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COM-202: Signal Processing

Chapter 6.c: Real-time audio processing



Summary:

m |/O and DMA
m multiple buffering
m implementation framework

m some guitar effects



Real-time audio processing



Real-time processing

Everything works in sync with a system clock of period T:

m ‘“record” a value x;[n]
m process the value in a causal filter

m “play” the output x,[n]

everything needs to happen in at most T, seconds!



Playing a sound
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On dedicated hardware...
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On a PC...
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Buffering

m interrupt for each sample would be too much overhead
m soundcard consumes sample in buffers
m soundcard notifies when buffer used up

m CPU can fill a buffer in less time than soundcard can empty it

buffering introduces delay!



Example: double buffering (output)
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Example: double buffering

L
m double buffering introduces a delay d = T x > seconds

m if CPU doesn't fill the buffer fast enough: underflow



What about the input?

sound card

system clock

x[n]



On a PC...
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Example: double buffering (input)
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Example: double buffering (input)

CPU

x[n]

SOUNDCARD

x[m]

IRQ

11



Example: double buffering (input)
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Putting it all together

m multiple input buffers and output buffers
m equal chunk sizes

m input IRQ drives processing
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Real-time 1/0O processing with double buffering
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Real-time 1/0O processing with double buffering
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Real-time 1/0O processing with double buffering
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Real-time 1/0O processing with double buffering
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Real-time 1/0O processing with double buffering
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Real-time 1/0O processing with double buffering
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Real-time 1/0O processing with double buffering

m total delay d = T x L seconds
m usually start output process first

m buffers can be collapsed (use same memory space)
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Implementation

m low level:
e study soundcard data sheet (each one is different)
e write code to program soundcard via writes to 1O ports
e write an interrupt handler
e write the code to handle the data
m high level:
e choose a good API (eg. PortAudio)

e write a callback function to handle the data
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real-time audio processing with PyAudio



PyAudio

m simple Python wrapper for PortAudio
m cross-platform real-time audio playback and/or capture
m relies on the underlying OS audio APl = can’t control min latency

m not really suitable for real-time processing (delay too big) but good proof of concept
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The callback prototype

def callback(in_data, frame_count, time_info, status):
audio_in = np.array(np.frombuffer(in_data, dtype=np.int16))
audio_out = np.int16(processor.process(audio_in))
return audio_out, pyaudio.paContinue
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Processing gateway

class RTProcessor:
def __init__(self, rate, channels=1, max_delay=1):
self.SF = rate
self.x = CircularBuffer (max_delay)
self.y = CircularBuffer(max_delay)

def process(self, samples):
for n, x in enumerate(samples):
y = self._process(x)
self.x.push(x)
self.y.push(y)
samples[n] =y
return samples
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Circular Buffer

class CircularBuffer(object):

def

__init__(self, length):

self.length = length

self.buf = np.zeros(self.length).astype(float)
self.ix = 0

def push(self, x):

def

self.buf [self.ix] = x
self.ix = np.mod(self.ix + 1, self.length)

get(self, n):

assert n > 0, ’can only access past values’
return self.buf [np.mod(self.ix + self.length - n, self.length)]
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guitar effects



Simple Echo

_ x[n] + ax[n — D]
1+a

y[n]




Simple Echo

class Echo(RTProcessor):

def

def

__init__(self, rate, channels):
# 1 replicas 1/3 of a sec apart -> 1 sec buffering
super() .__init__(rate, channels, max_delay=rate)

self.alpha = 0.7
self.norm = 1.0 / (1 + self.alpha)
self.D = int(0.3 * self.SF)

_process(self, x):

return self.norm * (x + self.alpha * self.x.get(self.D))



Slapback echo

m echo sounds like a distinct echo only if delay greater than 100ms
m slapback echo uses a delay at the threshold value (=~ 100 ms) and o ~ 0.4
m at the border between echo and reverb

m used often for vocals until the 1970s (Elvis, Lennon) and for rockabilly guitar

N
N



A recursive echo

simple feedback loop to simulate back and forth reflections

xlr] ©, yln]

ylnl = ayln— D]+ xn]
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Adding the effect of materials

reflections may have a non-uniform response (e.g. lowpass)

x[r] O, yln]
|—a H(z) z—D

yln] = a(h*y)[n — D]+ x[n]




A more realistic echo
Choose for instance H(z) = (1 — A)(1 — Az~ 1), a leaky integrator:

y[n] = x[n] — Ax[n — 1] + Ay[n — 1] + a(1 — A)y[n — D]

0 M

0 10 20 30 40 50 60 70 80

D=11,A=0.6,00=0.8



A more realistic echo

Im

Re




A more realistic echo

[H(w)?

/2
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A more realistic echo

class Natural_Echo(RTProcessor):
def __init__(self, rate, channels):

super () .__init__(rate, channels, max_delay=rate)
self.a = 0.8

self.1 = 0.7

self.D = int(0.3 * self.SF)

def _process(self):
return x - self.l * self.x.get(1) + \
self.1l x self.y.get(1) + self.a * (1-self.l) * self.y.get(self.D)



Shelving filters

Shelving filters boost a signal’s low end or high end

m used in consumer audio appliances (the "Bass” and " Treble” tone knobs)
m high gain at low (or high) frequencies, unit gain elsewhere
m can be implemented with a second-order section

m design parameters:
o shelf gain G (dB)

e shelf midpoint frequency fy (Hz)



Low shelf
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Low shelf, gain in dB
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Low shelf, log-log scale, F; = 16,000 Hz
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Shelving filter structure

x[n] @

®

©

N
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Recipe for low shelf coefficients

wo = 2m(fy/Fs)
A = 106/
C=(A+1)+ (A—1)coswy + V2A sinwy

a = —2<(A—1)+(A+1)coswo)/C

@ = ((A+ 1)+ (A— 1) coswo — V2A sinwo)/C
bo :A<(A+l)—(A— 1)coswo+\/ﬂsinwo)/c
by = 2A<(A 1) (At l)coswo)/C

b2=A<(A+1)—(A—1)coswo—\/ﬂsinwo) /C
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Low shelf

def _process(self, x):
return self.norm * \
(self.b0 * x + self.bl * self.x.get(1) + self.b2 * self.x.get(2)) \
- self.al * self.y.get(1) - self.a2 * self.y.get(2)
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Low shelf

def

__init__(self, rate, channels, cutoff=300, gain=15):
super() .__init__(rate, channels, max_delay=2)
Q =1/ np.sqrt(2)
w = 2 * np.pi * cutoff / rate
A =10 *x (gain / 40)
alpha = np.sin(w) / (2 * Q)
¢ = np.cos(w)
a0 = (A+ 1) + (A-1) x ¢c + 2 * np.sqrt(A) * alpha
self.al, self.a2 =\
(2 x ((A-1) + (A+1) xc)) /a0, \
((A+1) + (A-1) * c -2 % np.sqrt(A) * alpha) / a0
self.b0, self.bl, self.b2 = \
(A* ((A+1) - (A-1) * c+ 2 * np.sqrt(A) * alpha)) / a0,\
2+ Ax ((A-1)-((A+1) *c)) /a0, \
(A* ((A+1) - (A-1) *c - 2 * np.sqrt(A) * alpha)) / a0
self.norm = .5



Reverb

m reverb is the cumulative effect of all the multiple reflections of a sound wave in a physical
space

m every room has an “impulse response” (RIR) that characterizes the reverberation
m RIRs can be very long (order of seconds in large halls)

m although RIRs can be measured precisely, it's very costly to use RIRs in real time
m synthetic reverberation algorithms exist

m most famous is Schoeder’s reverb (1962)
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Schroeder’s Reverb

RevIn




Schroeder’s Reverb

m three allpass filters in cascade
m four comb filters in parallel
m output is sum of comb filters

m filter delays are chosen to be coprime
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Comb filters

simple recursive echo filters

x[n]

©

y[n]
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Allpass filters

a4+ D
H(z) = loiazz—D
—Q




Allpass filters

unit magnitude response: |H(w)| =1

nonlinear phase response

used to “spread out” short amplitude transients

m impulse response is an exponentially-decaying sequence
0 n<0
—« n=20

=Y k@ =02 = ko

0 otherwise



Allpass, poles and zeros (o = 0.5, N = 10)

Re
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Allpass, magnitude response
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Measured and simulated RIRs
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Reverb

class Reverb(RTProcessor):

def __init__(self, rate, channels):
super() .__init__(rate, channels, max_delay=rate)
self.a = 0.8
self.norm = 0.5
self.N = int(0.02 * self.SF)

def _process(self):
return self.norm *
(-self.x.get(0) + self.x.get(self.N) + self.a * self.y.get(self.N))
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Some non-LTI effects

m distortion (fuzz): clip the signal
y[n] = trunc(ax[n])/a

m tremolo: sinusoidal amplitude modulation

y[n] = (1 4 cos(won)/G)x[n]
m flanger: sinusoidal delay

y[n] = (x[n] + x[n — d(n)])/2

d(n) = round(M (1 — cos(wgn)))

m wah-wah: time-varying bandpass filter

—z(mMz=YHY(1 — z*(n)z7 !
Heoomy — (L= 27 (1= 2 ()2

(1= p(n)z=1)(1 = p*(n)z~1)
p(n) = p(1 + (coswgn)) e/f(1Heoswin)
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Fuzz

class Fuzz(RTProcessor):

def

def

__init__(self, rate, channels):
# memoryless
super() .__init__(rate, channels)

self.limit = 32767 * 0.01
self.gain = 10

_process(self, x):

return self.gain * max(min(x, self.limit), -self.limit)
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Tremolo

class Tremolo(RTProcessor):

def

def

__init__(self, rate, channels):
super() .__init__(rate, channels, max_delay=1)

self.depth = 0.9
self.phi = 5 * 2*np.pi / self.SF
self.omega = 0

_process(self, x):
self.omega += self.phi
return ((1 - self.depth) + self.depth * 0.5 * (1 + np.cos(self.omega))) * x
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Flanger

class Flanger (RTProcessor):

def

def

__init__(self, rate, channels):
super() .__init__(rate, channels, max_delay=rate)

self.maxd = 0.015 * self.SF

self.phi = 0.2 * 2#np.pi / self.SF
self.omega = 0

self.a = 0.6

_process(self, x):

self.omega += self.phi;
d = int(self.maxd * (1.0 - np.cos(self.omega)))

return x if d == 0 else self.a * x + (1.0 - self.a) * self.x.get(d)



Wah

def

_process(self, x):

""" Wah-wah autopedal. A slow oscillator moves the positions of
the poles in a second-order filter around their nominal value
The result is a time-varying bandpass filter

nnn

# current angle of the pole

d = self.pole_delta * (1.0 + np.cos(self.omega)) / 2.0
self.omega += self.phi

# recompute the filter’s coefficients
self.bl = -2.0 * self.zero_mag * np.cos(self.zero_phase + d)
self.al = -2.0 * self.pole_mag * np.cos(self.pole_phase + d)

return 0.3 * (x + self.bl * self.x.get(l) + self.b2 * self.x.get(2)) - \
self.al * self.y.get(1l) - self.a2 * self.y.get(2)
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