=PrL

COM-202: Signal Processing

Chapter 6.c: Real-time audio processing

Summary:

m |/O and DMA
m multiple buffering
m implementation framework

m some guitar effects

Real-time audio processing

Real-time processing

Everything works in sync with a system clock of period T:

m ‘“record” a value x;[n]
m process the value in a causal filter

m “play” the output x,[n]

everything needs to happen in at most T, seconds!

Playing a sound

x[n] =—————| sound card |———

system clock

On dedicated hardware...

CPU

x[n]

sound card p—m——

Ts) system clock

On a PC...

IRQ

CPU |€&<———>| RAM |*€&—>| sound card

soundcard clock

memory bus DMA transfer

Buffering

m interrupt for each sample would be too much overhead
m soundcard consumes sample in buffers
m soundcard notifies when buffer used up

m CPU can fill a buffer in less time than soundcard can empty it

buffering introduces delay!

Example: double buffering (output)

CPU

x[n]

x[m] x[m]

SOUNDCARD

Example: double buffering (output)

CPU

SOUNDCARD

x[n]

x[m]

Example: double buffering (output)

CPU

==

x[m]

SOUNDCARD

x[n]

x[m]

Example: double buffering (output)

CPU

x[n]

x[m]

SOUNDCARD

x[m]

Example: double buffering (output)

CPU

x[n]

X[m]

SOUNDCARD

x[m]

Example:

double buffering (output)

CPU
IRQ

x[n]

X[m]

SOUNDCARD

x[m]

Example: double buffering (output)

CPU
IRQ

X[m]

SOUNDCARD

Example: double buffering (output)

CPU

x[n]

x[m]

SOUNDCARD

Example: double buffering (output)

CPU

x[n]

X[m]

SOUNDCARD

Example: double buffering (output)

CPU

x[n]

SOUNDCARD

Example: double buffering (output)

CPU

x[n]

x[m]

SOUNDCARD

Example: double buffering

L
m double buffering introduces a delay d = T x > seconds

m if CPU doesn't fill the buffer fast enough: underflow

What about the input?

sound card

system clock

x[n]

On a PC...

IRQ

CPU

RAM

sound card

10

Example: double buffering (input)

CPU

x[n]

x[m]

SOUNDCARD

11

Example: double buffering (input)

CPU

x[n]

x[m]

SOUNDCARD

11

Example: double buffering (input)

CPU

X[m]

SOUNDCARD

x[n]

11

Example: double buffering (input)

CPU

x[n]

x[m]

SOUNDCARD

11

Example: double buffering (input)

CPU

x[n]

x[m]

SOUNDCARD

11

Example:

double buffering (input)

CPU

IRQ

x[n]

x[m]

SOUNDCARD

11

Example: double buffering (input)

CPU
IRQ

x[n]

x[m]

SOUNDCARD

11

Example: double buffering (input)

CPU

x[n]

I

x[m]

SOUNDCARD

11

Example: double buffering (input)

CPU

x[n]

SOUNDCARD

x[m]

11

Example: double buffering (input)

CPU

x[n]

SOUNDCARD

x[m]

IRQ

11

Example: double buffering (input)

CPU

SOUNDCARD

IRQ

11

Putting it all together

m multiple input buffers and output buffers
m equal chunk sizes

m input IRQ drives processing

12

Real-time 1/0O processing with double buffering

X n]

Xo[m]

13

Real-time 1/0O processing with double buffering

X; 1,7]

Xo[m]

13

Real-time 1/0O processing with double buffering
IRQ

Xi

E—

Xo[m]

13

Real-time 1/0O processing with double buffering

X; in]

CPU

Xo|m]

Real-time 1/0O processing with double buffering

X; 1,7]

Xo[m]

13

Real-time 1/0O processing with double buffering

X; 1,7]

—

Xo[m]

13

Real-time 1/0O processing with double buffering

Xj

Xo|m]

IRQ

13

Real-time 1/0O processing with double buffering

X; 1n]

CPU

E—

Xo|m]

13

Real-time 1/0O processing with double buffering

X; 1,7]

Xo[m]

13

Real-time 1/0O processing with double buffering

X; 1,7]

—

Xo[m]

13

Real-time 1/0O processing with double buffering
IRQ

Xi

E—

Xo[m]

13

Real-time 1/0O processing with double buffering

X; in]

CPU

Xo|m]

Real-time 1/0O processing with double buffering

X; 1,7]

Xo[m]

13

Real-time 1/0O processing with double buffering

X; 1,7]

—

Xo[m]

13

Real-time 1/0O processing with double buffering

m total delay d = T x L seconds
m usually start output process first

m buffers can be collapsed (use same memory space)

14

Implementation

m low level:
e study soundcard data sheet (each one is different)
e write code to program soundcard via writes to 1O ports
e write an interrupt handler
e write the code to handle the data
m high level:
e choose a good API (eg. PortAudio)

e write a callback function to handle the data

15

real-time audio processing with PyAudio

PyAudio

m simple Python wrapper for PortAudio
m cross-platform real-time audio playback and/or capture
m relies on the underlying OS audio APl = can’t control min latency

m not really suitable for real-time processing (delay too big) but good proof of concept

16

The callback prototype

def callback(in_data, frame_count, time_info, status):
audio_in = np.array(np.frombuffer(in_data, dtype=np.int16))
audio_out = np.int16(processor.process(audio_in))
return audio_out, pyaudio.paContinue

17

Processing gateway

class RTProcessor:
def __init__(self, rate, channels=1, max_delay=1):
self.SF = rate
self.x = CircularBuffer (max_delay)
self.y = CircularBuffer(max_delay)

def process(self, samples):
for n, x in enumerate(samples):
y = self._process(x)
self.x.push(x)
self.y.push(y)
samples[n] =y
return samples

18

Circular Buffer

class CircularBuffer(object):

def

__init__(self, length):

self.length = length

self.buf = np.zeros(self.length).astype(float)
self.ix = 0

def push(self, x):

def

self.buf [self.ix] = x
self.ix = np.mod(self.ix + 1, self.length)

get(self, n):

assert n > 0, ’can only access past values’
return self.buf [np.mod(self.ix + self.length - n, self.length)]

19

guitar effects

Simple Echo

_ x[n] + ax[n — D]
1+a

y[n]

Simple Echo

class Echo(RTProcessor):

def

def

__init__(self, rate, channels):
1 replicas 1/3 of a sec apart -> 1 sec buffering
super() .__init__(rate, channels, max_delay=rate)

self.alpha = 0.7
self.norm = 1.0 / (1 + self.alpha)
self.D = int(0.3 * self.SF)

_process(self, x):

return self.norm * (x + self.alpha * self.x.get(self.D))

Slapback echo

m echo sounds like a distinct echo only if delay greater than 100ms
m slapback echo uses a delay at the threshold value (=~ 100 ms) and o ~ 0.4
m at the border between echo and reverb

m used often for vocals until the 1970s (Elvis, Lennon) and for rockabilly guitar

N
N

A recursive echo

simple feedback loop to simulate back and forth reflections

xlr] ©, yln]

ylnl = ayln— D]+ xn]

23

Adding the effect of materials

reflections may have a non-uniform response (e.g. lowpass)

x[r] O, yln]
|—a H(z) z—D

yln] = a(h*y)[n — D]+ x[n]

A more realistic echo
Choose for instance H(z) = (1 — A)(1 — Az~ 1), a leaky integrator:

y[n] = x[n] — Ax[n — 1] + Ay[n — 1] + a(1 — A)y[n — D]

0 M

0 10 20 30 40 50 60 70 80

D=11,A=0.6,00=0.8

A more realistic echo

Im

Re

A more realistic echo

[H(w)?

/2

27

A more realistic echo

class Natural_Echo(RTProcessor):
def __init__(self, rate, channels):

super () .__init__(rate, channels, max_delay=rate)
self.a = 0.8

self.1 = 0.7

self.D = int(0.3 * self.SF)

def _process(self):
return x - self.l * self.x.get(1) + \
self.1l x self.y.get(1) + self.a * (1-self.l) * self.y.get(self.D)

Shelving filters

Shelving filters boost a signal’s low end or high end

m used in consumer audio appliances (the "Bass” and " Treble” tone knobs)
m high gain at low (or high) frequencies, unit gain elsewhere
m can be implemented with a second-order section

m design parameters:
o shelf gain G (dB)

e shelf midpoint frequency fy (Hz)

Low shelf

[H(w)] (dB)

40

T

20

T

0

-

o

w/4

ﬂ)2

|
3w /4

s

30

Low shelf, gain in dB

T

140
120
100
80
60
40

T T T T

[H(w)] (dB)

T

20

1 1 1
-t —3n/4 —-7/2 —w/4

0

i
w/4

1
/2

1
3w /4

s

31

Low shelf, log-log scale, F; = 16,000 Hz

[H(f)| (dB)

40

20

T

10*

10°
f (Hz, log scale)

103

10*

32

Shelving filter structure

x[n] @

®

©

N

A

Recipe for low shelf coefficients

wo = 2m(fy/Fs)
A = 106/
C=(A+1)+ (A—1)coswy + V2A sinwy

a = —2<(A—1)+(A+1)coswo)/C

@ = ((A+ 1)+ (A— 1) coswo — V2A sinwo)/C
bo :A<(A+l)—(A— 1)coswo+\/ﬂsinwo)/c
by = 2A<(A 1) (At l)coswo)/C

b2=A<(A+1)—(A—1)coswo—\/ﬂsinwo) /C

34

Low shelf

def _process(self, x):
return self.norm * \
(self.b0 * x + self.bl * self.x.get(1) + self.b2 * self.x.get(2)) \
- self.al * self.y.get(1) - self.a2 * self.y.get(2)

35

Low shelf

def

__init__(self, rate, channels, cutoff=300, gain=15):
super() .__init__(rate, channels, max_delay=2)
Q =1/ np.sqrt(2)
w = 2 * np.pi * cutoff / rate
A =10 *x (gain / 40)
alpha = np.sin(w) / (2 * Q)
¢ = np.cos(w)
a0 = (A+ 1) + (A-1) x ¢c + 2 * np.sqrt(A) * alpha
self.al, self.a2 =\
(2 x ((A-1) + (A+1) xc)) /a0, \
((A+1) + (A-1) * c -2 % np.sqrt(A) * alpha) / a0
self.b0, self.bl, self.b2 = \
(A* ((A+1) - (A-1) * c+ 2 * np.sqrt(A) * alpha)) / a0,\
2+ Ax ((A-1)-((A+1) *c)) /a0, \
(A* ((A+1) - (A-1) *c - 2 * np.sqrt(A) * alpha)) / a0
self.norm = .5

Reverb

m reverb is the cumulative effect of all the multiple reflections of a sound wave in a physical
space

m every room has an “impulse response” (RIR) that characterizes the reverberation
m RIRs can be very long (order of seconds in large halls)

m although RIRs can be measured precisely, it's very costly to use RIRs in real time
m synthetic reverberation algorithms exist

m most famous is Schoeder’s reverb (1962)

Reverberation

Energy

" Direct Sound

Early reflections

Late Reverberation

<

Room

Source @
g
/

Receiver

Time

38

Schroeder’s Reverb

RevIn

Schroeder’s Reverb

m three allpass filters in cascade
m four comb filters in parallel
m output is sum of comb filters

m filter delays are chosen to be coprime

40

Comb filters

simple recursive echo filters

x[n]

©

y[n]

41

Allpass filters

a4+ D
H(z) = loiazz—D
—Q

Allpass filters

unit magnitude response: |H(w)| =1

nonlinear phase response

used to “spread out” short amplitude transients

m impulse response is an exponentially-decaying sequence
0 n<0
—« n=20

=Y k@ =02 = ko

0 otherwise

Allpass, poles and zeros (o = 0.5, N = 10)

Re

44

Allpass, magnitude response

[H(w)]

/2

45

sssssssssssssssssssss

Measured and simulated RIRs

o5
0.4,
o3|
0.2

0|

-0t

0.2,

03

0.4,

-os

ok
o
B
S
3
9
ol
9l
o)

N YT R e " A
00 Ml

] 2500 5000 7500 10000 12500 15000 17500

Reverb

class Reverb(RTProcessor):

def __init__(self, rate, channels):
super() .__init__(rate, channels, max_delay=rate)
self.a = 0.8
self.norm = 0.5
self.N = int(0.02 * self.SF)

def _process(self):
return self.norm *
(-self.x.get(0) + self.x.get(self.N) + self.a * self.y.get(self.N))

48

Some non-LTI effects

m distortion (fuzz): clip the signal
y[n] = trunc(ax[n])/a

m tremolo: sinusoidal amplitude modulation

y[n] = (1 4 cos(won)/G)x[n]
m flanger: sinusoidal delay

y[n] = (x[n] + x[n — d(n)])/2

d(n) = round(M (1 — cos(wgn)))

m wah-wah: time-varying bandpass filter

—z(mMz=YHY(1 — z*(n)z7 !
Heoomy — (L= 27 (1= 2 ()2

(1= p(n)z=1)(1 = p*(n)z~1)
p(n) = p(1 + (coswgn)) e/f(1Heoswin)

49

Fuzz

class Fuzz(RTProcessor):

def

def

__init__(self, rate, channels):
memoryless
super() .__init__(rate, channels)

self.limit = 32767 * 0.01
self.gain = 10

_process(self, x):

return self.gain * max(min(x, self.limit), -self.limit)

50

Tremolo

class Tremolo(RTProcessor):

def

def

__init__(self, rate, channels):
super() .__init__(rate, channels, max_delay=1)

self.depth = 0.9
self.phi = 5 * 2*np.pi / self.SF
self.omega = 0

_process(self, x):
self.omega += self.phi
return ((1 - self.depth) + self.depth * 0.5 * (1 + np.cos(self.omega))) * x

51

Flanger

class Flanger (RTProcessor):

def

def

__init__(self, rate, channels):
super() .__init__(rate, channels, max_delay=rate)

self.maxd = 0.015 * self.SF

self.phi = 0.2 * 2#np.pi / self.SF
self.omega = 0

self.a = 0.6

_process(self, x):

self.omega += self.phi;
d = int(self.maxd * (1.0 - np.cos(self.omega)))

return x if d == 0 else self.a * x + (1.0 - self.a) * self.x.get(d)

Wah

def

_process(self, x):

""" Wah-wah autopedal. A slow oscillator moves the positions of
the poles in a second-order filter around their nominal value
The result is a time-varying bandpass filter

nnn

current angle of the pole

d = self.pole_delta * (1.0 + np.cos(self.omega)) / 2.0
self.omega += self.phi

recompute the filter’s coefficients
self.bl = -2.0 * self.zero_mag * np.cos(self.zero_phase + d)
self.al = -2.0 * self.pole_mag * np.cos(self.pole_phase + d)

return 0.3 * (x + self.bl * self.x.get(l) + self.b2 * self.x.get(2)) - \
self.al * self.y.get(1l) - self.a2 * self.y.get(2)

53

