
COM-202: Signal Processing

Chapter 8.b: Quantization



quantization



The digital world

basic storage unit: the binary digit (bit) with two possible values (0, 1)

aggregate units: the byte (8 bits), word, dword, etc

R aggregate bits can hold 2R distinct integer values
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What about floating point?

floating point standards (e.g. IEEE 754) are clever ways of mapping reals to integers

an R-bit float can represent at most 2R distinct values

a floating point representation partitions the real line into intervals of increasing size and
maps them to integers
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Quantization

digital devices can only deal with integers (R bits per sample)

samples of a discrete-time signal must be converted to integers for storage

the conversion process is called quantization

quantization causes an irreversible loss of information
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Quantization schemes

x Q x̂

Several factors at play:

storage budget (bits per sample)

encoding scheme (fixed point, floating point)

properties of the input

• dynamic range

• probability distribution of samples
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Scalar, memoryless, fixed-rate quantization

x [n] Q x̂ [n]

R bps

The simplest quantization scheme:

each sample is encoded individually (scalar quantization)

each sample is quantized independently (memoryless quantization)

each sample is encoded using R bits (fixed-rate quantization)
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Typical quantization scheme

input values are within known bounds A ≤ x [n] ≤ B

with R bits/sample, input range is divided into 2R intervals Ik = [ik , ik+1)

each interval is associated to a R-bit binary number k

each interval is associated to a representative value x̂k

A B

i0 i1

x̂0

I0

k = 00

i2

x̂1

I1

k = 01

i3

x̂2

I2

k = 10

i4

x̂3

I3

k = 11
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Typical quantization scheme
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what are the optimal interval boundaries ik?

what are the optimal quantization values x̂k?
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Optimal Quantization

The optimal quantizer minimizes the energy of the quantization error:

e[n] = Q(x [n])− x [n] = x̂ [n]− x [n]

model x as a stochastic process

find the optimal ik and x̂k that minimize σ2
e = E

[

e2[n]
]

optimal quantizer will depend on the input’s statistics
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Quantization MSE

σ2
e = E

[

(x − Q(x))2
]

=

∫

∞

−∞

(x − Q(x))2 fx(x) dx

=

2R−1
∑

k=0

∫

ik+1

ik

(x − x̂k)
2 fx(x) dx

find global minimum wrt ik , x̂k
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Simple example: optimal one-bit quantizer

A B

i

x̂0 x̂1

3 free parameters: i , x̂0, x̂1
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Simple example: optimal one-bit quantizer

σ2
e =

∫

i

A

(x − x̂0)
2 fx(x) dx +

∫

B

i

(x − x̂1)
2 fx(x) dx

find i , x̂0, x̂1 such that

∂σ2
e

∂i
=

∂σ2
e

x̂0
=

∂σ2
e

x̂1
= 0
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little calculus reminder

∂

∂t

∫

t

α
f (τ) dτ =

∂

∂t
[F (t)− F (α)] = f (t)
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Optimal one-bit quantizer: threshold

∂σ2
e

∂i
=

∂

∂i

[
∫

i

A

(x − x̂0)
2 fx(x) dx +

∫

B

i

(x − x̂1)
2 fx(x) dx

]

= (i − x̂0)
2 fx(i)− (i − x̂1)

2 fx(i) = 0

⇒ (i − x̂0)
2 − (i − x̂1)

2 = 0

⇒ i =
x̂0 + x̂1

2
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Optimal one-bit quantizer: values

∂σ2
e

∂x̂0
=

∂

∂x0

∫

i

A

(x − x̂0)
2 fx(x) dx

=

∫

i

A

2(x̂0 − x) fx(x) dx = 0

⇒ x̂0 =

∫

i

A
x fx(x) dx

∫

i

A
fx(x) dx

(center of mass)

⇒ x̂1 =

∫

B

i
x fx(x) dx

∫

B

i
fx(x) dx

14



Optimal one-bit quantizer: values

∂σ2
e

∂x̂0
=

∂

∂x0

∫

i

A

(x − x̂0)
2 fx(x) dx

=

∫

i

A

2(x̂0 − x) fx(x) dx = 0

⇒ x̂0 =

∫

i

A
x fx(x) dx

∫

i

A
fx(x) dx

(center of mass)

⇒ x̂1 =

∫

B

i
x fx(x) dx

∫

B

i
fx(x) dx

14



Optimal one-bit quantizer: values

∂σ2
e

∂x̂0
=

∂

∂x0

∫

i

A

(x − x̂0)
2 fx(x) dx

=

∫

i

A

2(x̂0 − x) fx(x) dx = 0

⇒ x̂0 =

∫

i

A
x fx(x) dx

∫

i

A
fx(x) dx

(center of mass)

⇒ x̂1 =

∫

B

i
x fx(x) dx

∫

B

i
fx(x) dx

14



For uniformly-distributed input

fx(x) =
1

B − A

x̂0 =

∫

i

A
x dx

∫

i

A
dx

=
A+ i

2

x̂1 =

∫

B

i
x dx

∫

B

i
dx

=
i + B

2

i =
x̂0 + x̂1

2
=

A+ B

2
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Optimal one-bit quantizer

A B

i

x̂0 x̂1
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Uniform quantization of uniform input

for uniformly-distributed input values, optimal quantizer is uniform

optimal subdivision: 2R equal intervals of width ∆ = (B − A)2−R

optimal quantization values are the midpoints of each interval

A Bx̂0 x̂1 x̂2 x̂3

∆
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Uniform 3-Bit quantization function
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Uniform quantization of uniform input: error analysis

σ2
e =

∫

B

A

fx(x)(Q(x) − x)2 dx

=

2R−1
∑

k=0

∫

Ik

fx(x)(x̂k − x)2 dx

fx(s) =
1

B − A

∆ =
B − A

2R

Ik = [A+ k∆,A+ (k + 1)∆]

x̂k = A+ (k + 1/2)∆
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Uniform quantization of uniform input: error analysis

σ2
e =

2R−1
∑

k=0

∫

A+(k+1)∆

A+k∆

(A + (k + 1/2)∆ − x)2

B − A
dx

=

2R−1
∑

k=0

∫ ∆/2

−∆/2

x2

B − A
dx x ← x + A+ k(+1/2)∆

=
2R

B − A

2(∆/2)3

3

=
∆2

12
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Error analysis

error energy
σ2
e = ∆2/12, ∆ = (B − A)/2R

signal energy
σ2
x = (B − A)2/12

signal to noise ratio
SNR = 22R

in dB
SNRdB = 10 log10 2

2R ≈ 6R dB
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The “6dB/bit” rule of thumb

a compact disk has 16 bits/sample:

max SNR = 96dB

a DVD has 24 bits/sample:
max SNR = 144dB
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Rate/Distortion Curve

rate (R)

d
is
to
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n
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2 e
)
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Other quantization errors

If input is not bounded to [A,B ] several options; eg:

clip samples to [A,B ]: linear distortion (can be put to good use in guitar effects!)

smoothly saturate input: this simulates the saturation curves of analog electronics
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Clipping vs saturation

−2 −1 0 1 2

−1

0

1

−2 −1 0 1 2

−1

0

1
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Analysis of the quantization error

so far we have only a quantitative result on the error (its power)

to understand the distortion we need the error’s spectrum

quantizer is nonlinear: impossible to compute the spectrum exactly

the common approach is to make assumptions on the error statistics
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High-resolution hypothesis

drastic simplification of the problem: if

input samples are iid (they are not)

R is relatively large

then we can try to use the following model:

error samples are iid

error is uncorrelated to the signal

quantization error eqivalent to additive white noise with Pe(ω) = ∆2/12
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High-resolution hypothesis

x [n] + x̂ [n]

e[n]

problems with this model:

error is not random!

error is not white or uncorrelated to the input

common approaches:

use dithering to whiten the noise spectrum

use feedback in the quantization loop to perform noise shaping
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oversampled A/D conversion



A/D conversion

x(t) Q x̂ [n]

T = 1/F

x [n]

x̂ = x+ e
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Oversampled A/D

Key assumptions on quantization error:

e is a white noise process, independent of x

PSD of quantization noise is flat, Pe(ω) =
∆2

12

PSD of quantization noise is independent of sampling rate F

Key observations:

x(t) is Fs-BL

spectrum of sampled signal is X (ω) = FX ( ω
2πF )

with N-times oversampling, spectral support is [−π/N, π/N]
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Oversampled A/D

F = Fs
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Oversampled A/D

F = 2Fs
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Oversampled A/D

F = 3Fs
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Oversampled A/D

F = 4Fs
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Oversampled A/D

Idea:

oversample by a factor of N

signal’s spectral support shrinks

if quantization noise remains independent, its PSD remains flat

filter out the quantization noise out of band

downsample back to Fs
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Oversampled A/D

F = 4Fs
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Oversampled A/D
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Oversampled A/D

after downsampling by N, Xo(ω) = (1/N)X (ω/N)
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0
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Oversampled A/D

x(t) Q LP{π/N} N↓ x [n]

T = 1/(NFs)

in theory, SNR at the output is N times better

3dB gain per octave (i.e. per doubling of the sampling rate)

but key assumptions (independence of error) breaks down fast...
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