
COM-202: Signal Processing

Chapter 7.a: Interpolation

overview

the analog worldview

bandlimited functions

interpolation of discrete-time signals

• Polynomial interpolation

• Local interpolation

• Sinc interpolation

1

Two models of the world

Analog/continuous versus discrete/digital

2

Two models of the world

digital worldview:

arithmetic

combinatorics

computer science

DSP

analog worldview:

calculus

distributions

system theory

electronics

3

Two models of the world, two languages

digital worldview:

countable integer index n

finite-energy sequences x ∈ ℓ2(Z)

frequency ω ∈ [−π, π]

DTFT: ℓ2(Z) 7→ L2([−π, π])

analog worldview:

real-valued time t (sec)

finite-energy functions x ∈ L2(R)

frequency f ∈ R (Hz)

FT: L2(R) 7→ L2(R)

4

Translating between languages: interpolation

x [n] sound card

Ts system clock

5

Translating between languages: sampling

sound card x [n]

Ts system clock

6

Bridging the gap

x [n]

sampling

x(t)

interpolation

7

Today, processing is as digital as possible

analog to digital

digital to analog

analog to digital to analog

8

Digital processing of signals from the analog world

input is continuous-time: x(t)

output is discrete-time: y [n]

processing is on sequences: x [n], y [n]

analog world
processing
for analysis

digital world

examples: storage and compression (MP3, JPG), control systems, monitoring

9

Digital processing of signals to the analog world

input is discrete-time: x [n]

output is continuous-time: y(t)

processing is on sequences: x [n], y [n]

digital world
processing
for synthesis

analog world

examples: telecommunication front-ends, music synthesizers, biomedical

10

Digital processing of signals from/to the analog world

input is continuous-time: x(t)

output is continuous-time: y(t)

processing is on sequences: x [n], y [n]

analog world processing analog world

examples: end-to-end telecommunication, sound effects, digital photography

11

continuous-time signal processing

About continuous time

time: real variable t

signal x : R 7→ C: complex functions of a real variable

finite energy: x ∈ L2(R) (square integrable functions)

inner product in L2(R)

〈x, y〉 =

∫ ∞

−∞

x∗(t)y(t)dt

energy: ‖x‖2 = 〈x, x〉

12

Continuous-time signal operators

main differences wrt discrete time:

the time shift operator works with any real-valued shift:

y = Sτx, τ ∈ R ⇒ y(t) = x(t + τ)

signals can always be time-scaled:

y = T αx, α ∈ R
+ ⇒ y(t) = x(αt)

α > 1 is a “compression”, 0 < α < 1 is a “dilation”:

x(t) x(2t) x(t/2)

−3 −2 −1 0 1 2 3

0

−3 −2 −1 0 1 2 3

0

−3 −2 −1 0 1 2 3

0

13

Real-world frequency

frequency: number of repetitions per second

f expressed in Hz (1/sec)

alternatively, angular frequency in rad/s: Ω = 2πf

period for periodic signals is T =
1

f
=

2π

Ω
seconds

14

Fourier analysis: the CTFT

in discrete time angular frequencies are limited to [−π, π]

in continuous time the frequency range is infinite: f ∈ R

the continuous-time Fourier transform measures the similarity between a signal and all

possible sinusoidal components:

X (f) = 〈e j2πft , x(t)〉

=

∫ ∞

−∞

x(t)e−j2πftdt ← not a periodic function of f

synthesis formula:

x(t) =

∫ ∞

−∞

X (f)e j2πftdf

15

Fourier analysis (in rad/s)

alternate notation for analysis and synthesis formulas using rad/s

X (jΩ) = 〈e jΩt , x(t)〉

=

∫ ∞

−∞

x(t)e−jΩtdt ← not periodic

x(t) =
1

2π

∫ ∞

−∞

X (jΩ)e jΩtdΩ

if X (s) is the Laplace transform of x(t), the Fourier transform is X (s) computed on the
imaginary axis (just like the DTFT is the z-transform computed on the unit circle)

16

Example

x(t) = e−at2

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

1

x
(t
)

17

Example

X (f) =
√

π/a e−
π
2

a
f 2

√

π/a

−50 −40 −30 −20 −10 0 10 20 30 40 50

X
(f
)

18

Example

x(t) = cos(2πf0t)

1/f0 2/f0 3/f0−1/f0 0

−1

0

1

x
(t
)

19

Example

X (f) = δ(f ± f0)/2 (note that this is not a periodized Dirac delta)

f0−f0 0
0

1

X
(f
)

20

Important properties of the CTFT

CTFT of time-shifted signals (τ ∈ R)

x(t − τ)
CTFT
←−−−→ e−j2πτ f X (f)

CTFT of time-scaled signals (α ∈ R
+):

x(αt)
CTFT
←−−−→

1

α
X

(

f

α

)

usual time-frequency duality:

• α > 1: signal is compressed, spectrum is stretched

• 0 < α < 1: signal is stretched, spectrum is compressed

21

Continuous-time LTI systems

x(t) H y(t)

y(t) = (h ∗ x)(t)

=

∫ ∞

−∞

x(τ)h(t − τ)dτ

22

Convolution theorem

x(t) H y(t)

Y (f) = X (f)H(f)

23

bandlimited signals

A new concept: bandlimited signals

a finite-energy, continuous-time signal x(t) is called bandlimited

if its spectrum has finite support:

X (f) = 0 for f 6∈ [fmin, fmax]

24

The space of Fs-BL signals

a finite-energy, continuous-time signal x(t) is called Fs-bandlimited
if there exists a positive frequency value Fs such that

X (f) = 0 for |f | > Fs/2

Fs is called the total bandwidth of the signal

25

Let’s think of a prototypical bandlimited spectrum

real and symmetric around f = 0 (so signal is real-valued)

unit bandwidth (1 Hz)

unit energy

constant spectral amplitude over bandwidth

Φ(f) = rect(f)

26

Prototypical bandlimited spectrum

0−1/2 1/2

1

27

The prototypical bandlimited signal

ϕ(t) =

∫ ∞

−∞

Φ(f)e j2πftdf

=

∫ 1/2

−1/2
e j2πftdf

=
1

j2πt
[e jπt − e−jπt]

=
sin(πt)

πt

= sinc(t)

28

The prototypical bandlimited signal

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

0

1

29

The prototypical bandlimited pair

sinc(t)
CTFT
←−−−→ rect(f)

30

Changing the bandwidth

if we time-stretch the sinc:

sinc(αt)
CTFT
←−−−→

1

α
rect

(

f

α

)

31

Changing the bandwidth

pick a bandwith value Fs (Hz); let Ts = 1/Fs seconds:

sinc

(

t

Ts

)

CTFT
←−−−→

1

Fs
rect

(

f

Fs

)

highest positive frequency is Fs/2, total bandwidth is Fs

total energy is 1/Fs = Ts

32

The prototypical Fs-BL spectrum

0−Fs/2 Fs/2

1/Fs

33

The prototypical Fs-BL signal

0 Ts−Ts 2Ts−2Ts 3Ts 4Ts

0

1

(Ts = 1/Fs)

34

interpolation

Overview:

Polynomial interpolation

Local interpolation

Sinc interpolation

35

Interpolation

x [n] −→ x(t)

use a new sample every Ts seconds

“fill the gap” between successive samples

36

Example

b

b

b

b

b

n − 2 n − 1 n n + 1 n + 2

−1

0

1

2

37

Example

b

b

b

b

b

(n − 2)Ts (n − 1)Ts nTs (n + 1)Ts (n + 2)Ts

−1

0

1

2

37

Is this a good interpolation?

b

b

b

b

b

−1

0

1

2

38

Is this a good interpolation?

b

b

b

b

b

−1

0

1

2

not really, the interpolation doesn’t go through all data points...

38

Is this a good interpolation?

b

b

b

b

b

−1

0

1

2

39

Is this a good interpolation?

b

b

b

b

b

−1

0

1

2

not really, the interpolation seems to “move around” too much...

39

What about this?

b

b

b

b

b

−1

0

1

2

40

What about this?

b

b

b

b

b

−1

0

1

2

this looks pretty convincing; why?

40

Interpolation requirements

decide on the timebase Ts

make sure x(nTs) = x [n]

make sure x(t) is smooth

41

Choosing the timebase

Ts is the “spacing” between interpolation points in seconds

without loss of generality we can choose Ts = 1

if xc(t) solves the interpolation problem for Ts = 1, then x(t) = xc(t/T) solves it for
Ts = T :

• x(nT) = xc(nT/T) = xc(n) = x [n]

• if xc(t) is smooth, so is xc(t/T)

42

Why smoothness?

jumps (1st order discontinuities) would require the signal to move “faster than light”...

2nd order discontinuities would require infinite acceleration

...

the interpolation should be infinitely differentiable

“natural” solution: polynomial interpolation

43

Polynomial interpolation

Polynomial interpolation

N + 1 points → polynomial of degree N

xc(t) = a0 + a1t + a2t
2 + . . .+ aNt

N

straightforward approach (Ts = 1):







































xc(0) = x [0]

xc(1) = x [1]

xc(2) = x [2]

. . .

xc(N) = x [N]

44

Polynomial interpolation

Without loss of generality:

even polynomial degree 2N

fit polynomial over 2N + 1 data points symmetrically distributed around zero































































xc(−N) = x [−N]

xc(−N + 1) = x [−N + 1]

. . .

xc(0) = x [0]

. . .

xc(N − 1) = x [N − 1]

xc(N) = x [N]

45

Polynomial interpolation

find the 2N + 1 coefficients a0, . . . , a2N by solving:

2N
∑

k=0

akn
k = x [n] n = −N,−N + 1, . . . , 0, . . . ,N − 1,N

46

Lagrange interpolation

Let’s use the power of vector spaces:

PN : space of degree-2N polynomials over IN = [−N,N]

interpolation will be a linear combination of basis vectors for PN

what is a good basis for interpolation?

47

Lagrange interpolation

PN : space of degree-2N polynomials over IN = [−N,N]

a basis for PN is the family of 2N + 1 Lagrange polynomials

L
(N)
n (t) =

N
∏

k=−N

k 6=n

t − k

n − k
n = −N, . . . ,N

48

Lagrange polynomials for I2

L
(2)
−2(t) =

(

t + 1

−2 + 1

) (

t

−2

) (

t − 1

−2− 1

) (

t − 2

−2− 2

)

=
(t + 1)t(t − 1)(t − 2)

24

L
(2)
−1(t) =

(

t + 2

−1 + 2

) (

t

−1

) (

t − 1

−1− 1

) (

t − 2

−1− 2

)

=
(t + 2)t(t − 1)(t − 2)

−6

L
(2)
0 (t) =

(

t + 2

2

) (

t + 1

1

) (

t − 1

−1

) (

t − 2

−2

)

=
(t + 2)(t + 1)(t − 1)(t − 2)

−4

L
(2)
1 (t) = L

(2)
−1(−t)

L
(2)
2 (t) = L

(2)
−2(−t)

49

Lagrange interpolation polynomials

L
(2)
−2(t)

−2 −1 0 1 2

−0.50

0.00

0.50

1.00

1.50

50

Lagrange interpolation polynomials

L
(2)
−1(t)

−2 −1 0 1 2

−0.50

0.00

0.50

1.00

1.50

50

Lagrange interpolation polynomials

L
(2)
0 (t)

−2 −1 0 1 2

−0.50

0.00

0.50

1.00

1.50

50

Lagrange interpolation polynomials

L
(2)
1 (t)

−2 −1 0 1 2

−0.50

0.00

0.50

1.00

1.50

50

Lagrange interpolation polynomials

L
(2)
2 (t)

−2 −1 0 1 2

−0.50

0.00

0.50

1.00

1.50

50

Interpolation property of Lagrange polynomials

m ∈ N ⇒ L
(N)
n (m) =

{

1 if n = m

0 if n 6= m
− N ≤ n,m ≤ N

51

Lagrange interpolator for the data set

xc(t) =

N
∑

n=−N

x [n]L
(N)
n (t)

52

Lagrange interpolation

The Lagrange interpolator is the unique polynomial interpolation for the data set:

a polynomial of degree 2N through 2N + 1 points is uniquely defined

the Lagrangian interpolator satisfies

xc(n) = x [n] for −N ≤ n ≤ N

since

L
(N)
n (m) =

{

1 if n = m

0 if n 6= m
− N ≤ n,m ≤ N

53

Lagrange interpolation

b

b

b

b

b

−2 −1 0 1 2

−1

0

1

2

54

Lagrange interpolation

x [−2]L
(2)
−2(t)

b

b

b

b

b

bb

−2 −1 0 1 2

−1

0

1

2

54

Lagrange interpolation

x [−1]L
(2)
−1(t)

b

b

b

b

b

bb

−2 −1 0 1 2

−1

0

1

2

54

Lagrange interpolation

x [0]L
(2)
0 (t)

b

b

b

b

b

bb

−2 −1 0 1 2

−1

0

1

2

54

Lagrange interpolation

x [1]L
(2)
1 (t)

b

b

b

b

b

bb

−2 −1 0 1 2

−1

0

1

2

54

Lagrange interpolation

x [2]L
(2)
2 (t)

b

b

b

b

b bb

−2 −1 0 1 2

−1

0

1

2

54

Lagrange interpolation

b

b

b

b

b

−2 −1 0 1 2

−1

0

1

2

54

Lagrange interpolation

b

b

b

b

b

−2 −1 0 1 2

−1

0

1

2

54

Polynomial interpolation

key property:

maximally smooth (infinitely many continuous derivatives)

drawback:

interpolation “machine” depend on N: we need to use a different set of polynomials if the
length of the dataset changes

can we find a “universal” interpolation machine?

55

Relaxing the interpolation requirements

make sure xc(n) = x [n]

make sure xc(t) is smooth

56

Relaxing the interpolation requirements

make sure xc(n) = x [n]

make sure xc(t) is smooth

56

Local interpolation

Zero-order interpolation

b

b

b

b

b

−2 −1 0 1 2

−1

0

1

2

57

Zero-order interpolation

b

b

b

b

b

−2 −1 0 1 2

−1

0

1

2

57

Zero-order interpolation

x0(t) = x [⌊t + 0.5⌋], −N ≤ t ≤ N

x0(t) =

N
∑

n=−N

x [n] rect(t − n)

interpolation kernel: i0(t) = rect(t)

i0(t): “zero-order hold”

interpolator’s support is 1

interpolation is not even continuous

58

Zero-order interpolation

b

b

b

b

b

−2 −1 0 1 2

−1

0

1

2

59

Zero-order interpolation

b

b

b

b

b

bb

−2 −1 0 1 2

−1

0

1

2

59

Zero-order interpolation

b

b

b

b

b

bb

−2 −1 0 1 2

−1

0

1

2

59

Zero-order interpolation

b

b

b

b

b

bb

−2 −1 0 1 2

−1

0

1

2

59

Zero-order interpolation

b

b

b

b

b

bb

−2 −1 0 1 2

−1

0

1

2

59

Zero-order interpolation

b

b

b

b

b bb

−2 −1 0 1 2

−1

0

1

2

59

Zero-order interpolation

b

b

b

b

b

−2 −1 0 1 2

−1

0

1

2

59

First-order interpolation

b

b

b

b

b

−2 −1 0 1 2

−1

0

1

2

60

First-order interpolation

“connect the dots” strategy

x1(t) =
N
∑

n=−N

x [n] i1(t − n)

interpolation kernel:

i1(t) =

{

1− |t| |t| ≤ 1

0 otherwise

interpolator’s support is 2

interpolation is continuous but derivative is not

61

First-order interpolation

b

b

b

b

b

−2 −1 0 1 2

−1

0

1

2

62

First-order interpolation

b

b

b

b

b

bb

−2 −1 0 1 2

−1

0

1

2

62

First-order interpolation

b

b

b

b

b

bb

−2 −1 0 1 2

−1

0

1

2

62

First-order interpolation

b

b

b

b

b

bb

−2 −1 0 1 2

−1

0

1

2

62

First-order interpolation

b

b

b

b

b

bb

−2 −1 0 1 2

−1

0

1

2

62

First-order interpolation

b

b

b

b

b bb

−2 −1 0 1 2

−1

0

1

2

62

First-order interpolation

b

b

b

b

b

−2 −1 0 1 2

−1

0

1

2

62

Third-order interpolation

x3(t) =
N
∑

n=−N

x [n] i3(t − n)

interpolation kernel obtained by splicing two cubic polynomials

interpolator’s support is 4

interpolation is continuous up to second derivative

63

Third-order interpolation

b

b

b

b

b

−2 −1 0 1 2

−1

0

1

2

64

Third-order interpolation

b

b

b

b

b

bb

−2 −1 0 1 2

−1

0

1

2

64

Third-order interpolation

b

b

b

b

b

bb

−2 −1 0 1 2

−1

0

1

2

64

Third-order interpolation

b

b

b

b

b

bb

−2 −1 0 1 2

−1

0

1

2

64

Third-order interpolation

b

b

b

b

b

bb

−2 −1 0 1 2

−1

0

1

2

64

Third-order interpolation

b

b

b

b

b bb

−2 −1 0 1 2

−1

0

1

2

64

Third-order interpolation

b

b

b

b

b

−2 −1 0 1 2

−1

0

1

2

64

Local interpolation schemes

xc(t) =

N
∑

n=−N

x [n] ic(t − n)

Kernel must satisfy the interpolation properties:

ic(0) = 1

ic(m) = 0 for m a nonzero integer.

65

Local interpolators

i0(t)

−2 −1 0 1 2
0

1

66

Local interpolators

i0(t)i1(t)

−2 −1 0 1 2
0

1

66

Local interpolators

i0(t)i1(t)i3(t)

−2 −1 0 1 2
0

1

66

Local interpolation

key property:

same interpolating function independently of N

drawback:

lack of smoothness

67

Polynomial interpolation

key property:

maximally smooth (infinitely many continuous derivatives)

drawback:

interpolation kernels depend on N

68

Sync interpolation

A remarkable result:

lim
N→∞

L
(N)
n (t) = sinc (t − n)

in other words: limN→∞ L
(N)
n (t) = L

(∞)
0 (t − n)

in the limit, local and global interpolation are the same!

69

Sinc interpolation formula

xc(t) =
∞
∑

n=−∞

x [n] sinc (t − n)

70

Sinc interpolation

b

b

b
b

b

b
b

b

b

b
b

b

0
0

1

71

Sinc interpolation

b

b

b
b

b

b
b

b

b

b
b

b

bb

0
0

1

71

Sinc interpolation

b

b

b
b

b

b
b

b

b

b
b

b

bb

0
0

1

71

Sinc interpolation

b

b

b
b

b

b
b

b

b

b
b

b

bb

0
0

1

71

Sinc interpolation

b

b

b
b

b

b
b

b

b

b
b

b

bb

0
0

1

71

Sinc interpolation

b

b

b
b

b

b
b

b

b

b
b

b

bb

0
0

1

71

Sinc interpolation

b

b

b
b

b

b
b

b

b

b
b

b

0
0

1

71

Sinc interpolation

b

b

b
b

b

b
b

b

b

b
b

b

0
0

1

71

Sinc interpolation

b

b

b
b

b

b
b

b

b

b
b

b

0
0

1

71

Convergence: graphical “proof”

L
(N)
n (t) =

N
∏

k=−N

k 6=n

t − k

n− k

LN0 (t) =

N
∏

k=−N

k 6=0

t − k

−k
=

−1
∏

k=−N

t − k

−k

N
∏

k=1

t − k

−k

=

N
∏

k=1

t + k

k

N
∏

k=1

t − k

−k

=

N
∏

k=1

(

1−
t2

k2

)

72

Convergence: graphical “proof”

−15 −10 −5 0 5 10 15

0

1

73

Convergence: graphical “proof”

sinc(t)

L
(100)
0 (t)

−15 −10 −5 0 5 10 15

0

1

73

Convergence: graphical “proof”

sinc(t)

L
(200)
0 (t)

−15 −10 −5 0 5 10 15

0

1

73

Convergence: graphical “proof”

sinc(t)

L
(300)
0 (t)

−15 −10 −5 0 5 10 15

0

1

73

Convergence: mathematical intuition

sinc(t − n) and L
(∞)
n (t) share an infinite number of zeros:

sinc(m − n) = δ[m − n] m, n ∈ Z

L
(N)
n (m) = δ[m − n] m, n ∈ Z, −N ≤ n,m ≤ N

74

Convergence: Euler’s “proof” (1748)

very cute (if non-rigorous) proof – see handout or book for details

75

Convergence: rigorous proof

uses the properties of Fourier series expansions – see handout or book for details

76

Sinc interpolation formula for any Ts

xTs
(t) = xc(t/Ts) =

∞
∑

n=−∞

x [n] sinc

(

t − nTs

Ts

)

77

the spectrum of sinc-interpolated signals

Sinc interpolation

discrete-time signal x [n], with DTFT X (ω)

sinc interpolation xc(t) =

∞
∑

n=−∞

x [n] sinc(t − n)

call Xc(f) the continuous-time Fourier transform of the interpolation

what is the relationship between X (ω) and Xc(f)?

78

Spectral representation

Xc(f) =

∫ ∞

−∞

xc(t) e
−j2πftdt

=

∫ ∞

−∞

∞
∑

n=−∞

x [n] sinc(t − n)e−j2πftdt

=

∞
∑

n=−∞

x [n]

∫ ∞

−∞

sinc(t − n)e−j2πftdt

=
∞
∑

n=−∞

x [n] e−j(2πf)n rect(f)

=

{

X (2πf) |f | ≤ 1/2

0 otherwise

79

Spectral representation

Xc(f) =

{

X (2πf) |f | ≤ 1/2

0 otherwise

X (2πf) is the DTFT scaled so that ω = π → f = 1/2 Hz

X (2πf) is periodic with period 1

the rect keeps only the zero-centered period

80

Spectrum of interpolated signal

−π −π/2 0 π/2 π
0

1
X
(ω

)

−1/2 0 1/2
0

1

X
c
(f
)

81

Changing the timebase

the signal xc(t) is obtained using an interpolation interval of one second (Ts = 1)
an interval of Ts seconds (i.e. an interpolation rate Fs = 1/Ts) yields the interpolation

xTs
(t) = xc(t/Ts) =

∞
∑

n=−∞

x [n] sinc

(

t − nTs

Ts

)

whose Fourier transform is

XTs
(f) = Ts Xc(Ts f) =

1

Fs
Xc

(

f

Fs

)

82

Spectrum of interpolated signals

XTs
(f) =



















1

Fs
X

(

2π
f

Fs

)

|f | ≤ Fs/2

0 otherwise

X (2πf /Fs) is the DTFT scaled so that ω = π → f = Fs/2 Hz

X (2πf /Fs) is periodic with period Fs

the rect keeps only the zero-centered period

the spectrum is scaled in amplitude by 1/Fs

83

Spectrum of interpolated signals

−π −π/2 0 π/2 π
0

1

X
(ω

)

0−Fs/2 Fs/2

Ts =T

Fs =F

X
T
s
(f
)

84

Spectrum of interpolated signals

−π −π/2 0 π/2 π
0

1

X
(ω

)

0−Fs/2 Fs/2

Ts =2T

Fs =F/2

X
T
s
(f
)

84

Spectrum of interpolated signals

−π −π/2 0 π/2 π
0

1

X
(ω

)

0−Fs/2 Fs/2

Ts =T/2

Fs =2F

X
T
s
(f
)

84

Spectrum of interpolated signals

for an interpolation rate Fs = 1/Ts :

X (f) will be Fs-bandlimited

fast interpolation (Ts small) → wide spectrum

slow interpolation (Ts large) → narrow spectrum

(for those who remember...) it’s like spinning a vynil record faster or slower, changing the
sound

85

