
COM-202: Signal Processing

Chapter 7.b: Sampling and applications



from interpolation to sampling



Interpolation

xc(t) =

N
∑

n=−N

x [n]in(t − n)

we want xc(n) = x [n] so, for all n:

• in(0) = 1

• in(k) = 0 for k a nonzero integer

we would prefer xc(t) to be smooth (i.e. continuously differentiable)
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Interpolation

xc(t) =

N
∑

n=−N

x [n]in(t − n)

global interpolation:

• (good) xc(t) is a maximally smooth polynomial

• (bad) must use 2N + 1 distinct interpolation kernels in(t) = L
(N)
n (t)

local interpolation:

• (good) just a single interpolation kernel in(t) = i(t)

• (bad) discontinuities in xc(t) or its derivatives

as N → ∞ the two methods converge to sinc interpolation
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Sinc interpolation

xc(t) =

∞
∑

n=−∞

x [n] sinc (t − n)

Xc(f ) =

{

X (2πf ) |f | ≤ 1/2

0 otherwise
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Sinc interpolation
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Sinc interpolation
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Spectrum of sinc-interpolated signal
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Sinc interpolation with timebase Ts

xTs
(t) = xc(t/Ts) =

∞
∑

n=−∞

x [n] sinc

(

t − nTs

Ts

)

XTs
(f ) =



















1

Fs
X

(

2π
f

Fs

)

|f | ≤ Fs/2

0 otherwise
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Spectrum of interpolated signals
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Spectrum of interpolated signals
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Spectrum of interpolated signals
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the sampling theorem

slides from lecture 7.a



Space of bandlimited signals

every finite-energy sequence can be interpolated into a bandlimited signal

Ts

x [n] ∈ ℓ2(Z) −−−−−−−−−−−−−−→ xc(t) ∈ Fs-BL ⊂ L2(R)
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Space of bandlimited signals

every finite-energy sequence can be interpolated into a bandlimited signal

Ts

x [n] ∈ ℓ2(Z) ←−−−−−−−−−−−−−→ xc(t) ∈ Fs-BL ⊂ L2(R)
?

is the reverse also true?
is every BL function the interpolation of a discrete-time sequence?
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Let’s simplify things

x(t)
CTFT
←−−−→ X (f ) ⇐⇒ x(αt)

CTFT
←−−−→

1

α
X

(

f

α

)

if x(t) is Fs-BL, then x(Fs t) = x(t/Ts) is 1-BL

let’s focus on the set of 1-BL signals
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The key points of the sampling theorem

the space of 1-BL functions is a Hilbert space

the set S = {ϕn}n∈Z, where ϕn(t) = sinc(t − n), is an orthonormal basis for it

therefore any xc ∈ 1-BL can be uniquely expressed as the linear combination

xc =
∑

n

anϕn

where, because of orthonormality, an = 〈ϕn, xc〉

we will show that 〈ϕn, xc 〉 = xc(n): the basis expansion coefficients are simply the
samples of the continuous-time signal xc

therefore the discrete-time sequence x [n] = xc(n) is an equivalent representation of the
continuous-time signal xc
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The space of 1-BL signals

elements of the space are finite-energy (square-integrable) functions whose Fourier
transform is zero outside of the [−1/2, 1/2] interval

closed under addition and scalar multiplication because linear combinations of 1-BL
functions are still 1-BL functions

inner product is the standard inner product in L2(R):

〈x, y〉 =

∫

∞

−∞

x∗(t)y(t)dt

we also should prove completeness... that is the tricky part but here we will simply accept
that it’s true
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The sinc basis for the 1-BL space

let’s show that S = {ϕn}n∈Z is an orthonormal basis

〈ϕn,ϕm〉 =

∫

∞

−∞

sinc(t − n) sinc(t −m) dt

=

∫

∞

−∞

sinc(τ) sinc((m − n)− τ) dτ

= (ϕ ∗ϕ)(m − n)

=

∫

∞

−∞

rect2(f ) e j2πf (m−n)df

=

∫ 1/2

−1/2
e j2πf (m−n)df =

1

2π

∫ π

−π
e jω(m−n)dω =

{

1 for m = n

0 otherwise
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Sampling as a basis expansion

for any xc ∈ 1-BL:

〈ϕn, xc 〉 =

∫

∞

−∞

sinc(t − n)xc(t) dt

=

∫

∞

−∞

sinc(n − t)xc(t) dt

= (ϕ ∗ xc )(n)

=

∫

∞

−∞

rect (f )Xc(f )e
j2πfndf

=

∫

∞

−∞

Xc(f )e
j2πfndf

= xc(n)
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Sampling as a basis expansion

for any xc ∈ 1-BL:

analysis formula:

x [n] = 〈ϕn, xc 〉

synthesis formula:

xc =

∞
∑

n=−∞

x [n]ϕn
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The sampling theorem, general case

the space of Fs-bandlimited functions is a Hilbert space

the functions
{

sinc
(

t−nTs

Ts

)}

n∈Z
form an orthogonal basis for it (Ts = 1/Fs)

basis vectors are not orthonormal, their norm is
√
Ts

if x(t) ∈ Fs-BL then

x(t) =
1

Ts

∞
∑

n=−∞

an sinc

(

t − nTs

Ts

)

with an =

〈

sinc

(

t − nTs

Ts

)

, x(t)

〉

= Ts x(nTs)

therefore the discrete-time sequence x [n] = x(nTs) is a complete representation of the
continuous-time signal x(t)
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Sampling as a basis expansion for arbitrary bandwidth

for any x ∈ Fs-BL:

analysis formula:

x [n] =
〈

sinc

(

t − nTs

Ts

)

, x(t)
〉

= Ts x(nTs)

synthesis formula:

x(t) =
1

Ts

∞
∑

n=−∞

x [n] sinc

(

t − nTs

Ts

)
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The sampling theorem, lossless condition

assume x(t) is Fs -BL, that is, X (f ) = 0 for |f | > 

x(t) is also F -BL for any choice of F ≥ Fs

therefore the sequence x [n] = x(nTs ) is a complete representation of x(t) as long as 
Ts ≤ 1/Fs

an Fs-bandlimited continuous-time signal x(t) can be sampled with no loss of information
using any sampling frequency larger than Fs

(or, equivalently, using a sampling period Ts ≤ 1/Fs)
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The Nyquist frequency

real-valued continuous-time signals have a symmetric magnitude spectrum

the maximum frequency value FN for which the spectrum is nonzero is called the Nyquist
frequency

the Nyquist frequency of an Fs-bandlimited real-valued signal is FN = Fs/2

any real-valued signal can be sampled with no loss of information
as long as the sampling frequency is greater than 2FN
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back to lecture 7.b



Space of bandlimited signals

every discrete-time signal can be interpolated into a bandlimited continuous-time signal

Ts = 1/Fs

x [n] ∈ ℓ2(Z) −−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−− x(t) ∈ Fs-BL ⊂ L2(R)

Fs = 1/Ts

every bandlimited signal can be represented exactly by a discrete-time sequence
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Sinc sampling as an orthogonal basis decomposition

for any x ∈ Fs-BL:

analysis formula:

x [n] =

〈

sinc

(

t − nTs

Ts

)

, x(t)

〉

= Ts x(nTs)

synthesis formula:

x(t) =
1

Ts

∞
∑

n=−∞

x [n] sinc

(

t − nTs

Ts

)

10



Sinc sampling as an orthogonal subspace projection

for any x ∈ L2(R), the sequence

x [n] =

〈

sinc

(

t − nTs

Ts

)

, x(t)

〉

defines the orthogonal projection (i.e. the least squares approximation)
of x onto the subspace of Fs-BL functions

important: if x 6∈ Fs-BL, then x [n] 6= Tsx(nTs)
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Sinc sampling as an orthogonal subspace projection

x ∈ L2(R)

Fs − BL
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Sinc sampling as an orthogonal subspace projection

x ∈ L2(R)

Fs − BL

xBL
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Sinc sampling: the internals

x [n] =

〈

sinc

(

t − nTs

Ts

)

, x(t)

〉

=

∫

∞

−∞

sinc

(

t − nTs

Ts

)

x(t)dt

=

∫

∞

−∞

sinc

(

nTs − t

Ts

)

x(t)dt

= (h ∗ x)(nTs) where h(t) = sinc(t/Ts)

h is the impulse response of a continuous-time ideal lowpass with cutoff fc = Fs/2

H(f ) =
1

Fs
rect

(

f

Fs

)
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Sinc sampling bandlimits the input!

x [n] =

〈

sinc

(

t − nTs

Ts

)

, x(t)

〉

x(t) x [n]

ideal lowpass raw sampler

cutoff Fs/2 period Ts = 1/Fs
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Sinc sampling bandlimits the input

x(t) x [n] = xBL(nTs)
xBL(t)

implicit continuous-time lowpass: h(t) = sinc(t/Ts), H(f ) = 1
Fs

rect
(

f
Fs

)

input to the raw sampler: xBL = h ∗ x

discrete-time samples: x [n] = xBL(nTs)

xBL is the orthogonal projection of x onto the space of Fs -BL functions
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Projection onto a bandlimited subspace
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Projection onto a bandlimited subspace
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Projection onto a bandlimited subspace
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Sinc sampling of bandlimited signals

x(t) x [n] = xBL(nTs)
xBL(t)

if x ∈ Fs-BL:

xBL = x

the filter doesn’t do anything

sinc sampling becomes raw sampling (which is easy to do)
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Projection onto a bandlimited subspace
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Projection onto a bandlimited subspace
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Raw sampling

x(t) x [n] = x(nTs)

Fs = 1/Ts

if x is Fs-BL this is equivalent to sinc sampling (up to a scaling factor) and there is no
loss of information

but what happens if

• x is not bandlimited?

• x is bandlimited but the sampling frequency is too low?

we incur aliasing!
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interpolation of sinusoidal signals



A soundcard is an interpolator

x [n] sound card

Ts

x(t)

interpolation interval Ts : interval in seconds between two consecutive samples

interpolation rate Fs = 1/Ts : samples per second consumed by the soundcard
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Playing a sinusoidal tone

x [n] = cos(ω0n) − π ≤ ω0 ≤ π
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Playing a sinusoidal tone

x [n] = cos(ω0n) − π ≤ ω0 ≤ π
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Playing a sinusoidal tone

x(t) = cos(2πf0t) f0 = (ω0/(2π))Fs

0 1

−1

0

1

t ∈ R
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Sinc interpolation of a sinusoid

x [n] = e jω0n s(t) =?

Fs
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Sinc interpolation of a sinusoid

X (ω) = δ̃(ω − ω0) = 2π

∞
∑

k=−∞

δ(ω − ω0 − 2kπ)

S(f ) =
1

Fs
X

(

2π

Fs
f

)

rect

(

f

Fs

)

spectrum of interpolation

=
2π

Fs
δ

(

2π

Fs
f − ω0

)

rect selects only one Dirac

≡ δ
(

f −
ω0

2π
Fs

)

δ(f /α) ≡ αδ(f )

= CTFT{e j2πf0t}, f0 = (ω0/(2π))Fs
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I don’t like Dirac deltas...

IDTFT
{

e jωτ
}

[n] =
1

2π

∫ π

−π
e jωτ e−jωndω = . . . = sinc(n − τ)

DTFT {sinc(n − τ)} (ω) = e jωτ

∞
∑

n=−∞

e jω0n sinc

(

t − nTs

Ts

)

=

∞
∑

n=−∞

sinc (n− t/Ts) e
−jω0n

= DTFT {sinc(n − t/Ts)} (ω0)

= e jω0t/Ts = e j2πf0t , f0 = (ω0/(2π))Fs
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Playing a sinusoidal tone

e jω0n e j2πf0t

Fs

in discrete time:

ω0: phase increment per sample

samples per period: Pn = 2π/ω0

after interpolation:

one period lasts Pt = PnTs = Pn/Fs seconds

frequency is f0 = 1/Pt = Fs/Pn = (ω0/(2π))Fs

26



Playing a sinusoidal tone: frequency range

e jω0n e j2πf0t

Fs

−π ≤ ω0 ≤ π f0 =
ω0

2π
Fs −Fs/2 ≤ f0 ≤ Fs/2

27



Frequency range of interpolated sinusoids
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raw sampling of sinusoidal signals



Raw sampling of a sinusoid

x(t) = e j2πf0t x [n] = e jω0n

Fs = 1/Ts

x [n] = x(nTs) = e j2π(f0/Fs )n

ω0 = 2π
f0
Fs
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Reminder: discrete-time oscillations have a max speed

x [n] = e jω0n

Re

Im

x[0]b
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Reminder: discrete-time oscillations have a max speed
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The phase can always be “wrapped”

e jθ = e j [θ]
+π
−π

0

π

−π

−4π −3π −2π −π 0 π 2π 3π 4π

θ

[θ
]+

π
−
π
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The wrapping function

[θ]+π
−π = θ − 2π

⌊

θ

2π
+

1

2

⌋

⌊x + 1/2⌋ is the integer closest to x ;

2π⌊θ/(2π) + 1/2⌋ is the multiple of 2π closest to θ

to compute [θ]+π
−π algorithmically:

• if θ > π, keep subtracting 2π from θ until the result is in [−π, π]

• is θ < −π, keep adding 2π to θ until the result is in [−π, π]

example: [18π/5]+π
−π = −2π/5

1 18π/5− 2π = 8π/5 > π

2 8π/5− 2π = −2π/5 ∈ [−π, π]
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The wrapping function: properties

general wrapping formula: [x ]+a
−a = x − 2a⌊x/(2a) + 1/2⌋

for any k ∈ Z, [x + 2ka]+a
−a = [x ]+a

−a

for any c ∈ R
+

[cx ]+a
−a = cx − 2a

⌊

cx

2a
+

1

2

⌋

= c

(

x − 2(a/c)

⌊

x

2(a/c)
+

1

2

⌋)

= c [x ]
+a/c
−a/c

corollary: c [x ]+a
−a = [cx ]+ac

−ac
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Wrapping frequencies

for any n ∈ Z:
[x ]+a

−a = x̂ =⇒ [nx ]+a
−a = [nx̂ ]+a

−a

all discrete-time frequencies can (and should) be wrapped

e jω0n = e j [ω0n]
+π
−π = e j [ω0]

+π
−π n
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Sinusoidal raw sampling

e j2πf0t e jω0n

Fs

ω0 =

[

2π
f0
Fs

]+π

−π

= 2π

[

f0
Fs

]+1/2

−1/2
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Sinusoidal raw sampling and sinc interpolation

e j2πf0t e j2πf̂0t

Fs Fs

e jω0n

f̂0 =
ω0

2π
Fs

= Fs

[

f0
Fs

]+1/2

−1/2

= [f0]
+Fs/2
−Fs/2
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Sinusoidal aliasing: increasing the frequency
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Sinusoidal aliasing: decreasing the sampling rate
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Sinusoidal aliasing in the time domain

x(t) = cos(2πf0t), f0 = 3 Hz
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Sinusoidal aliasing in the time domain

x(t) = cos(2πf0t), f0 = 3 Hz
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Sinusoidal aliasing in the time domain

x(t) = cos(2πf0t), f0 = 3 Hz
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Sinusoidal aliasing in the time domain

x(t) = cos(2πf0t), f0 = 3 Hz
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Sinusoidal aliasing in the time domain
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Sinusoidal aliasing in the time domain
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The key concept for general aliasing

Ae j2πf0t + Be j2π(f0+Fs )t x [n]

Fs

x [n] = Ae jω0n + Be jω1n

ω0 =

[

2π
f0
Fs

]+π

−π

ω1 =

[

2π
f0 + Fs
Fs

]+π

−π

=

[

2π
f0
Fs

+ 2π

]+π

−π

=

[

2π
f0
Fs

]+π

−π

= ω0

x [n] = (A+ B)e jω0n

41



aliasing



Raw sampling

xc(t) x [n]

Fs = 1/Ts

what is the spectrum of the sampled signal?

the input signal is composed of sinusoids at all frequencies

xc(t) = ICTFT{Xc(f )}(t) =

∫

∞

−∞

Xc(f )e
j2πftdf

after sampling, the spectral components at frequencies f + kFs for k ∈ Z will be lumped
together
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Spectrum of raw-sampled signals
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Spectrum of raw-sampled signals (I)

start by expressing x [n] as the inverse CTFT computed in t = nTs

x [n] = xc(nTs) =

∫

∞

−∞

Xc(f )e
j2πf nTsdf

components Fs Hz apart will be aliased, so split the integration interval

=

∞
∑

k=−∞

∫ (k+1/2)Fs

(k−1/2)Fs

Xc(f )e
j2πf nTsdf

change of variable: f = ϕ+ kFs

=

∞
∑

k=−∞

∫ Fs/2

−Fs/2
Xc(ϕ+ kFs)e

j(2π/Fs )(ϕ+kFs )ndϕ
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Spectrum of raw-sampled signals (II)

x [n] =

∫ Fs/2

−Fs/2

∞
∑

k=−∞

Xc(ϕ+ kFs)e
j(2π/Fs )ϕndϕ

define the Fs-periodization of the CT spectrum X̃c(f ) =
∑

∞

k=−∞
Xc(f + kFs)

=

∫ Fs/2

−Fs/2
X̃c(ϕ)e

j(2π/Fs )ϕndϕ

change of variable: ϕ = Fs

2π ω

=
Fs
2π

∫ π

−π
X̃c

(

Fs
2π

ω

)

e jωndω

= IDTFT

{

FsX̃c

(

Fs
2π

ω

)}
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Spectrum of raw-sampled signals (III)

periodize X (f ) with period Fs

rescale frequency axis so [−Fs/2,Fs/2] → [−π, π]

X (ω) = FsX̃c

( ω

2π
Fs

)

= Fs

∞
∑

k=−∞

Xc

( ω

2π
Fs − kFs

)
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Example: signal bandlimited to f0 and Fs > 2f0

0 Fs/2−Fs/2

X
c
(f
)

47



Example: signal bandlimited to f0 and Fs > 2f0

0 Fs/2−Fs/2

X
c
(f
)

0 Fs/2−Fs/2 Fs−Fs 2Fs−2Fs

X̃
c
(f
)

47



Example: signal bandlimited to f0 and Fs > 2f0

0 Fs/2−Fs/2

X
c
(f
)

0 Fs/2−Fs/2 Fs−Fs 2Fs−2Fs

X̃
c
(f
)

47



Example: signal bandlimited to f0 and Fs > 2f0

0 Fs/2−Fs/2

X
c
(f
)

0 Fs/2−Fs/2 Fs−Fs 2Fs−2Fs

X̃
c
(f
)

−π −2π/3 −π/3 0 π/3 2π/3 π

X
(ω

)

47



Example: signal bandlimited to f0 and Fs = 2f0
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Example: signal bandlimited to f0 and Fs < 2f0
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Example: non-bandlimited signal

0 Fs/2−Fs/2

X
c
(f
)

50



Example: non-bandlimited signal

0 Fs/2−Fs/2

X
c
(f
)

0 Fs/2−Fs/2 Fs−Fs 2Fs−2Fs

X̃
c
(f
)

50



Example: non-bandlimited signal

0 Fs/2−Fs/2

X
c
(f
)

0 Fs/2−Fs/2 Fs−Fs 2Fs−2Fs

X̃
c
(f
)

50



Example: non-bandlimited signal

0 Fs/2−Fs/2

X
c
(f
)

0 Fs/2−Fs/2 Fs−Fs 2Fs−2Fs

X̃
c
(f
)

−π −2π/3 −π/3 0 π/3 2π/3 π

X
(ω

)

50



Sampling strategies

given a raw sampler at frequency Fs

if the signal is Fs-bandlimited, no problem

if the signal is not Fs-bandlimited, two choices:

• apply a continuous-time (analog) lowpass filter with cutoff Fs/ before raw sampling, that is,
implement an approximation of sinc sampling

• accept the distortion due to aliasing

aliasing errors are unpredictable and very disrupting, so always use an analog lowpass

antialias bandlimiting minimizes the energy of the error
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Sampling with antialiasing filter
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Sampling with antialiasing filter
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discrete-time processing of analog signals



Equivalent analog response: basic setup

xc(t) H(z) yc(t)

Ts Fs = 1/Ts

x [n] y [n]

Hc(f )

what is the equivalent analog frequency response Hc (f )?
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Equivalent analog response: basic setup

xc(t) H(z) yc(t)

Ts Fs = 1/Ts

x [n] y [n]

Hc(f )

assume xc(t) is Fs-BL and Ts = 1/Fs

X (ω) = Fs Xc

(

Fs
ω
2π

)

Y (ω) = H(ω)X (ω)

Yc(f ) =
1
Fs
Y (2π f

Fs
) = H

(

2π f
Fs

)

Xc(f )
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Equivalent analog response: basic setup

xc(t) H(z) yc(t)

Ts Fs = 1/Ts

x [n] y [n]

Hc(f )

Hc(f ) = H

(

2π
f

Fs

)
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Equivalent analog response
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DT processing of CT signals
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DT processing of CT signals
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Example: analog bandpass with digital processing

we want to implement a bandpass filter to select frequencies from 1 kHz to 2 kHz

input signals are bandlimited with max positive frequency FN = 4 kHz

we want to use digital processing
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Example: analog bandpass with digital processing

analog bandpass filter:

filter passband is 2fc = 1 kHz (fc = 500 Hz)

filter center frequency is f0 = 1500 Hz

discrete-time processing chain

input is 8 kHz-BL so we can use a sampling frequency Fs = 8 kHz

design a FIR lowpass with cutoff ωc = 2π(fc/Fs)

modulate the impulse respose with ω0 = 2π(f0/Fs)
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Example: analog bandpass with digital processing

import scipy.signal as sp

fc, f0, Fs = 500, 1500, 8000

wc, w0 = fc / Fs, f0 / Fs

N = 61

tbp = 0.2 # 20% transition band

h = sp.signal.remez(N, [0, wc*(1-tbp), wc*(1+tbp), 0.5], [1, 0], weight=[10, 1])

h *= 2 * np.cos(2 * np.pi * w0 * np.arange(len(h)))
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Example: analog bandpass with digital processing

digital bandpass FIR

0 ω0 + ωcω0 π−π
0

1
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Example: analog bandpass with digital processing

equivalent analog response

0 2kHz1kHz 4kHz−4kHz
0

1
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two more ideal filters



Dual setup

x [n] Hc (f ) y [n]

Fs Ts = 1/Fs

xc(t) yc(t)

H(ω)

Xc(f ) = (1/Fs)X (2π f /Fs)

Yc(f ) = Hc(f )Xc(f )

Y (ω) = FsYc(
ω
2πFs) = Hc(

ω
2πFs)X (ω)

H(ω) = Hc (
ω
2πFs)
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Delays in continuous time

x(t) H(f ) y(t) = x(t − τ)

in continuous time, delays are well defined for all τ ∈ R

H(f ) = e−j2πf τ
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Delays in discrete time

x [n] H(ω) = e−jωd y [n] =?

when d ∈ Z, then y [n] = x [n − d ]

what happens when d is not an integer?
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Interpretation by duality

x [n] e−j2πf τ y [n]
xc(t) yc(t)

a discrete-time delay can be implemented with interpolation, delay, and resampling

equivalent filter: H(ω) = Hc(ω/(2π)Fs ) = e−jωd with d = τ/Ts ∈ R

impulse response: h[n] = sinc(n − d)

if d ∈ Z then h[n] = δ[n − d ] (normal delay) otherwise we have an ideal filter!

64



Fractional delay
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Fractional delay
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Fractional delay
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Fractional delay
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Fractional delay
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Fractional delay
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Differentiation in continuous time

x(t) H(f ) = j2πf y(t)

easy to show that y(t) = x ′(t) = ∂
∂t x(t)

first derivative can be computed exactly via filtering
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By duality

x [n] j2πf y [n]

Fs = 1 Ts = 1

xc(t) yc(t)

chain interpolates the discrete-time input, differentiates the interpolation and resamples it

equivalent filter H(ω) = Hc (ω/(2π)) = jω

H(ω) is a “digital differentiator”
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Digital differentiator, magnitude response

|H(ω)| = |ω|, highpass filter

−π −π/2 0 π/2 π
0

1

|H
(ω

)|
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Digital differentiator, phase response

∠H(ω) = (π/2) sign(ω)

−π/2

π/2

−π −π/2 0 π/2 π

∠
H
(ω

)
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Digital differentiator, impulse response

h[n] =
1

2π

∫ π

−π
jωe jωndω

= . . . (integration by parts) . . .

=







0 n = 0
(−1)n

n
n 6= 0

the differentiator is an ideal filter
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Digital differentiator, impulse response
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