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COM-202: Signal Processing

Chapter 7.a: Interpolation



overview

m the analog worldview

m bandlimited functions

m interpolation of discrete-time signals
e Polynomial interpolation
e Local interpolation

e Sinc interpolation



Two models of the world

Analog/continuous versus discrete/digital

N



Two models of the world

digital worldview: analog worldview:
m arithmetic m calculus
m combinatorics m distributions
m computer science m system theory

m DSP m electronics



Two models of the world, two languages

digital worldview:

m countable integer index n
m finite-energy sequences x € (»(Z)
m frequency w € [—7, 7]

m DTFT: (Z) — Lo([—7, 7))

analog worldview:

m real-valued time t (sec)

m finite-energy functions x € L>(R)
m frequency f € R (Hz)

m FT: L(R) — Lo(R)



Translating between languages: interpolation

x[n] =—————| sound card |———

system clock



Translating between languages: sampling

sound card

system clock

x[n]



Bridging the gap

sampling

/N

x(t) x[n]

\__/

interpolation



Today, processing is as digital as possible

m analog to digital
m digital to analog

m analog to digital to analog



Digital processing of signals from the analog world

m input is continuous-time: x(t)
m output is discrete-time: y[n]

m processing is on sequences: x[n], y[n]

processing

analog world ——— ;
for analysis

— digital world

examples: storage and compression (MP3, JPG), control systems, monitoring



Digital processing of signals to the analog world

m input is discrete-time: x[n]
m output is continuous-time: y(t)

m processing is on sequences: x[n], y[n]

processing

digital world ————— for synthesis

— analog world

examples: telecommunication front-ends, music synthesizers, biomedical



Digital processing of signals from/to the analog world

m input is continuous-time: x(t)
m output is continuous-time: y(t)

m processing is on sequences: x[n], y[n]

analog world ——{ processing |——— analog world

examples: end-to-end telecommunication, sound effects, digital photography

11



continuous-time signal processing



About continuous time

m time: real variable t

signal x : R +— C: complex functions of a real variable

finite energy: x € Lo(R) (square integrable functions)

inner product in Lp(R)

xy) = [ O

—00

energy: [x]? = (x,x)



Continuous-time signal operators

main differences wrt discrete time:
m the time shift operator works with any real-valued shift:

y=8x%x, 7eR = y(t)=x(t+71)
m signals can always be time-scaled:
y=T%% acRt = y(t)=x(at)
a>1is a “compression”, 0 < a < 1 is a “dilation”:

x(t) x(2t)

== 0




Real-world frequency

frequency: number of repetitions per second

m f expressed in Hz (1/sec)

m alternatively, angular frequency in rad/s: Q = 27f

1 2
m period for periodic signals is T = £ = % seconds
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Fourier analysis: the CTFT

m in discrete time angular frequencies are limited to [—7, 7]
m in continuous time the frequency range is infinite: f € R

m the continuous-time Fourier transform measures the similarity between a signal and all
possible sinusoidal components:

X(f) = (277 x(1))

o
= / x(t)e 2™t dt < not a periodic function of f

— o0

m synthesis formula:

x(t) = /_OO X(f)e* ™t df
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Fourier analysis (in rad/s)

m alternate notation for analysis and synthesis formulas using rad/s
X(jQ) = (¢, x(1))

o0
:/ x(t)e 2 dt < not periodic
— 0o

x(t) = % /_OO X(jQ)ed9

m if X(s) is the Laplace transform of x(t), the Fourier transform is X(s) computed on the
imaginary axis (just like the DTFT is the z-transform computed on the unit circle)
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Example
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Example

[y

x(t) = cos(27fyt)

AN

VUV VYV

—1/fo 1/fo 2/fo 3/fo
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Example

X(f)=9(f £ 1h)/2 (note that this is not a periodized Dirac delta)

1k

X(f)

—fo



Important properties of the CTFT

m CTFT of time-shifted signals (7 € R)

x(t —7) <Ly e 2mTF X (£)

m CTFT of time-scaled signals (o € RT):

x(at) «<TFT, Ly <£>

o o
m usual time-frequency duality:
e « > 1: signal is compressed, spectrum is stretched

e 0 < a < 1: signal is stretched, spectrum is compressed



Continuous-time LTI systems
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Convolution theorem
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bandlimited signals



A new concept: bandlimited signals

a finite-energy, continuous-time signal x(t) is called bandlimited
if its spectrum has finite support:

X(f) =0 forf g [fmim fmax]
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The space of F.-BL signals

a finite-energy, continuous-time signal x(t) is called Fs-bandlimited
if there exists a positive frequency value Fs such that

X(f)=0 for|f| > Fs/2

Fs is called the total bandwidth of the signal



Let’s think of a prototypical bandlimited spectrum

m real and symmetric around f = 0 (so signal is real-valued)
m unit bandwidth (1 Hz)
m unit energy

m constant spectral amplitude over bandwidth

d(f) = rect(f)
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Prototypical bandlimited spectrum

~1/2 0

1/2
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The prototypical bandlimited signal

o(t) = / " o(f)e M df

—00

1/2
— / ej27rftdf

-1/2
1 . .
— p?[eﬁrt _ e—_/ﬂ't]

sin(mt)

Tt

= sinc(t)
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The prototypical bandlimited signal

0 o~ A\ /N A~
T T T T T T T T T T T T T T T
-8 -7-6 -5-4-3-2-10 1 2 3 4 5 6 7 8
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The prototypical bandlimited pair

sinc(t) PASLLLEN rect(f)
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Changing the bandwidth

if we time-stretch the sinc:

1 f
sinc(act) ST 2 rect (—)
a a
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Changing the bandwidth

m pick a bandwith value Fs (Hz); let Ts = 1/F, seconds:

sinc i ﬂ)irect L
Ts Fs Fs

m highest positive frequency is Fs/2, total bandwidth is Fs

m total energy is 1/Fs = T



The prototypical F.-BL spectrum

T

1/F

—F./2

0

F./2
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The prototypical F.-BL signal

0 P N\ /\ /\ PN P

MGV

2T, T, 0 T, 2T 3T.4T,

(Ts:l/FS)
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interpolation



Overview:

m Polynomial interpolation
m Local interpolation

m Sinc interpolation
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Interpolation

x[n] — x(t)

use a new sample every T, seconds

“fill the gap” between successive samples

36



Example

n+1




Example




Is this a good interpolation?
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Is this a good interpolation?

not really, the interpolation doesn’t go through all data points...
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Is this a good interpolation?
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Is this a good interpolation?

U

Tis=y,
y

U

not

really, the interpolation

seems to “move around”

too much...
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What about this?
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What about this?

this looks pretty convincing; why?
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Interpolation requirements

m decide on the timebase T
m make sure x(nTs) = x[n]

m make sure x(t) is smooth
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Choosing the timebase

m T, is the “spacing” between interpolation points in seconds

m without loss of generality we can choose T, =1

m if xc(t) solves the interpolation problem for Ts =1, then x(t) = x-(t/ T) solves it for
Ts=T:

e x(nT)=x.(nT/T) = xc(n) = x[n]

o if x.(t) is smooth, so is x.(t/T)



Why smoothness?

m jumps (1st order discontinuities) would require the signal to move “faster than light”...
m 2nd order discontinuities would require infinite acceleration

..
m the interpolation should be infinitely differentiable

m “natural” solution: polynomial interpolation
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Polynomial interpolation



Polynomial interpolation

m N + 1 points — polynomial of degree N
m x.(t) =ap+art +axt? + ...+ antV

m straightforward approach (T = 1):

x:(0) = x[0]
xc(1) = x[1]
x(2) = x[2]

xc(N) = x[N]
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Polynomial interpolation

Without loss of generality:
m even polynomial degree 2N

m fit polynomial over 2N + 1 data points symmetrically distributed around zero

xc(—N) = x[—N]
X(=N +1) = x[-N + 1]

xc(0) = x[0]

(N —1) = x[N —1]
xc(N) = x[N]
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Polynomial interpolation

m find the 2N + 1 coefficients ag,

2N
Z axn® = x[n]
k=0

...,asn by solving:

n=-N-N+1,...,0,...

7N_

1L,N
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Lagrange interpolation

Let's use the power of vector spaces:

m Py space of degree-2N polynomials over Iy = [—N, N]
m interpolation will be a linear combination of basis vectors for Py

m what is a good basis for interpolation?
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Lagrange interpolation

m Py space of degree-2N polynomials over Iy = [N, N]

m a basis for Py is the family of 2V 4 1 Lagrange polynomials

Motk
= T] n=—N,...

n—k

k:;zé n
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Lagrange polynomials for /,

_t2++11> <_L2> <_t2—_11> (_1*2—_22> _ (t—l—l)t(tz; 1)(t —2)

(
L(_Z}(t): (_t++2 ) <_L1> <_t1—_1 > (_1*1—_22> _ (t+2)t(t_—61)(t—2)
( 2 +1 -

1+2 1
@, [t+ t t—1 t—2\  (t+2)(t+1)(t—-1)(t—-2)
Wo=(57) (7)) (=) (%) - &
L2 (1) = L®)(~t)
L2 (1) = L8)(~t)



Lagrange interpolation polynomials
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Lagrange interpolation polynomials
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Lagrange interpolation polynomials
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Lagrange interpolation polynomials
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Lagrange interpolation polynomials
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Interpolation property of Lagrange polynomials

1 ifn=m

meN = L(nN)(m):{o if n# m
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Lagrange interpolator for the data set

N

x(t) =3 x[nlLd"(¢)

n=—N
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Lagrange interpolation

The Lagrange interpolator is the unique polynomial interpolation for the data set:

m a polynomial of degree 2N through 2N + 1 points is uniquely defined
m the Lagrangian interpolator satisfies
xc(n) = x[n] for —=N<n<N
since

Wi ={ ¢ o “N<nm<N
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Lagrange interpolation
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Lagrange interpolation

x[-21L%)(t)
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Lagrange interpolation

x[-11L® (1)

o
-
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Lagrange interpolation

2
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Lagrange interpolation

X[ (¢)

M/
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Lagrange interpolation
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Lagrange interpolation
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Lagrange interpolation
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Polynomial interpolation

key property:

m maximally smooth (infinitely many continuous derivatives)

drawback:

m interpolation “machine” depend on N: we need to use a different set of polynomials if the
length of the dataset changes

can we find a “universal” interpolation machine?
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Relaxing the interpolation requirements

m make sure x.(n) = x|[n]

m make sure x.(t) is smooth
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Relaxing the interpolation requirements

m make sure x.(n) = x|[n]
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Local interpolation



Zero-order interpolation
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Zero-order interpolation
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Zero-order interpolation

m xo(t) = x[|[t+0.5]], -N<t<N
N
m x(t) = Z x[n] rect(t — n)
n=—N

m interpolation kernel: ip(t) = rect(t)
m ip(t): “zero-order hold”
m interpolator’s support is 1

m interpolation is not even continuous
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Zero-order interpolation
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Zero-order interpolation
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Zero-order interpolation
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Zero-order interpolation
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Zero-order interpolation
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Zero-order interpolation

*r— N —
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Zero-order interpolation
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First-order interpolation

N —
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First-order interpolation

m ‘connect the dots” strategy

N

m ()= Y x[ni(t —n)

n=—N

m interpolation kernel:

(t) = {(1) ~ I

m interpolation is continuous but derivative is not

m interpolator’s support is 2

it <1

otherwise
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First-order interpolation
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First-order interpolation




First-order interpolation




First-order interpolation
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First-order interpolation
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First-order interpolation
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First-order interpolation
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Third-order interpolation

N

x3(t)= Y x[n]is(t - n)

n=—N

interpolation kernel obtained by splicing two cubic polynomials

interpolator’s support is 4

interpolation is continuous up to second derivative
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Third-order interpolation
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Third-order interpolation
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Third-order interpolation
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Third-order interpolation
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Third-order interpolation
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Third-order interpolation
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Third-order interpolation
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Local interpolation schemes

N

xc(t) = Z x[n] ic(t — n)

n=—N

Kernel must satisfy the interpolation properties:
mi(0)=1

m i-(m) =0 for m a nonzero integer.
C
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Local interpolators
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Local interpolators
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Local interpolators
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Local interpolation

key property:

m same interpolating function independently of N

drawback:

m lack of smoothness
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Polynomial interpolation

key property:

m maximally smooth (infinitely many continuous derivatives)

drawback:

m interpolation kernels depend on N
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Sync interpolation



A remarkable result:

lim LW(t) = sinc (t — n)

N—oo

m in other words: limpy_o Lg,N)(t) = Lgoo)(t —n)

m in the limit, local and global interpolation are the same!
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Sinc interpolation formula

.¢]

x(t) = Z x[n] sinc(t — n)

n=—oo
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Sinc in

terpolation




Sinc in

terpolation




inc interpolation




Sinc interpolation







Sinc interpolation
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Sinc interpolation




Sinc interpolation




Sinc interpolation
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Convergence: graphical “proof”

k=—N
k#n
N 1 N
t—k t—k t—k
o= 11 == 1 — =
k=—N k=—N k=1
k£0
_l—N[ t+ ko t—k
N k —k
k=1 k=1



Convergence: graphical “proof”

—15 —10 -5 0 5 10

15
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Convergence: graphical “proof”

m— sinc(t)
Léloo)(t)

AN WA N A A A Ao A

0 vvvvaV Vvvvvvv

T T T T T

—15 —10 -5 0 5 10



Convergence: graphical “proof”

1 m— sinc(t)
B 200 N
L& (t)
0
T T T
—15 -10 -5 10

15
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Convergence: graphical “proof”

1 m— sinc(t)
B 300 N
L& (t)
0
T T T
—15 -10 -5 10

15
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Convergence: mathematical intuition
m sinc(t — n) and Lg,oo)(t) share an infinite number of zeros:

sinc(m — n) = 6[m — n] m,n € Z

LS,N)(m)zé[m—n] mneZ, —N<nm<N
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Convergence: Euler’s “proof” (1748)

very cute (if non-rigorous) proof — see handout or book for details
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Convergence: rigorous proof

uses the properties of Fourier series expansions — see handout or book for details
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Sinc interpolation formula for any T;

oo

x7,(t) = x(t/Ts) = Z x[n] sinc (

n=—0ox

t—nT;
Ts

)

v



the spectrum of sinc-interpolated signals



Sinc interpolation

m discrete-time signal x[n], with DTFT X(w)

o0
m sinc interpolation x.(t) = Z x[n] sinc(t — n)

n=—0o0

m call X.(f) the continuous-time Fourier transform of the interpolation

what is the relationship between X(w) and X.(f)?
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Spectral representation

Xc(f) = / xc(t) e 2t gt

/ Z x[n] sinc(t — n)e 2t dt
= x[n]/ sinc( Ye 2t dt
= Z x[n] e 7™M rect(f)

n=—o0

0 otherwise

_ {X(27rf) Ifl < 1/2
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Spectral representation

X.(f) = X2rf) |f]<1)/2
‘ ~]o otherwise

m X(27f) is the DTFT scaled so thatw =7 — f =1/2 Hz
m X (2rf) is periodic with period 1

m the rect keeps only the zero-centered period
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Spectrum of interpolated signal

x
0 T T T
-7 —m/2 0 w/2
1k

S

N
0 J T !

~1/2 0 1/2
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Changing the timebase

the signal x(t) is obtained using an interpolation interval of one second (T = 1)
an interval of T seconds (i.e. an interpolation rate F¢ = 1/T) yields the interpolation

oo

x1,(t) = xe(t/Ts) = > x[n]sinc (t _T:Ts>

n=—oo

whose Fourier transform is

1 f
XTS(f) — TSXC(Tsf) — FXC <F>



Spectrum of interpolated signals

1 f
= L <
=X <27rF5> ] < Fy/2
X1.(f) =

0 otherwise

m X(2nf/F;) is the DTFT scaled so that w =7 — f = F5/2 Hz
m X(2nf/F;) is periodic with period Fg
m the rect keeps only the zero-centered period

m the spectrum is scaled in amplitude by 1/F;
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Spectrum

X(w)

X, (f)

of interpolated signals

Ts =T

Fs =F

I I
—F/2 0 Fs/2

84



Spectrum

X(w)

X, (f)

of interpolated signals

Ts =2T

Fs =F/2

I I
—-F/2 0 Fs/2
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Spectrum of interpolated signals

X(w)

/2

T, =T/2
Fs =2F

Xr,(f)

I
Fs/2

R




Spectrum of interpolated signals

for an interpolation rate Fs =1/Ts:
m X(f) will be Fs-bandlimited

m fast interpolation (T small) — wide spectrum
m slow interpolation (T large) — narrow spectrum

m (for those who remember...) it's like spinning a vynil record faster or slower, changing the
sound
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