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COM-202: Signal Processing

Chapter 7.b: Sampling and applications



from interpolation to sampling



Interpolation

N

xe(t)= > x[nlin(t — n)

n=—N
m we want xc(n) = x[n] so, for all n:
o in(0)=1
e in(k) =0 for k a nonzero integer

m we would prefer x.(t) to be smooth (i.e. continuously differentiable)



Interpolation

N

xe(t) =Y x[nlin(t = n)

n=—N
m global interpolation:
o (good) x.(t) is a maximally smooth polynomial
o (bad) must use 2N + 1 distinct interpolation kernels ip(t) = LS,N)(t)
m local interpolation:
e (good) just a single interpolation kernel i,(t) = i(t)
o (bad) discontinuities in x.(t) or its derivatives

m as N — oo the two methods converge to sinc interpolation



Sinc interpolation

oo

xc(t) = Z x[n] sinc(t — n)

n=—oo

X.(f) = X2rf) |f|<1/2
‘ o otherwise



Sinc in

terpolation




Sinc in

terpolation




inc interpolation




Sinc interpolation
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Sinc interpolation




Spectrum of sinc-interpolated signal

~1/2 0 1/2



Sinc interpolation with timebase T

[e.e]

x7,(t) = xe(t/Ts) = Y x[n]sinc (t _T:Ts>

n=—0o0

1 f
= —) fI<F)2
FSX<27rFS> If| < Fe/

Xr.(f) =

0 otherwise



Spectrum

X(w)

X, (f)

of interpolated signals

Ts =T

Fs =F

I I
—F/2 0 Fs/2



Spectrum

X(w)

X, (f)

of interpolated signals

Ts =2T

Fs =F/2

I I
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Spectrum of interpolated signals

X(w)

/2

T, =T/2
Fs =2F

Xr,(f)

I
Fs/2

R




the sampling theorem

slides from lecture 7.a



Space of bandlimited signals

every finite-energy sequence can be interpolated into a bandlimited signal

T
x[n] € £2(2) xe(t) € Fe-BL C Lo(R)
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Space of bandlimited signals

every finite-energy sequence can be interpolated into a bandlimited signal

Ts
x[n] € £2(Z) xc(t) € Fs&-BL C L»(R)
7

is the reverse also true?
is every BL function the interpolation of a discrete-time sequence?
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Let’s simplify things

CTFT

x(t) «——

m if x(t) is Fs-BL, then x(Fst) = x(t/Ts) is 1-BL

m let's focus on the set of 1-BL signals

CTFT

X(f) <= x(at)+——

1

_X<

a

f

(01

)
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The key points of the sampling theorem

m the space of 1-BL functions is a Hilbert space
m the set S = {p,}nez, where p,(t) = sinc(t — n), is an orthonormal basis for it

m therefore any x. € 1-BL can be uniquely expressed as the linear combination
XC = Z an Qon
n

where, because of orthonormality, a, = (¢, Xc)

m we will show that (p,,x.) = xc(n): the basis expansion coefficients are simply the
samples of the continuous-time signal x.

m therefore the discrete-time sequence x[n] = x.(n) is an equivalent representation of the
continuous-time signal x.
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The space of 1-BL signals

m elements of the space are finite-energy (square-integrable) functions whose Fourier
transform is zero outside of the [-1/2,1/2] interval

m closed under addition and scalar multiplication because linear combinations of 1-BL
functions are still 1-BL functions

m inner product is the standard inner product in Lp(R):

oy =[x

m we also should prove completeness... that is the tricky part but here we will simply accept
that it's true
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The sinc basis for the 1-BL space

let's show that S = {¢,}nez is an orthonormal basis

(@py Pm) = /OO sinc(t — n)sinc(t — m) dt

= /_OO sinc(7)sinc((m —n) — 1) d7
= (¢ *)(m—n)

= / rect?(f) /2 (m=n) 4f

—0o0

1/2 - -
_ / ej27rf(m—n) df = i ejw(m_n) duw — 1 form=n
-1/2 2m ) o 0 otherwise



Sampling as a basis expansion

for any x. € 1-BL:

(@ Xc) = /OO sinc(t — n)xc(t) dt

—00

— /oo sinc(n — t)x.(t) dt

—00

= (¢ *xc)(n)

= / rect () Xc(f)e/> ™ df

= / Xc(f)e*mMdf

= xc(n)
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Sampling as a basis expansion
for any x. € 1-BL:

analysis formula:

X[n] = <90n7 XC>

synthesis formula:

[e.e]

Xe = Z X[n]cpn

n=—oo
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The sampling theorem, general case

m the space of Fs-bandlimited functions is a Hilbert space

m the functions {sinc (%”TS)} ; form an orthogonal basis for it (Ts = 1/Fs)
s ne

m basis vectors are not orthonormal, their norm is v/ Ts

m if x(t) € Fs-BL then

1 = t—nT,
x(t) = = > an sinc< Tn 5)
S S

n=—oo

with a, = <sinc (t _T”T5> ,x(t)> = Tox(nT:)

s

m therefore the discrete-time sequence x[n] = x(nTs) is a complete representation of the
continuous-time signal x(t)



Sampling as a basis expansion for arbitrary bandwidth
for any x € F,-BL:

analysis formula:

x[n] = (sinc <t _T’S’T5> x(t)) = Tax(nTy)

synthesis formula:

x( T S i S|nc< ”T>

n=—oo
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The sampling theorem, lossless condition

m assume x(t) is Fs-BL, that is, X(f) =0 for |f| > F,/2
m x(t)is also F-BL for any choice of F > Fg

m therefore the sequence x[n] = x(nTs) is a complete representation of x(t) as long as
Ts <1/F

an Fs-bandlimited continuous-time signal x(t) can be sampled with no loss of information
using any sampling frequency larger than F;
(or, equivalently, using a sampling period Ts < 1/F;)
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The Nyquist frequency

m real-valued continuous-time signals have a symmetric magnitude spectrum

m the maximum frequency value Fy for which the spectrum is nonzero is called the Nyquist
frequency

m the Nyquist frequency of an Fs-bandlimited real-valued signal is Fy = Fs/2

any real-valued signal can be sampled with no loss of information
as long as the sampling frequency is greater than 2Fy
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back to lecture 7.b



Space of bandlimited signals

every discrete-time signal can be interpolated into a bandlimited continuous-time signal
Ts=1/F
x[n] € £2(Z) x(t) € F&-BL C Lp(R)
Fs=1/T,

every bandlimited signal can be represented exactly by a discrete-time sequence



Sinc sampling as an orthogonal basis decomposition
for any x € F;-BL:

analysis formula:
x[n] = <sinc <t _T"T5> ,x(t)> = Tox(nTy)

synthesis formula:

x( T Z «[n] S|nc< ”T>

n=—oo

10



Sinc sampling as an orthogonal subspace projection

for any x € L»(RR), the sequence

(25 )

defines the orthogonal projection (i.e. the least squares approximation)
of x onto the subspace of Fs-BL functions

important: if x € Fs-BL, then x[n] # Tsx(nTs)

11



Sinc sampling as an orthogonal subspace projection

X € LQ(R)

Fs —BL
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Sinc sampling as an orthogonal subspace projection

X € LQ(R)

XBL

Fs — BL

12



Sinc sampling: the internals

i o (25) )
/Z sinc <t —nls > x(t)dt
-/

- sinc < t) x(t)dt

o0

= (hxx)(nTs) where h(t) = sinc(t/Ts)

h is the impulse response of a continuous-time ideal lowpass with cutoff f. = F;/2

H(f) = Fi rect <FL>
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Sinc sampling bandlimits the input!

- (o (28) 0)
x(t) —— _)V_ —  X[1]

ideal lowpass raw sampler

cutoff Fg/2 period Ts = 1/F;
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Sinc sampling bandlimits the input

() — le_m‘”

m implicit continuous-time lowpass: h(t) = sinc(t/Ts),

m input to the raw sampler: xg; = h*xx

m discrete-time samples: x[n] = xg(nTs)

A

—— x[n] = xg.(nTs)

H(f) = £ rect (FL>

xp; is the orthogonal projection of x onto the space of F,-BL functions



Projection onto a bandlimited subspace

T T
—F/2 0 Fs/2
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Projection onto a bandlimited subspace

X(f), H(f)

AN

F /2 F, /2
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Projection onto a bandlimited subspace

XaL(f)

AN

T 1
—F/2 0 Fs/2

| |
—F/2 0 Fs/2

16



Sinc sampling of bandlimited signals

o0 —{

if x € Fs-BL:

H Xg =X

m the filter doesn't do anything

XB[_(l')

A

> x[n] = XBL(nTs)

m sinc sampling becomes raw sampling (which is easy to do)
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Projection onto a bandlimited subspace

.
I
<
x

|
—F./2 0

!
F./2
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Projection onto a bandlimited subspace

T
S
X

—Fs/2 0 Fs/2
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Projection onto a bandlimited subspace

—Fs/2 0 Fs/2

XaL(f)

|
—F/2 0 Fs/2

18



Raw sampling

x(t) —— | =V e ] = x(nTY)

Fs=1/Ts

m if x is Fs-BL this is equivalent to sinc sampling (up to a scaling factor) and there is no
loss of information

m but what happens if
e x is not bandlimited?

e x is bandlimited but the sampling frequency is too low?

we incur aliasing!



interpolation of sinusoidal signals



A soundcard is an interpolator

x[n] —————| sound card

m interpolation interval T: interval in seconds between two consecutive samples

m interpolation rate Fg = 1/ T,: samples per second consumed by the soundcard



Playing a sinusoidal tone




Playing a sinusoidal tone

x[n] = cos(won) —m<wy<m

nez

21



Playing a sinusoidal tone

= cos(2rfyt) fo = (wo/(27))F.

VAN

WNAEAVEVS

teR
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Sinc interpolation of a sinusoid

x[n] = efeon ——

23



Sinc interpolation of a sinusoid

X(w) = 6(w — wo) = 27 Z d(w — wo — 2km)

27 27
=T (Tf
F. <Fs °"°>

Ea(f—;"—;Fs)

= CTFT{?™™t} £ = (wo/(27))Fs

spectrum of interpolation

rect selects only one Dirac

5(f/a) = ad(f)



| don’t like Dirac deltas...

IDTFT {7} [n] = %/ e/ dw = ... = sinc(n - 7)

—T

DTFT {sinc(n — 7)} (w) = e/

oo

n=—o0 n=-—0o00

= DTFT {sinc(n — t/Ts)} (wo)
_ ejwot/Ts — ej27l'f0t7 fo= (wo/(zﬂ'))Fs
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Playing a sinusoidal tone

ejwon > ¢ 5 ej27rf0t

in discrete time:

m wo: phase increment per sample
m samples per period: P, = 27 /wq
after interpolation:
m one period lasts P, = P, Ts = P,/Fs seconds

m frequency is fy = 1/P; = Fs/Pp = (wo/(27))Fs



Playing a sinusoidal tone: frequency range

ejwon > ¢ ej27rf0t

—T<wy <7 fo=—F;s _s/2§fO§FS/2



Frequency range

of interpolated sinusoids
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Frequency range

of interpolated sinusoids
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Frequency range

of interpolated sinusoids
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Frequency range

of interpolated sinusoids

—7/2 0 /2
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Frequency range of interpolated sinusoids

= o

; fO:;)_,,?.Fs

T
—F/2 0 F/2



Frequency range of interpolated sinusoids

= o

; fO:;)_,,?.Fs

T
—F/2 0 F/2



Frequency range of interpolated sinusoids

= wo

w
< fO:ﬁFs

T
—F/2 0 F/2



raw sampling of sinusoidal signals



Raw sampling of a sinusoid

x(t) = e27ht | N L ] = efeon

Fs=1/T;

x[n] = x(nTy) = ef?r(fo/Fs)n

f
wo = 27TF0
S



Reminder: discrete-time oscillations have a max speed

x[n] = e/won

Im

A 4

Re
x[0]
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Reminder: discrete-time oscillations have a max speed

x[n] = e/von

Im

x[1]
Re
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Reminder: discrete-time oscillations have a max speed

x[n] = e/von

Im

x[2]

Re
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Reminder: discrete-time oscillations have a max speed

x[n] = e/von

Im

x[3]

Re
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Reminder: discrete-time oscillations have a max speed

x[n] = e/won

Im
x[4]

Re




Reminder: discrete-time oscillations have a max speed

x[n] = e/von

Im

x[5]

Re
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Reminder: discrete-time oscillations have a max speed

X[n] — ej(wo+27r)n

Im

4

Re
x[0]
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Reminder: discrete-time oscillations have a max speed

X[n] — ej(wo+27r)n

Im

!
]




Reminder: discrete-time oscillations have a max speed

X[n] — ej(wo+27r)n

Im

x[2]

e
N




Reminder: discrete-time oscillations have a max speed

X[n] — ej(wo+27r)n

Im

-

x[3]

Re

N

W
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Reminder: discrete-time oscillations have a max speed

X[n] — ej(wo+27r)n

Im
x[4]

N
N




Reminder: discrete-time oscillations have a max speed

X[n] — ej(wo+27r)n

Im

x[5]

ey
N




The phase can always be “wrapped”

ot — 01T

N
N
N

[6]
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The wrapping function

6 1
7T =6 -2 | — + =
[ ]—71' 7-‘-\‘27_[_ + 2J
m |x + 1/2] is the integer closest to x;
27|0/(27) + 1/2] is the multiple of 27 closest to 6

m to compute [0]T7T algorithmically:

e if § > m, keep subtracting 27 from 6 until the result is in [—7, 7]

e is < —m, keep adding 27 to 6 until the result is in [—7, 7]
m example: [187/5]17 = —27/5

187/5—2r =8n/5 > =
8n/5 — 2w = =2x/5 € [, 7]
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The wrapping function: properties

m general wrapping formula: [x]T2 = x — 2a[x/(2a) + 1/2]
m for any k € Z, [x + 2ka]*2 = [x]*2

m for any c € R™

1
[ex]t2 = cx — 2a {g + —J

2a 2
=c (X —2(a/c) {ﬁ +
= [t

m corollary: ¢ [x]*2 = [ex]T2S

1

2

)
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Wrapping frequencies

m for any n € Z:
[X]13 = 2 = [nx]23 = [nX]13

m all discrete-time frequencies can (and should) be wrapped

1

— ej[wo]ffr n

ejwon _ ej[won

35



Sinusoidal

raw sampling

ei2nht X L ajwon
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Sinusoidal raw sampling and sinc interpolation

ej27rﬂ)t —_

I
Fs
~ w
0= ﬁFs
fo
S Fs

| Qienht




Sinusoidal aliasing:

X(w)

X(f)

increasing the frequency

fo

T T f

o

1
Fs/2 Fs

wo = [2mfy/F]™T

2 +Fs/2
fo = [fo —Fs//2

—2F; —Fs —F/2 2F;
T T T
—7/2 0 /2
T T T
“F/2 0 FJ2
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Sinusoidal aliasing: increasing the frequency

X(w)

X(f)

fo

—2F;

I

—F, —F)2

O —

1
Fs/2 Fs

2F;

wo = [2mfy/F]™T

—7/2

o

/2

2 +Fs/2
fo = [fo —Fs//2

T
—F/2

o

Fs/2

38



Sinusoidal aliasing: increasing the frequency

X(w)

X(f)

fo

I

1
Fs/2

wo = [2mfy/F]™T

2 +Fs/2
fo = [fo —Fs//2

—2F, “F —FR/2 0 F. 2F,
T T | T
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Sinusoidal aliasing: increasing the frequency
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Sinusoidal aliasing: increasing the frequency
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Sinusoidal aliasing: increasing the frequency
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Sinusoidal aliasing: increasing the frequency
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Sinusoidal aliasing: decreasing the sampling rate

X(w)

X(f)

fo

—7/2

/2

fo

wo = [2mfy/F]™T

2 +Fs/2
fo = [fo —Fs//2
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Sinusoidal aliasing: decreasing the sampling rate

o
- fo
X | °
T T ; T
—F/2 0 fo Fs/2
S wo = [27h/Fs]*T
> -
T T T
-7 —7/2 0 /2 T
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Sinusoidal aliasing: decreasing the sampling rate
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Sinusoidal aliasing: decreasing the sampling rate
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Sinusoidal aliasing: decreasing the sampling rate
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Sinusoidal aliasing: decreasing the sampling rate

X(w)

X(f)

]

fo
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Sinusoidal aliasing: decreasing the sampling rate

<
= fi
= | 0
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;<3, | wo = [2rh/F]™
T T T
-7 —7/2 0 /2 T
< 2 +Fs/2
<§<’ fo = [fo —F/2

T T T
- 5/2 E5/2
39



Sinusoidal aliasing in the time domain

x(t) = cos(2nfyt), fo=3Hz
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Sinusoidal aliasing in the time domain

x(t) = cos(2nfyt), fo=3Hz
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Sinusoidal aliasing in the time domain

x(t) = cos(2nfyt), fo=3Hz

14 1

Fs =60 Hz, fo=[3]"30 =3Hz
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Sinusoidal aliasing in the time domain

x(t) = cos(2nfyt), fo=3Hz
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Sinusoidal aliasing in the time domain

x(t) = cos(2nfyt), fo=3Hz

Fe=29Hz, fy=[3]"14 =0.1Hz
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Sinusoidal aliasing in the time domain

x(t) = cos(2nfyt), fo=3Hz
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Sinusoidal aliasing in the time domain

x(t) = cos(2nfyt), fo=3Hz

Fs=29Hz, f=0.1H:z
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Sinusoidal aliasing in the time domain
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The key concept for general aliasing

Aej27rﬁ)t+Bej27T(fo+Fs)t —_— _)(_ —»x[n]

Fs
x[n] = A" 4 Be/¥1m
fo]™
= [2r=
o |: 7TF5:|—7T
fot+ Fs1™™ f i ]t
e ] g o] T- ]

x[n] = (A + B)ef*or
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aliasing



Raw sampling

x(t) ————

_X.

— x[n]

Fs=1/Ts

m what is the spectrum of the sampled signal?

m the input signal is composed of sinusoids at all frequencies

xo(t) = ICTFT{X(F)}(t) = /Oo X(f)e*tdf

m after sampling, the spectral components at frequencies f + kFg for k € Z will be lumped

together
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Spectrum of raw-sampled signals
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Spectrum of raw-sampled signals
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Spectrum of raw-sampled signals

RN

T T T T T

T T T T
—2F; —=3F;/2 —Fs —F/2 0 F/2 F 3F/2 2F



Spectrum of raw-sampled signals
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Spectrum of raw-sampled signals
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Spectrum of raw-sampled signals
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Spectrum of raw-sampled signals (1)
start by expressing x[n] as the inverse CTFT computed in t = nT;
x[n] = xe(nTs) = / X(F)e2 "T=df

components Fg Hz apart will be aliased, so split the integration interval

e (k+1/2)Fs ,
_ / Xc(f)ej27rf nTs df
ke —oo Y (k=1/2)Fs

change of variable: f = ¢ + kF;

©  rF/2 ,
= Z / Xc(p + kF3)eCr/F)etkFs)n g,

k=—00 —Fs/2
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Spectrum of raw-sampled signals (1)

Al = [ 30 Xelpo+ k)OI
s/ f k=—o00

define the Fs-periodization of the CT spectrum Xc(f) = 3202 Xc(f + kFs)

Fs/2 )
= / XC(<p)ej(27T/FS)SDndSD

—Fs/2
change of variable: ¢ = 5—; w
Fo (™o (Fs )\

__'s X s wn
] C<27rw>e’ dw

= IDTFT {FSXC (E w) }
21
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Spectrum of raw-sampled signals (111)

m periodize X(f) with period F;

m rescale frequency axis so [—Fs/2, Fs/2] — [—7, 7]

X(w) = FX( )_F_ZX(

~#)

46



Example: signal bandlimited to f) and F; > 2f;
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Example: signal bandlimited to f) and F; > 2f;
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Example: signal bandlimited to f) and F; > 2f;

Xc(f)
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Example: signal bandlimited to f) and F; > 2f;

Xe(f)

X(w)
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Example: signal bandlimited to f, and F; = 2f;
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Example: signal bandlimited to f) and F, = 2f;
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Example: signal bandlimited to f) and F, = 2f;
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Example: signal bandlimited to f) and F, = 2f;
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Example: signal bandlimited to f; and F; < 2f;

S
N

T T
—F/2 0 Fs/2

49



Example: signal bandlimited to f; and F; < 2f;
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Example: signal bandlimited to f; and F; < 2f;

Xc(f)
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Example: signal bandlimited to f; and F; < 2f;
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Example: non-bandlimited signal
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Example: non-bandlimited signal
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Example: non-bandlimited signal
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Example: non-bandlimited signal

S
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Sampling strategies

given a raw sampler at frequency Fs

m if the signal is Fs-bandlimited, no problem

m if the signal is not Fs-bandlimited, two choices:

e apply a continuous-time (analog) lowpass filter with cutoff F¢/ before raw sampling, that is,
implement an approximation of sinc sampling

e accept the distortion due to aliasing
m aliasing errors are unpredictable and very disrupting, so always use an analog lowpass

m antialias bandlimiting minimizes the energy of the error
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Sampling with antialiasing filter
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Sampling with antialiasing filter
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Sampling with antialiasing filter
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Sampling with antialiasing filter

Xc(f)
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Sampling with antialiasing filter

Xe(f)




Sampling with antialiasing filter

Xe(f)

X(e*)




discrete-time processing of analog signals



Equivalent analog response: basic setup

what is the equivalent analog frequency response H.(f)?
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Equivalent analog response: basic setup

assume x.(t) is Fs-BL and Tg = 1/F;
m X(w) = Fs Xc (Fs £)
B Y(w) = H(w)X(w)

= Yolf) = AY(@rE) = H (2nf) X(F)
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Equivalent analog response: basic setup
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Equivalent analog response
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DT processing of CT signals

Xe(f)
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DT processing of CT signals
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DT processing of CT signals

Xe(f)
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DT processing of CT signals
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DT processing of CT signals
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Example: analog bandpass with digital processing

m we want to implement a bandpass filter to select frequencies from 1 kHz to 2 kHz
m input signals are bandlimited with max positive frequency Fy = 4 kHz

m we want to use digital processing
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Example: analog bandpass with digital processing

analog bandpass filter:
m filter passband is 2f. = 1 kHz (f. = 500 Hz)

m filter center frequency is fy = 1500 Hz

discrete-time processing chain
m input is 8 kHz-BL so we can use a sampling frequency Fs = 8 kHz
m design a FIR lowpass with cutoff w. = 27 (f./Fs)

m modulate the impulse respose with wo = 27(fy/Fs)
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Example: analog bandpass with digital processing

import scipy.signal as sp

fc, £fO, Fs = 500, 1500, 8000
wc, w0 = fc / Fs, fO / Fs

N =61
tbp = 0.2 # 20% transition band

h = sp.signal.remez(N, [0, wcx(1-tbp), wcx(1+tbp), 0.5], [1, 0], weight=[10, 1])
h *= 2 * np.cos(2 * np.pi * w0 * np.arange(len(h)))
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Example: analog bandpass with digital processing

digital bandpass FIR

IR

59



Example: analog bandpass with digital processing

equivalent analog response
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two more ideal filters



Dual setup

1 xe(t) ye(t)
xln] ——{ A He(f) f——| =~ —— yInl

m Xc(f) = (1/Fs)X(2m £/ Fs)

m Ye(F) = He(F)Xc(f)

m V(W) = FsYe(3Fs) = He(27 Fs)X(w)
m H(w) = He(35Fs)
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Delays in continuous time

x(t)

H(f)

m in continuous time, delays are well defined for all 7 € R

m H(f) = e /27



Delays in discrete time

x[n] ————| H(w) = e/

— ] =?

m when d € Z, then y[n] = x[n — d]

m what happens when d is not an integer?
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Interpretation by duality

Xc(t) ] .yC(t)
x[n] ——> _q@ﬁ) edmfr S| X f—m y[n]

m a discrete-time delay can be implemented with interpolation, delay, and resampling
m equivalent filter: H(w) = H.(w/(27)Fs) = e %9 with d = 7/T, € R
m impulse response: h[n] = sinc(n — d)

m if d € Z then h[n] = §[n — d] (normal delay) otherwise we have an ideal filter!
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Fractional delay




Fractional delay

xc(t)

1+

I
V%
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Fractional delay

ye(t)

oON
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Fractional delay

y[n]

INNVAA SO
-
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Differentiation in continuous time

x(t) ——| H(f) = jonf

m easy to show that y(t) = x/(t) = &x(t)

m first derivative can be computed exactly via filtering
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By duality

xc(t) ye(t)
x[n] ——> ...,cfs,., jornf p—mo . ——s y[n]

Fs:]- TSZ].

m chain interpolates the discrete-time input, differentiates the interpolation and resamples it
m equivalent filter H(w) = Hc(w/(27)) = jw

m H(w) is a “digital differentiator”



Digital differentiator, magnitude response

|H(w)| = |w|, highpass filter

[H(w)|

/2
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Digital differentiator, phase response

ZH(w) = (7/2) sign(w)

ZH(w)

—7/2
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Digital differentiator, impulse response

1 (" ;
h[n] = %/ Jwe®dw

—Tr

= ... (integration by parts). ..

0 n=20

the differentiator is an ideal filter
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Digital differentiator, impulse response
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