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COM-202: Signal Processing

Chapter 8.b: Quantization



quantization



The digital world

m basic storage unit: the binary digit (bit) with two possible values (0, 1)
m aggregate units: the byte (8 bits), word, dword, etc

m R aggregate bits can hold 2R distinct integer values



What about floating point?

m floating point standards (e.g. |IEEE 754) are clever ways of mapping reals to integers
m an R-bit float can represent at most 2% distinct values

m a floating point representation partitions the real line into intervals of increasing size and
maps them to integers
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Quantization

m digital devices can only deal with integers (R bits per sample)
m samples of a discrete-time signal must be converted to integers for storage
m the conversion process is called quantization

m quantization causes an irreversible loss of information



Quantization schemes

Several factors at play:

m storage budget (bits per sample)
m encoding scheme (fixed point, floating point)
m properties of the input

e dynamic range

e probability distribution of samples
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Scalar, memoryless, fixed-rate quantization

x[n] Q X[n]
R bps

The simplest quantization scheme:

m each sample is encoded individually (scalar quantization)
m each sample is quantized independently (memoryless quantization)

m each sample is encoded using R bits (fixed-rate quantization)



Typical quantization scheme

m input values are within known bounds A < x[n] < B
m with R bits/sample, input range is divided into 2R intervals I, = [k ik+1)
m each interval is associated to a R-bit binary number k

m each interval is associated to a representative value Xi




Typical quantization scheme
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m what are the optimal interval boundaries i?

m what are the optimal quantization values X7



Optimal Quantization

The optimal quantizer minimizes the energy of the quantization error:

e[n] = Q(x[n]) — x[n] = X[n] — x[n]

m model x as a stochastic process
m find the optimal i, and % that minimize 02 = E [€?[n]]

m optimal quantizer will depend on the input's statistics



Quantization MSE

find global minimum wrt Jy, Xx



Simple example:

optimal one-bit quantizer

3 free parameters: i, Xg, X1
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Simple example: optimal one-bit quantizer
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Simple example: optimal one-bit quantizer
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little calculus reminder

%/a flr) dr = o [F(8) ~ F(e)] = 7(2)
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Optimal one-bit quantizer: threshold
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Optimal one-bit quantizer: threshold

30?_2
oi  0i

[/Ai(x — R0)? f(x) dx + /iB(X ) () dx

= (i = %) £(i) = (i = %2 £()) = 0

13



Optimal one-bit quantizer: threshold
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Optimal one-bit quantizer: threshold

do2 0

e o M(X—&of £(x) dx+/iB(x—>?1)2fX(x) dx

= (i — %) (i) — (i = 21)? £ (1)

0

= (i—%)?°—-(—-%)2=0

. KXo+ X
ilz%

13



Optimal one-bit quantizer: values
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Optimal one-bit quantizer: values
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Optimal one-bit quantizer: values
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= X0 (center of mass)

A
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For uniformly-distributed input
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For uniformly-distributed input
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For uniformly-distributed input
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Optimal one-bit quantizer
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Uniform quantization of uniform input

m for uniformly-distributed input values, optimal quantizer is uniform
m optimal subdivision: 2% equal intervals of width A = (B — A)2—F

m optimal quantization values are the midpoints of each interval
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Uniform 3-Bit quantization function
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Uniform quantization of uniform input: error analysis
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Uniform quantization of uniform input: error analysis
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Uniform quantization of uniform input: error analysis
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Uniform quantization of uniform input: error analysis
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Uniform quantization of uniform input: error analysis
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Error analysis

H error energy

02 =N?/12,

A= (B - A)/2R
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Error analysis

H error energy

m signal energy

02 =NA%/12, A=(B-A)/R

02 = (B - A)?/12
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Error analysis

m error energy
m signal energy

m signal to noise ratio

02 =NA%/12, A=(B-A)/R
02 = (B - A)?/12

SNR = 22F



Error analysis

m error energy
m signal energy
m signal to noise ratio

m in dB

02 =NA%/12, A=(B-A)/R
02 = (B - A)?/12
SNR = 22R

SNRyg = 10log;y2°F ~ 6R dB



The “6dB/bit” rule of thumb

m a compact disk has 16 bits/sample:
max SNR = 96dB

m a DVD has 24 bits/sample:
max SNR = 144dB
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Rate/Distortion Curve
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Other quantization errors

If input is not bounded to [A, B] several options; eg:

m clip samples to [A, B]: linear distortion (can be put to good use in guitar effects!)

m smoothly saturate input: this simulates the saturation curves of analog electronics



Clipping vs saturation




Analysis of the quantization error

m so far we have only a quantitative result on the error (its power)
m to understand the distortion we need the error’'s spectrum
m quantizer is nonlinear: impossible to compute the spectrum exactly

m the common approach is to make assumptions on the error statistics



High-resolution hypothesis

drastic simplification of the problem: if

m input samples are iid (they are not)

m R is relatively large

then we can try to use the following model:

m error samples are iid
m error is uncorrelated to the signal

m quantization error egivalent to additive white noise with Pe(w) = A2/12



High-resolution hypothesis

X[ O, £[n]

e[n]

problems with this model:

m error is not random!

m error is not white or uncorrelated to the input

common approaches:

m use dithering to whiten the noise spectrum

m use feedback in the quantization loop to perform noise shaping



oversampled A/D conversion



A /D conversion

x[n]

A

X[n]



Oversampled A/D

Key assumptions on quantization error:

m e is a white noise process, independent of x

. . . . A2

m PSD of quantization noise is flat, Pe(w) = T5

m PSD of quantization noise is independent of sampling rate F
Key observations:

m x(t)is Fs-BL

m spectrum of sampled signal is X(w) = FX(52F)

m with N-times oversampling, spectral support is [—m /N, 7/N]
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Oversampled A/D
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Oversampled A/D
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Oversampled A/D
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Oversampled A/D
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Oversampled A/D

Idea:

m oversample by a factor of N

m signal's spectral support shrinks

m if quantization noise remains independent, its PSD remains flat
m filter out the quantization noise out of band

m downsample back to F;



Oversampled A/D
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Oversampled A/D

4F =
sl F = 4F, i
2 ]
1} i
. A\ N .

—-r  —3n/4 —7w/2 —m/4 /4 /2 3r/4

s

33



Oversampled A/D

after downsampling by N, X,(w) = (1/N)X(w/N)
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Oversampled A/D

x(t) — | =¥~ Q LP{r/N}

T =1/(NFs)

m in theory, SNR at the output is N times better

m 3dB gain per octave (i.e. per doubling of the sampling rate)

m but key assumptions (independence of error) breaks down fast...
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x[n]



