
COM-202: Signal Processing

Chapter 6.c: Real-time audio processing

Summary:

I/O and DMA

multiple buffering

implementation framework

some guitar effects

1

Real-time audio processing

Real-time processing

Everything works in sync with a system clock of period Ts :

“record” a value xi [n]

process the value in a causal filter

“play” the output xo[n]

everything needs to happen in at most Ts seconds!

2

Playing a sound

x [n] sound card

Ts system clock

3

On dedicated hardware...

CPU sound card

Ts system clock

x [n]

4

On a PC...

CPU RAM sound card

Ts soundcard clock

x [n] x [m]

IRQ

memory bus DMA transfer

5

Buffering

interrupt for each sample would be too much overhead

soundcard consumes sample in buffers

soundcard notifies when buffer used up

CPU can fill a buffer in less time than soundcard can empty it

buffering introduces delay!

6

Example: double buffering (output)

CPU

x [m]

x [n]

x [m]

SOUNDCARD

7

Example: double buffering (output)

CPU

x [m]

x [n]

x [m]

SOUNDCARD

7

Example: double buffering (output)

CPU

x [m]

x [n]

x [m]

SOUNDCARD

7

Example: double buffering (output)

CPU

x [m]

x [n]

x [m]

SOUNDCARD

7

Example: double buffering (output)

CPU

x [m]

x [n]

x [m]

SOUNDCARD

7

Example: double buffering (output)

CPU

x [m]

IRQ

x [n]

x [m]

SOUNDCARD

7

Example: double buffering (output)

CPU

x [m]

IRQ

x [n]

SOUNDCARD

7

Example: double buffering (output)

CPU

x [m]

x [n]

SOUNDCARD

7

Example: double buffering (output)

CPU

x [m]

x [n]

SOUNDCARD

7

Example: double buffering (output)

CPU

x [n]

IRQ

SOUNDCARD

7

Example: double buffering (output)

CPU

x [n]

IRQ

x [m]

SOUNDCARD

7

Example: double buffering

double buffering introduces a delay d = Ts ×
L

2
seconds

if CPU doesn’t fill the buffer fast enough: underflow

8

What about the input?

sound card x [n]

Ts system clock

9

On a PC...

CPU RAM sound card

Ts

IRQ

10

Example: double buffering (input)

CPU

x [m]

x [n]

SOUNDCARD

11

Example: double buffering (input)

CPU

x [m]

x [n]

SOUNDCARD

11

Example: double buffering (input)

CPU

x [m]

x [n]

SOUNDCARD

11

Example: double buffering (input)

CPU

x [m]

x [n]

SOUNDCARD

11

Example: double buffering (input)

CPU

x [m]

x [n]

SOUNDCARD

11

Example: double buffering (input)

CPU

x [m]

IRQ

x [n]

SOUNDCARD

11

Example: double buffering (input)

CPU

x [m]

IRQ

x [n]

SOUNDCARD

11

Example: double buffering (input)

CPU

x [m]

x [n]

SOUNDCARD

11

Example: double buffering (input)

CPU

x [m]

x [n]

SOUNDCARD

11

Example: double buffering (input)

CPU

x [m]

x [n]

IRQ

SOUNDCARD

11

Example: double buffering (input)

CPU

x [n]

IRQ

x [m]

SOUNDCARD

11

Putting it all together

multiple input buffers and output buffers

equal chunk sizes

input IRQ drives processing

12

Real-time I/O processing with double buffering

xo [m]

xi [n]

13

Real-time I/O processing with double buffering

xo [m]

xi [n]

13

Real-time I/O processing with double buffering

xo [m]

xi [n]

IRQ

13

Real-time I/O processing with double buffering

xo [m]

xi [n]

CPU

13

Real-time I/O processing with double buffering

xo [m]

xi [n]

CPU

13

Real-time I/O processing with double buffering

xo [m]

xi [n]

13

Real-time I/O processing with double buffering

xo [m]

xi [n]

IRQ

13

Real-time I/O processing with double buffering

xo [m]

xi [n]

CPU

13

Real-time I/O processing with double buffering

xo [m]

xi [n]

CPU

13

Real-time I/O processing with double buffering

xo [m]

xi [n]

13

Real-time I/O processing with double buffering

xo [m]

xi [n]

IRQ

13

Real-time I/O processing with double buffering

xo [m]

xi [n]

CPU

13

Real-time I/O processing with double buffering

xo [m]

xi [n]

13

Real-time I/O processing with double buffering

xo [m]

xi [n]

13

Real-time I/O processing with double buffering

total delay d = Ts × L seconds

usually start output process first

buffers can be collapsed (use same memory space)

14

Implementation

low level:

• study soundcard data sheet (each one is different)

• write code to program soundcard via writes to IO ports

• write an interrupt handler

• write the code to handle the data

high level:

• choose a good API (eg. PortAudio)

• write a callback function to handle the data

15

real-time audio processing with PyAudio

PyAudio

simple Python wrapper for PortAudio

cross-platform real-time audio playback and/or capture

relies on the underlying OS audio API ⇒ can’t control min latency

not really suitable for real-time processing (delay too big) but good proof of concept

16

The callback prototype

def callback(in_data, frame_count, time_info, status):

audio_in = np.array(np.frombuffer(in_data, dtype=np.int16))

audio_out = np.int16(processor.process(audio_in))

return audio_out, pyaudio.paContinue

17

Processing gateway

class RTProcessor:

def __init__(self, rate, channels=1, max_delay=1):

self.SF = rate

self.x = CircularBuffer(max_delay)

self.y = CircularBuffer(max_delay)

def process(self, samples):

for n, x in enumerate(samples):

y = self._process(x)

self.x.push(x)

self.y.push(y)

samples[n] = y

return samples

18

Circular Buffer

class CircularBuffer(object):

def __init__(self, length):

self.length = length

self.buf = np.zeros(self.length).astype(float)

self.ix = 0

def push(self, x):

self.buf[self.ix] = x

self.ix = np.mod(self.ix + 1, self.length)

def get(self, n):

assert n > 0, ’can only access past values’

return self.buf[np.mod(self.ix + self.length - n, self.length)]

19

guitar effects

Simple Echo

y [n] =
x [n] + α x [n − D]

1 + α

b b b b b

b

b b b b b b b b b

b

b b b b b b b b b b b b b b b b b b b b

0 D

0

1

20

Simple Echo

class Echo(RTProcessor):

def __init__(self, rate, channels):

1 replicas 1/3 of a sec apart -> 1 sec buffering

super().__init__(rate, channels, max_delay=rate)

self.alpha = 0.7

self.norm = 1.0 / (1 + self.alpha)

self.D = int(0.3 * self.SF)

def _process(self, x):

return self.norm * (x + self.alpha * self.x.get(self.D))

21

Slapback echo

echo sounds like a distinct echo only if delay greater than 100ms

slapback echo uses a delay at the threshold value (≈ 100 ms) and α ≈ 0.4

at the border between echo and reverb

used often for vocals until the 1970s (Elvis, Lennon) and for rockabilly guitar

22

A recursive echo

simple feedback loop to simulate back and forth reflections

x [n] + b y [n]

z−D
α

y [n] = α y [n − D] + x [n]

23

Adding the effect of materials

reflections may have a non-uniform response (e.g. lowpass)

x [n] + b y [n]

H(z) z−D
α

y [n] = α(h ∗ y)[n − D] + x [n]

24

A more realistic echo

Choose for instance H(z) = (1− λ)(1 − λz−1), a leaky integrator:

y [n] = x [n]− λx [n − 1] + λy [n− 1] + α(1 − λ)y [n − D]

b

b b b b b b b b b b

b

b
b
b b b b b b b b

b b b b b b b b b b b b
b b b b b b b b b b b b b

b b

0 10 20 30 40 50 60 70 80
0

1

D = 11, λ = 0.6, α = 0.8

25

A more realistic echo

1

Re

Im

a

a

a

a

a

a

a

a

a

a

a

b

26

A more realistic echo

−π −π/2 0 π/2 π
0

1

|H
(ω

)|
2

27

A more realistic echo

class Natural_Echo(RTProcessor):

def __init__(self, rate, channels):

super().__init__(rate, channels, max_delay=rate)

self.a = 0.8

self.l = 0.7

self.D = int(0.3 * self.SF)

def _process(self):

return x - self.l * self.x.get(1) + \

self.l * self.y.get(1) + self.a * (1-self.l) * self.y.get(self.D)

28

Shelving filters

Shelving filters boost a signal’s low end or high end

used in consumer audio appliances (the ”Bass” and ”Treble” tone knobs)

high gain at low (or high) frequencies, unit gain elsewhere

can be implemented with a second-order section

design parameters:

• shelf gain G (dB)

• shelf midpoint frequency f0 (Hz)

29

Low shelf

−π −3π/4 −π/2 −π/4 0 π/4 π/2 3π/4 π
0

20

40

|H
(ω

)|
(d
B
)

30

Low shelf, gain in dB

−π −3π/4 −π/2 −π/4 0 π/4 π/2 3π/4 π
0

20

40

60

80

100

120

140

|H
(ω

)|
(d
B
)

31

Low shelf, log-log scale, Fs = 16, 000 Hz

101 102 103 104
0

20

40

f (Hz, log scale)

|H
(f
)|

(d
B
)

32

Shelving filter structure

x [n] + b + y [n]

z−1

+ b +

z−1

b

b0

−a1 b1

−a2 b2

33

Recipe for low shelf coefficients

ω0 = 2π(f0/Fs)

A = 10GdB/40

C = (A+ 1) + (A− 1) cosω0 +
√
2A sinω0

a1 = −2
(

(A− 1) + (A+ 1) cosω0

)

/C

a2 =
(

(A+ 1) + (A− 1) cosω0 −
√
2A sinω0

)

/C

b0 = A
(

(A+ 1)− (A− 1) cosω0 +
√
2A sinω0

)

/C

b1 = 2A
(

(A − 1)− (A+ 1) cosω0

)

/C

b2 = A
(

(A+ 1)− (A− 1) cosω0 −
√
2A sinω0

)

/C
34

Low shelf

def _process(self, x):

return self.norm * \

(self.b0 * x + self.b1 * self.x.get(1) + self.b2 * self.x.get(2)) \

- self.a1 * self.y.get(1) - self.a2 * self.y.get(2)

35

Low shelf

def __init__(self, rate, channels, cutoff=300, gain=15):

super().__init__(rate, channels, max_delay=2)

Q = 1 / np.sqrt(2)

w = 2 * np.pi * cutoff / rate

A = 10 ** (gain / 40)

alpha = np.sin(w) / (2 * Q)

c = np.cos(w)

a0 = (A + 1) + (A - 1) * c + 2 * np.sqrt(A) * alpha

self.a1, self.a2 = \

(-2 * ((A - 1) + (A + 1) * c)) / a0, \

((A + 1) + (A - 1) * c - 2 * np.sqrt(A) * alpha) / a0

self.b0, self.b1, self.b2 = \

(A * ((A + 1) - (A - 1) * c + 2 * np.sqrt(A) * alpha)) / a0,\

(2 * A * ((A - 1) - (A + 1) * c)) / a0, \

(A * ((A + 1) - (A - 1) * c - 2 * np.sqrt(A) * alpha)) / a0

self.norm = .5

36

Reverb

reverb is the cumulative effect of all the multiple reflections of a sound wave in a physical
space

every room has an “impulse response” (RIR) that characterizes the reverberation

RIRs can be very long (order of seconds in large halls)

although RIRs can be measured precisely, it’s very costly to use RIRs in real time

synthetic reverberation algorithms exist

most famous is Schoeder’s reverb (1962)

37

Reverberation

38

Schroeder’s Reverb

39

Schroeder’s Reverb

three allpass filters in cascade

four comb filters in parallel

output is sum of comb filters

filter delays are chosen to be coprime

40

Comb filters

simple recursive echo filters

x [n] + b y [n]

z−D
α

41

Allpass filters

H(z) =
−α+ z−D

1− αz−D

x [n] + b z−D b + y [n]

−α

α

42

Allpass filters

unit magnitude response: |H(ω)| = 1

nonlinear phase response

used to “spread out” short amplitude transients

impulse response is an exponentially-decaying sequence

h[n] =























0 n < 0

−α n = 0

αk(1− α2) n = kD

0 otherwise

43

Allpass, poles and zeros (α = 0.5,N = 10)

1

Re

Im

b

b

b

b

b

b

b

b

b

b

a

a

a

a

a

a

a

a

a

a

44

Allpass, magnitude response

−π −π/2 0 π/2 π
0

1

|H
(ω

)|

45

Allpass, phase response

−π

π

−π −π/2 0 π/2 π

∠
H
(ω

)

46

Measured and simulated RIRs

47

Reverb

class Reverb(RTProcessor):

def __init__(self, rate, channels):

super().__init__(rate, channels, max_delay=rate)

self.a = 0.8

self.norm = 0.5

self.N = int(0.02 * self.SF)

def _process(self):

return self.norm *

(-self.x.get(0) + self.x.get(self.N) + self.a * self.y.get(self.N))

48

Some non-LTI effects

distortion (fuzz): clip the signal

y [n] = trunc(ax [n])/a

tremolo: sinusoidal amplitude modulation

y [n] = (1 + cos(ω0n)/G)x [n]

flanger: sinusoidal delay
y [n] = (x [n] + x [n − d(n)])/2

d(n) = round(M (1− cos(ω0n)))

wah-wah: time-varying bandpass filter

H(z , n) =
(1− z(n)z−1)(1− z∗(n)z−1)

(1− p(n)z−1)(1− p∗(n)z−1)

p(n) = ρ(1 + (cosω0n)) e
jθ(1+cosω1n)

49

Fuzz

class Fuzz(RTProcessor):

def __init__(self, rate, channels):

memoryless

super().__init__(rate, channels)

self.limit = 32767 * 0.01

self.gain = 10

def _process(self, x):

return self.gain * max(min(x, self.limit), -self.limit)

50

Tremolo

class Tremolo(RTProcessor):

def __init__(self, rate, channels):

super().__init__(rate, channels, max_delay=1)

self.depth = 0.9

self.phi = 5 * 2*np.pi / self.SF

self.omega = 0

def _process(self, x):

self.omega += self.phi

return ((1 - self.depth) + self.depth * 0.5 * (1 + np.cos(self.omega))) * x

51

Flanger

class Flanger(RTProcessor):

def __init__(self, rate, channels):

super().__init__(rate, channels, max_delay=rate)

self.maxd = 0.015 * self.SF

self.phi = 0.2 * 2*np.pi / self.SF

self.omega = 0

self.a = 0.6

def _process(self, x):

self.omega += self.phi;

d = int(self.maxd * (1.0 - np.cos(self.omega)))

return x if d == 0 else self.a * x + (1.0 - self.a) * self.x.get(d)

52

Wah

def _process(self, x):

""" Wah-wah autopedal. A slow oscillator moves the positions of

the poles in a second-order filter around their nominal value

The result is a time-varying bandpass filter

"""

current angle of the pole

d = self.pole_delta * (1.0 + np.cos(self.omega)) / 2.0

self.omega += self.phi

recompute the filter’s coefficients

self.b1 = -2.0 * self.zero_mag * np.cos(self.zero_phase + d)

self.a1 = -2.0 * self.pole_mag * np.cos(self.pole_phase + d)

return 0.3 * (x + self.b1 * self.x.get(1) + self.b2 * self.x.get(2)) - \

self.a1 * self.y.get(1) - self.a2 * self.y.get(2)

53

