/(1 − λz−1)
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Echo impulse response

M = 100, α = −0.8, λ = 0.6

0 100 200 300 400 500

0

1
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Running the LMS adaptation

white input, averaged MSE over 200 experiments

0 2500 5000
0

1

iterations

117



LMS can catch up with changes

echo delay changes from M = 100 to M = 90 at n = 3000

0 2500 5000
0

1

iterations
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