
COM-202: Signal Processing

Chapter 6.b: z-transform, filter structures and filter design



Overview

realizable filters

the z-transform and rational transfer functions

BIBO stability

pole-zero plots and block diagrams

filter design: intuitive, from specs, IIR, FIR
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the z-transform



Overview:

Constant-Coefficient Difference Equations

The z-transform

The transfer function

Region of convergence
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Realizable LTI systems

ideal filters cannot be implemented

what is the most general, realizable LTI system?

• linearity: we can only use sums and multiplications

• time-invariance: we can only multiply by constants

• realizability: we can only use a finite amount of resources:

− finite number of operations per output sample

− finite amount of memory (i.e. we can only remember a finite number of past samples)

causality required for real-time applications
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Linear, time-invariant systems

x [n] H y [n]

addition
scalar
multiplication

delays
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Constant-Coefficient Difference Equation

N
∑

k=0

aky [n − k] =
M
∑

k=0

bkx [n − k]

uses M + 1 input and N output values

completely specified by M + N + 1 scalar coefficients

a0 = 1 (otherwise renormalize)
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Constant-Coefficient Difference Equation

Causal formulation:

y [n] =

M
∑

k=0

bkx [n − k]−
N
∑

k=1

aky [n− k]

we can always make a CCDE causal

CCDE is an algorithm to compute each output value
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Constant-Coefficient Difference Equation

Examples:

moving average:

y [n] = (1/4)x [n] + (1/4)x [n − 1] + (1/4)x [n − 2] + (1/4)x [n − 3]

leaky integrator:
y [n] = λy [n − 1] + (1− λ)x [n]
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Constant-Coefficient Difference Equation

y [n] =

M
∑

k=0

bkx [n − k]−
N
∑

k=1

aky [n− k]

what is the frequency response? The DTFT of the impulse response!

but how do we compute the impulse response from the CCDE?

8



Apparently unrelated topic: Polynomial Multiplication

p(t) = 1 + 3t + 2t2

q(t) = 2 + t − t2 + 4t3

(1 + 3t + 2t2)(2 + t − t2 + 4t3) = 2 + t − t2 + 4t3

+ 6t + 3t2 − 3t3 + 12t4

+ 4t2 + 2t3 − 2t4 + 8t5

= 2 + 7t + 6t2 + 3t3 + 10t4 + 8t5
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Apparently unrelated topic: Polynomial Multiplication

(1 + 3t + 2t2)(2 + t − t2 + 4t3) = 2 + 7t + 6t2 + 3t3 + 10t4 + 8t5

define two sequences using the polynomial coefficients and convolve:

xp[n] = δ[n] + 3δ[n − 1] + 2δ[n − 2] = . . . , 0, 0, 1, 3, 2, 0, 0, . . .

xq[n] = 2δ[n] + δ[n − 1]− δ[n − 2] + 4δ[n − 3] = . . . , 0, 0, 2, 1,−1, 4, 0, 0, . . .

(xp ∗ xq)[n] = 2δ[n] + 7δ[n − 1] + 6δ[n − 2] + 3δ[n − 3] + 10δ[n − 4] + 8δ[n − 5]
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Polynomial multiplication

p(t) = p0 + p1t + . . . + pMtM

q(t) = q0 + q1t + . . . + qNt
N

r(t) = p(t) · q(t) =
M+N
∑

n=0

rnt
n

rn =

min{n,M}
∑

k=max{0,n−N}

pkqn−k , 0 ≤ n ≤ M + N
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Polynomial multiplication and convolution are the same

if we assume pn = 0 for n 6∈ [0,P ] and qn = 0 for n 6∈ [0,Q] the formula for the n-th
coefficient of the product becomes

rn =
∞
∑

k=−∞

pkqn−k

which is identical to the convolution of two sequences:

xr [n] =
∞
∑

k=−∞

xp[k]xq[n − k]
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The z-transform

X (z) =

∞
∑

n=−∞

x [n]z−n, z ∈ C

associate a power series (i.e. a polynomial) to a sequence

for us mostly a formal operator...

...but also as the extension of the DTFT to the whole complex plane:

X (z)|z=e jω = DTFT {x [n]}

(and now the notation X (e jω) should make more sense)
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Convergence

the z-transform is a power series

we should (and will) be concerned about its convergence

but not for now...
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Key properties

linearity:

Z{αx [n] + βy [n]} = αX (z) + βY (z)

time shift:

Z{x [n − N]} = z−NX (z)

convolution:

Z{h[n] ∗ x [n]} = H(z)X (z)
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Convolution in the z-domain

Consider an LTI system with impulse response h[n]

y [n] = h[n] ∗ x [n]
Z{y [n]} = Z{h[n] ∗ x [n]}

Y (z) = H(z)X (z)

H(z) is the transfer function of the system
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Transfer function

the transfer function is the z-transform of the impulse response

by setting z = e jω in H(z) we get the frequency response
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Now let’s go back to where we started...

y [n] =

M
∑

k=0

bkx [n − k]−
N
∑

k=1

aky [n− k]

causal formulation

provides an algorithm to compute each output value

the frequency response is the DTFT of the impulse response

how do we compute the impulse response from the CCDE?

it turns out we don’t need to!
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Applying the z-transform to CCDE’s

N
∑

k=0

aky [n − k] =

M
∑

k=0

bkx [n − k]

Y (z)
N
∑

k=0

akz
−k = X (z)

M
∑

k=0

bkz
−k

H(z) =
Y (z)

X (z)
=

M
∑

k=0

bkz
−k

1 +

N
∑

k=1

akz
−k
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Rational Transfer Function

we can obtain the transfer function of an LTI directly from the CCDE coefficients!

the transfer function is a ratio of polynomials

this ASSUMES that everything converges...
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Rational Transfer Function

H(z) =

M
∑

k=0

bkz
−k

1 +

N
∑

k=1

akz
−k

feedforward part

feedback part
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Leaky Integrator revisited

CCDE: y [n] = (1− λ)x [n] + λy [n − 1]

impulse response: h[n] = (1− λ)λnu[n]

transfer function from impulse response

H(z) = (1− λ)

∞
∑

n=0

λn z−n =
(1− λ)

1− λz−1

transfer function from CCDE:

Y (z) = (1− λ)X (z) + λz−1Y (z)

H(z) =
(1− λ)

1− λz−1
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Remember the delay block?

x [n] z−1 x [n − 1]

Y (z) = z−1 X (z)

now the notation should make more sense!
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The powerful formalism of transfer functions



Manipulating filters using transfer functions

transfer functions are ratios of polynomials

cascaded subsystems: product of transfer functions

parallel subsystems: sum of transfer functions

complex systems can be analyzed using simple algebra
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Cascade of filters

x [n] F (z) G (z) y [n]

transfer function for the cascade:

H(z) = F (z)G (z)
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Filters in parallel

x [n] b F (z)

G (z) + y [n]

transfer function for the cascade:

H(z) = F (z) + G (z)
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Filters in feedback configuration

x [n] + F (z) b y [n]

G (z)

transfer function for the cascade:

H(z) =
F (z)

1− F (z)G (z)
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Example: CCDE of cascade

x [n] F (z) G (z) y [n]
w [n]

CCDE for F : w [n] = aw [n − 1] + x [n]

CCDE for G: y [n] = by [n − 1] + cw [n] + dw [n − 1]

CCDE for the cascade?
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Example: CCDE of cascade

x [n] F (z) G (z) y [n]
w [n]

F (z) = 1/(1 − az−1)

G (z) = (c + dz−1)/(1 − bz−1)

H(z) = F (z)G (z) =
c + dz−1

1− (a + b)z−1 + abz−2

CCDE for the cascade:

y [n] = (a + b)y [n − 1]− ab y [n − 2] + c x [n] + d x [n − 1]
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Example: impulse response of second-order IIR

y [n] = a1y [n − 1] + a2y [n − 2] + x [n]

Y (z) =
1

1− a1z−1 − a2z−2

x [n] + b y [n]

z−1

+ b

z−1

−a1

−a2
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Example: impulse response of second-order IIR

H(z) =
1

1− a1z−1 − a2z−2

we can factor the denominator:

H(z) =
1

(1− p0z−1)(1− p1z−1)

and then use partial fraction decomposition:

H(z) =
c0

1− p0z−1
+

c1

1− p1z−1

ci =
pi

p0 − p1
, i = 0, 1
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We know the impulse response of a first-order IIR

y [n] = λy [n − 1] + x [n]

Hλ(z) =
1

1− λz−1

hλ[n] = λn u[n]
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Example: impulse response of second-order IIR

second order as a cascade of first-order filters

H(z) =
1

1− p0z−1

1

1− p1z−1
= Hp0(z)Hp1(z)

as per the convolution theorem, h = hp0 ∗ hp1

h[n] =
∞
∑

k=−∞

pk0u[k]p
n−k
1 u[n − k]

=
n
∑

k=0

pk0 p
n−k
1

= pn1

n
∑

k=0

(p0/p1)
k =







pn+1
0 − pn+1

1

p0 − p1
p0 6= p1

(n + 1)pn0 p0 = p1
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Example: impulse response of second-order IIR

if p0 6= p1 we can use partial fraction decomposition

second order as a parallel structure:

H(z) =
1

p0 − p1

[

p0

1− p0z−1
+

p1

1− p1z−1

]

each subsystem is independent

h = (p0 hp0 + p1 hp1)/(p0 − p1)

h[n] =
1

p0 − p1

[

p0 p
k
0u[k] + p1 p

k
1u[k]

]

=
pn+1
0 − pn+1

1

p0 − p1
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Impulse response of second-order IIR

1 p0,1 = λ0,1 ∈ R, λ0 6= λ1

2 p0,1 = λ ∈ R

3 p0 = ρ e jϕ ∈ C, p1 = p∗0 = ρ e−jϕ
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Second-order IIR, distinct real-valued roots

H(z) = [1− 1.59z−1 + 0.594z−2]−1, h[n] =
λn+1
0 − λn+1

1

λ0 − λ1
, λ0 = 0.99, λ1 = 0.6
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Second-order IIR, double real-valued root

H(z) = [1− 1.8z−1 + 0.81z−2]−1, h[n] = (n + 1)λn, λ = 0.9
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Second-order IIR, complex-conjugate roots

H(z) = [1− 0.8927z−1 + 0.9025z−2]−1, h[n] =
ρn

sinϕ
sin((n + 1)ϕ), ρ = 0.95, ϕ = π/9
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region of convergence



The region of convergence

the z-transform of a sequence is a power series

the series may not converge for all values of z

we can only use the z-transform when the series converge

we need to find the Region of Convergence (ROC)
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Finding the region of convergence

The ROC is defined by the absolute convergence of the power series:

z ∈ ROC
{

X (z)
}

⇐⇒
∞
∑

n=−∞

∣

∣x [n]z−n
∣

∣ < ∞

How can we determine the ROC?

ROC depends on the values of x

for rational transfer function we can use indirect methods

we don’t care about convergence in zero and infinity

39



Region of convergence (ROC)

observation #1:

for finite-support signals, the z-transform converges everywhere (except in 0 and/or ∞)

X (z) =

N
∑

n=−M

x [n]z−n
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Region of convergence (ROC)

observation #2:

the region of convergence has circular symmetry: set z = ae jθ:

∞
∑

n=−∞

∣

∣x [n]z−n
∣

∣ < ∞ ⇐⇒
∞
∑

n=−∞

|x [n]| |a−n| < ∞
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Region of convergence (ROC)

observation #3:

for causal sequences, the ROC extends from a circle to infinity:
assume z0 ∈ ROC and |z1| > |z0|:

∞
∑

n=0

∣

∣x [n] z−n
1

∣

∣ =

∞
∑

n=0

|x [n]|
|zn1 |

≤
∞
∑

n=0

|x [n]|
|zn0 |

≤ ∞
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ROC shape for causal sequences

Re

Im
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Region of convergence (ROC)

so where are the convergence problems?

in general, difficult question; but we’re only interested in rational transfer functions!
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ROC for causal systems

Consider the transfer function for an LTI system:

H(z) =
b0 + b1z

−1 + . . . + bMz−M

1 + a1z−1 + . . .+ aNz−N

It can always be factored as:

H(z) = b0

M
∏

n=1

(1− znz
−1)

N
∏

n=1

(1− pnz
−1)
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ROC for causal systems

zn’s: zeros of the transfer function

pn’s: poles of the transfer function

only trouble spots for ROC are the poles
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ROC for causal systems

We know:

ROC extends outwards

ROC cannot include poles

ROC extends outwards from a circle touching the largest-magnitude pole
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ROC for causal systems
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ROC for causal systems

Re

Im

a

a
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b

b
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ROC for causal systems - Proof (sketch)

G (z) =
B(z)

A(z)
with A(z) and B(z) coprime

since B(z) has no poles, ROC of G (z) same as ROC of H(z) = 1/A(z)

assume all poles distinct

use partial fraction decomposion:

H(z) =

N−1
∏

k=0

1

(1− pkz−1)
=

N−1
∑

k=0

ck

(1− pkz−1)
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ROC for causal systems - Proof (sketch)

Example:

1

1− 5z−1 + 6z−2
=

1

(1− 2z−1)(1− 3z−1)

=
c0

1− 2z−1
+

c1

1− 3z−1

c0 + c1 = 1

2c0 + 3c1 = 0

1

1− 5z−1 + 6z−2
=

−2

1− 2z−1
+

3

1− 3z−1
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ROC for causal systems - Proof (sketch)

H(z) =

N−1
∏

k=0

1

(1− pkz−1)
=

N−1
∑

k=0

ck

(1− pkz−1)

remember the leaky integrator...

each term corresponds to an exponential sequence:

Z
{

pnk u[n]
}

=
1

(1− pkz
−1)

the ROC for each term is |z | > |pk |

intersection of all ROCs is |z | > |pmax|
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ROC for causal systems - Proof (sketch)

same for multiple poles, just more tedious

Z
{

npn u[n]
}

=
pz−1

(1− pz−1)2
, ROC: |z | > |p|

all LTI impulse responses are linear combinations of weighed exponential sequences

we could use an inverse z-transform to obtain h[n]
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system stability



Overview:

BIBO stability

Stability criteria
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Stability

key concept: avoid “explosions” if the input is nice

a nice signal is a bounded signal: |x [n]| < M for all n

Bounded-Input Bounded-Output (BIBO) stability: if the input is nice the output should
be nice
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Fundamental Stability Theorem

A filter is BIBO stable if and only if its impulse response is absolutely summable
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Proof (⇒)

Hypotheses: bounded input
and absolutely summable
impulse response

|x [n]| < M

∑

n |h[n]| = L < ∞

Thesis: output is bounded

|y [n]| < ∞

Proof:

|y [n]| =
∣

∣

∣

∣

∣

∞
∑

k=−∞

h[k]x [n − k]

∣

∣

∣

∣

∣

≤
∞
∑

k=−∞

|h[k]x [n − k]|

≤ M

∞
∑

k=−∞

|h[k]|

≤ ML
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Proof (⇐)

Hypothesis: output is
bounded for any bounded
input

|x [n]| < ∞ ⇒
|(x ∗ h)[n]| < ∞

Thesis: impulse response is
absolutely summable

∑

n |h[n]| < ∞

Proof (by contradiction):

assume hypothesis fulfilled, yet
∑

n |h[n]| = ∞

build x [n] =

{

+1 if h[−n] ≥ 0

−1 if h[−n] < 0

clearly, |x [n]| < ∞

however

(x ∗ h)[0] =
∞
∑

k=−∞

h[k]x [−k] =

∞
∑

k=−∞

|h[k]| = ∞
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The good news

FIR filters are always stable
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Checking the stability of IIRs – Example

Let’s check the Leaky Integrator:

∞
∑

n=−∞

|h[n]| = |1− λ|
∞
∑

n=0

|λ|n

= lim
n→∞

|1− λ|1− |λ|n+1

1− |λ|
< ∞ for |λ| < 1

stability is guaranteed for |λ| < 1
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Checking the stability of IIRs – General case

stability of a filter with impulse response h[n] and transfer function H(z):

1 ∈ ROC ⇐⇒ H(z) converges absolutely in z = 1 ⇐⇒
∞
∑

n=−∞

|h[n]| < ∞

an LTI system is stable if and only if the ROC includes the unit circle

a causal system is stable if and only if all poles are inside the unit circle
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Stable causal system

1
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b
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Unstable causal system

1

Re

Im

a

a

a

a

b

b

b
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Common confusion...

y [n] = 2y [n − 1] + x [n] (obviously unstable)

apply z-transform as a formal operator:

H(z) =
Y (z)

X (z)
=

1

1− 2z−1

H(1) = −1 < ∞, so is the system stable?
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Common confusion clarified

ROC depends on h[n], NOT on formal value of H(z):

h[n] = 2n u[n]

to apply the z-transform operator we assume to be in the ROC

the region of convergence is |z | > 2 because

∞
∑

n=0

an z−n = lim
N→∞

1− (a/z)N

1− (a/z)
=







1

1− az−1
if |z | > |a|

∞ otherwise
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In other words...

the function
1

1− az−1
is defined for all z ∈ C \ {a}

BUT

it is the z-transform of anu[n] only for |z | > |a|
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Rational Transfer Function

for which values of z does a rational H(z) exist?

option 1: compute h[n] explicitly and find ROC for the power series
∑

h[n]z−n

option 2: derive ROC indirectly:

• ROC is circular symmetric

• ROC extends outwards for causal sequences

• ROC cannot include poles
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Understanding a pole-zero plot



The effects of poles and zeros

Looking at the magnitude of the transfer function with the “circus tent” method:

z-transform magnitude is like a rubber sheet over the complex plane

zeros glue the sheet to the ground

poles are like ... poles, pushing it up

frequency response (in magnitude) is sheet height around the unit circle
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Example: pole-zero plot

1

Re

Im

a

a

bb
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Example: pole-zero plot in 3D

Re

Im

|H(z)|
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Example: pole-zero plot in 3D
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|H(z)|
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Example: pole-zero plot in 3D
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|H(z)|
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b a

a

70



Example: sketching |H(z)|

Re

Im

|H(z)|
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Example: sketching |H(z)|

Re

Im

|H(z)|

H(z) = 1
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Example: sketching |H(z)|

Re

Im

|H(z)|

b

H(z) = (1− z0 z
−1)
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Example: sketching |H(z)|

Re

Im

|H(z)|

b

b

H(z) = (1− z0 z
−1)(1 + z1 z

−1)
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Example: sketching |H(z)|

Re

Im

|H(z)|

b

b a

H(z) = (1−z0 z
−1)(1+z1 z

−1)
(1−p0 z−1)
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Example: sketching |H(z)|
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Im

|H(z)|
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b a

a

H(z) = (1−z0 z
−1)(1+z1 z

−1)
(1−p0 z−1)(1−p∗0 z−1)
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Example: sketching |H(z)|
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Example: sketching |H(z)|
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Example: sketching |H(z)|
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Example: sketching |H(z)|
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Example: sketching |H(z)|
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Example: sketching |H(z)|

Re Im

|H(z)|
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Magnitude of the frequency response

−π −π/2 0 π/2 π

|H
(e

jω
)|
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block diagrams



Overview:

Algorithms for CCDE’s

Block diagram

Real-time processing
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An old friend

class LI:

def __init__(self, lam):

self.buf = 0

self.lam = lam

def filt(self, x):

self.buf = self.lam * self.buf + (1 - self.lam) * x

return self.buf
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Testing the code

>>> from leaky import LI

>>> li = LI(0.95)

>>> for x in [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]:

>>> print(li.filt(x), end=’ ’)

0.0, 0.0, 0.0, 0.0, 0.0500000000000000, 0.047500000000000,

0.045125000000000, 0.042868750000000, 0.0407253125000000,

0.038689046875000, 0.0367545945312500

>>>
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Key points

we need a “memory cell” to store previous output

we need to initialize the storage before first use

we need 2 multiplications and one addition per output sample
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Another old friend

y [n] =
1

M

M−1
∑

k=0

x [n − k]
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Another old friend

class MA:

def __init__(self, M):

self.buf = np.zeros(M-1)

self.norm = 1.0 / M

def filt(self, x):

y = (x + np.sum(self.buf)) * self.norm

self.buf = np.r_[x, self.buf[:-1]]

return y
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Key points

we now need M − 1 memory cells to store previous input values

we need to initialize the storage before first use

we need 1 multiplication and M − 1 additions per output sample
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We can abstract from the implementation

x [n]

+ x [n] + y [n]

y [n]

x [n] αx [n]
α

x [n] z−N x [n − N]
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Leaky Integrator

y [n] = λy [n − 1] + (1− λ)x [n]

x [n] + b y [n]

z−1

1− λ

λ
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Moving Average

y [n] = 1
M

∑M−1
k=0 x [n − k]

x [n] b z−1 b z−1 b z−1 b z−1

+ + + + y [n]
1/M
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The second-order section (aka ”biquad”)

y [n] + a1y [n − 1] + a2y [n − 2] = b0x [n] + b1x [n − 1] + b2x [n − 2]

H(z) =
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2
=

B(z)

A(z)
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Why are biquads important?

We can always factor a rational transfer function into a cascade of second-order sections:

H(z) =
b0 + b1z

−1 + . . .+ bMz−M

1 + a1z−1 + . . .+ aNz
−N

=

⌈max{M,N}/2⌉
∏

k=1

b0,k + b1,kz
−1 + b2,kz

−2

1 + a1,kz−1 + a2,kz−2

if H(z) has real-valued coefficients, so will all the biquad sections

cascade implementation is numerically more robust

a lot of useful filters can be implemented with a single biquad
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Second-order section, direct form I

x [n] b + + b y [n]

z−1 z−1

b + + b

z−1 z−1

B(z) 1/A(z)

b0

b1 −a1

b2 −a2
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Second-order section, direct form I, inverted order

x [n] + b b + y [n]

z−1 z−1

+ b b +

z−1 z−1

1/A(z) B(z)

b0

−a1 b1

−a2 b2
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Second-order section, direct form II

x [n] + b + y [n]

z−1

+ b +

z−1

b

b0

−a1 b1

−a2 b2
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intuitive filter design



Simple, useful filters

many signal processing problems can be solved using simple filters

e.g. we have already derived simple lowpass filters “intuitively” (Moving Average, Leaky
Integrator)

with a low-order transfer function we can try to design filters by placing poles and zeros
“by hand”
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Simple lowpass

let only low frequencies pass

used to remove high frequency components (e.g. noise)

useful in audio, communication, control systems

we know a simple answer: leaky integrator

89



Leaky Integrator

H(z) =
(1− λ)

1− λz−1

y [n] = (1− λ)x [n] + λy [n − 1]

1

Re

Im

aλ
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Leaky Integrator, filter structure

x [n] + b y [n]

z−1

1− λ

λ
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Leaky Integrator, λ = 0.98

−π −3π/4 −π/2 −π/4 0 π/4 π/2 3π/4 π
0

1

|H
(ω

)|
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DC removal

a DC-balanced signal has zero mean: lim
N→∞

N
∑

n=−N

x [n] = 0

i.e. there is no Direct Current component

its DTFT value at zero is zero

to remove the DC bias from a non zero-centered signal...

... we just need to kill the frequency component at ω = 0
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DC removal

H(z) = 1− z−1

y [n] = x [n]− x [n − 1]
1

Re

Im

b
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DC notch

−π −π/2 0 π/2 π
0

1

2

|H
(ω

)|
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Problems with the simple DC notch

we only want to eliminate the DC component but

too much attenuation around zero, we’d like the magnitude response to climb back up
quickly around zero

magnitude response at ω = ±π is greater than one: amplification of high frequencies

solutions:

add a pole to “push up” H(z) (remember the circus tent)

add a gain factor to make sure gain is at most one
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DC removal, improved

H(z) = G
1− z−1

1− λz−1

gain in z = −1 (i.e. ω = ±π):

H(−1) = G
2

1 + λ

normalization factor: G = 1+λ
2
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DC removal, improved

H(z) =
1 + λ

2

1− z−1

1− λz−1

y [n] = λy [n − 1] +
1 + λ

2
(x [n]− x [n − 1]) 1

Re

Im

ba
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DC notch, λ = 0.7

−π −π/2 0 π/2 π
0

1

|H
(ω

)|
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DC notch, λ = 0.98

−π −π/2 0 π/2 π
0

1

|H
(ω

)|
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DC notch, filter structure

x [n] + b + y [n]

z−1

b

1+λ
2

λ −1
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Hum removal

similar to DC removal but we want to remove a specific frequency ω0 > 0

very useful for audio equipment since amplifiers tend to pick up the hum from the AC
power supply (50Hz in Europe and 60Hz in North America)

idea: shift the pole-zero pair of the DC notch to ω0

but, to keep the filter real-valued, we need to add a conjugate pole-zero pair
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Hum removal

1

Re

Im

a

a

b

b

ω0
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Hum removal

H(z) = G
(1− e jω0 z−1)(1 − e−jω0 z−1)

(1− λe jω0 z−1)(1 − λe−jω0 z−1)

G =
(1 + λ)2

4
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Hum removal: finding the gain

we want the gain at ±π to be unitary; the transfer function in −1 before normalization is

Hp(−1) =
1 + e jω0

1 + λe jω0
· 1 + e−jω0

1 + λe−jω0
= r · s

r =
1 + e jω0

1 + λe jω0
=

e jω0/2(e−jω0/2 + e jω0/2)

e jω0/2(e−jω0/2 + λe jω0/2)

=
2 cos(ω0/2)

cos(ω0/2) − j sin(ω0/2) + λ cos(ω0/2) + jλ sin(ω0/2)

=
2

(1 + λ)− j(1− λ) tan(ω0/2)
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Hum removal: finding the gain

for λ ≈ 1, r ≈ 2/(1 + λ)

similarly,

s =
1 + e−jω0

1 + λe−jω0
=

2

(1 + λ) + j(1 − λ) tan(ω0/2)

for λ ≈ 1, s ≈ 2/(1 + λ)

|Hp(−1)| = |r ||s| ≈ 4

(1 + λ)2
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Hum removal

ω0 = 0.3π, λ = 0.95

−π −π/2 0 π/2 π
0

1

|H
(ω

)|
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Hum removal

ω0 = 0.8π, λ = 0.99

−π −π/2 0 π/2 π
0

1

|H
(ω

)|
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Hum removal, filter structure

x [n] + b + y [n]

z−1

+ b +

z−1

b

(1+λ)2

4

2λ cosω0 −2 cosω0

−|λ|2
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Tunable Resonator

a resonator is a narrow bandpass filter

used to detect the presence of a sinusoidal component of a given frequency

useful in communication systems and telephony (DTMF)

idea: shift the passband of the Leaky Integrator

again, to keep the filter real-valued, we need to use a pair of conjugate poles
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Simple resonator

Hs(z) =
1

(1− pz−1)(1− p∗z−1)

p = λe jω0

y [n] = x [n]− a1y [n− 1]− a2y [n − 2]

1

Re

Im

a

a

ω0
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Simple resonator

Hs(z) =
1

(1− pz−1)(1 − p∗z−1)
, p = λe jω0

=
1

1− 2ℜ{p} z−1 + |p|2 z−2

=
1

1− 2λ cos ω0 z−1 + |λ|2 z−2

a1 = −2λ cosω0

a2 = |λ|2
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Simple resonator

Hs(z) =
1

1− 2λ cosω0 z−1 + |λ|2 z−2

y [n] = x [n] + 2λ cos ω0y [n − 1]− |λ|2y [n − 2]
1

Re

Im

a

a

ω0
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Simple resonator, λ = 0.95, ω0 = π/3

−π −2π/3 −π/3 0 π/3 2π/3 π

|H
s
(ω

)|

−π

π

−π −2π/3 −π/3 0 π/3 2π/3 π

∠
H

s
(ω

)
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Problems with the simple resonator

the gain at the resonating frequency depends on ω0:

|Hs(ω0)| =
[

|1− λ| |1− λe−j2ω0 |
]−1

we would like to have the same peak gain for all choices of ω0

also, we would like the gain to be zero for ω = 0,±π (bandpass)
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Simple Resonator: varying peak gain

|Hs(ω0)| =
[

|1− λ| |1 − λe−j2ω0 |
]−1

−π −2π/3 −π/3 0 π/3 2π/3 π
0

6

12

18

24

30

|H
s
(ω

)|
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Improved resonator

Idea: add a double zero in ω = 0: Hr (z) = (1− z−2)Hs(z)

(1− z−2) makes the frequency response zero at ω = 0 and ω = π

peak gain now:

|Hr (ω0)| =
1

|1− λ|
|1− e−j2ω0 |
|1− λe−j2ω0 |

with some algebra (like we did for the notch):

|1− e−j2ω0 |
|1− λe−j2ω0 | =

2

|1 + λ− j(1− λ) cot ω0|

for λ close to one, |Hr (ω0)| ≈ 2/(1− λ2)
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Constant peak gain resonator

H(z) =

(

1− λ2

2

)

1− z−2

1− 2λ cos ω0 z−1 + |λ|2 z−2

negligible extra cost

unit gain at peak

DC rejection
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Resonator, filter structure

x [n] + b + y [n]

z−1

+ b

z−1

b

(1− λ2)/2

2λ cosω0

−|λ|2

−1
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Resonator, λ = 0.95, ω0 = π/3

−π −2π/3 −π/3 0 π/3 2π/3 π
0

1
|H

(ω
)|

−π

π

−π −2π/3 −π/3 0 π/3 2π/3 π

∠
H
(ω

)
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Resonator, λ = 0.99, ω0 = π/3

−π −2π/3 −π/3 0 π/3 2π/3 π
0

1
|H

(ω
)|

−π

π

−π −2π/3 −π/3 0 π/3 2π/3 π

∠
H
(ω

)
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Resonator, λ = 0.99, ω0 = π/10

−π −2π/3 −π/3 0 π/3 2π/3 π
0

1
|H

(ω
)|

−π

π

−π −2π/3 −π/3 0 π/3 2π/3 π

∠
H
(ω

)
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We need more systematic methods for filter design

“intuitive” filter design can only take us so far

we need more general and more quantitative design methods

many different “recipes” exist

goal is to fulfill a set of requirements while minimizing some error metric
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filter design: the setup



The filter design problem

You are given a set of requirements:

frequency response: passband(s) and stopband(s)

phase: overall delay, linearity

some limit on computational resources and/or numerical precision

You must determine N, M, ak ’s and bk ’s in

H(z) =
b0 + b1z

−1 + . . . + bM−1z
−M

1 + a1z−1 + . . .+ aN−1z−N

in order to best fulfill the requirements
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Example: lowpass specs

ωc0 π
0

1
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Practical limitations

passband/stopband transitions cannot be infinitely sharp
⇒ use transition bands

magnitude response cannot be constant over an interval
⇒ specify magnitude tolerances over bands

in general:

• smaller transition bands ⇒ higher filter order

• smaller error tolerances ⇒ higher filter order

• higher filter order ⇒ more expensive, larger delay
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Example: lowpass specs

ωc0 π
0

1
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Realistic specs

0 ωp ωs π

passband transition band stopband

0

1
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Why we can’t have a “vertical” transition

H(z) =
B(z)

A(z)
is a rational function with A,B ∈ C∞

polynomial rational functions cannot have jump discontinuities
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Why we can’t have a flat response

H(z) =
B(z)

A(z)
, with A and B polynomials

H(e jω) = c over an interval ⇒ B(z)− cA(z) = 0 over an interval
⇒ B(z)− cA(z) has an infinite number of roots
⇒ B(z)− cA(z) = 0 for all values of z
⇒ H(e jω) = c over the entire [−π, π] interval.
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Deviation from the target response

frequency response cannot be constant so there will be an approximation error:

it’s important to be able to control the max error

error can change monotonically

error can oscillate around zero
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Important case: equiripple error

equiripple: max and min error values alternate with equal magnitude

0 ωp

1− δp

1 + δp
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The big questions

IIR or FIR?

how to determine the coefficients?

how to evaluate the performance?
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IIRs: pros and cons

Pros:

computationally efficient

can achieve strong attenuations easily

“natural sounding” in audio applications

Cons:

stability and numerical precision issues

difficult to design for arbitrary frequency responses

phase response is always nonlinear
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FIRs: pros and cons

Pros:

always stable

numerically robust

optimal design techniques exist for arbitrary responses

can have linear phase

Cons:

computationally more expensive than similar IIRs

large processing delay (not suitable for “live” applications)
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The design methods

finding N, M, ak ’s and bk ’s from specs is a difficult nonlinear problem

established methods:

• IIR: ready-made cookbooks (based on old analog designs)

• FIR: optimal design algorithm (Parks-McClellan)
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IIR filter design methods



IIR: conversion of analog design

Filter design was an established art long before digital processing appeared

lots of nice analog filters exist

methods exist to “translate” the analog design into a rational transfer function

most numerical packages (Matlab, Numpy, etc.) provide ready-made routines

design involves specifying some parameters and testing that the specs are fulfilled
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Three classic filter families to be aware of

Butterworth (smooth monotonic frequency response)

Chebyshev (monotonic/equiripple)

Elliptic (equiripple)
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Butterworth lowpass

Magnitude response:

maximally flat

monotonic over [0, π]

Design parameters:

order N (N poles and N zeros)

cutoff frequency

Design test criterion:

width of transition band

passband error
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Butterworth lowpass design with SciPy

import scipy.signal as sp

b, a = sp.butter(4, 0.25)

wb, Hb = sp.freqz(b, a, 1024);

plt.plot(wb/np.pi, np.abs(Hb));
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Butterworth lowpass example

N = 4, ωc = π/4

−π −3π/4 −π/2 −π/4 0 π/4 π/2 3π/4 π
0

1

|H
(ω

)|
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Butterworth lowpass example

N = 8, ωc = π/4

−π −3π/4 −π/2 −π/4 0 π/4 π/2 3π/4 π
0

1

|H
(ω

)|
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Chebyshev lowpass

Magnitude response:

equiripple in passband

monotonic in stopband

(or vice-versa)

Design parameters:

order N (N poles and N zeros)

passband max error

cutoff frequency

Design test criterion:

width of transition band

stopband error
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Chebyshev lowpass design with SciPy

b, a = sp.cheby1(4, .12, 0.25)

144



Chebyshev lowpass example

N = 4, ωc = π/4, emax = 12%

−π −3π/4 −π/2 −π/4 0 π/4 π/2 3π/4 π
0

1

|H
(ω

)|
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Chebyshev lowpass example

N = 8, ωc = π/4, emax = 12%

−π −3π/4 −π/2 −π/4 0 π/4 π/2 3π/4 π
0

1

|H
(ω

)|
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Elliptic lowpass

Magnitude response:

equiripple in passband and
stopband

Design parameters:

order N

cutoff frequency

passband max error

stopband min attenuation

Design test criterion:

width of transition band
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Elliptic lowpass design with SciPy

b, a = sp.ellip(4, .1, 50, 0.25)
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Elliptic lowpass example

N = 4, ωc = π/4, emax = 12%, attmin = 0.03

−π −3π/4 −π/2 −π/4 0 π/4 π/2 3π/4 π
0

1

|H
(ω

)|
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Elliptic lowpass example

N = 6, ωc = π/4, emax = 12%, attmin = 0.03

−π −3π/4 −π/2 −π/4 0 π/4 π/2 3π/4 π
0

1

|H
(ω

)|
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Elliptic lowpass example: numerical errors for high-order

N = 8, ωc = π/4, emax = 12%, attmin = 0.03

−π −3π/4 −π/2 −π/4 0 π/4 π/2 3π/4 π
0

1

|H
(ω

)|

151



Let’s compare

compare magnitude response of 4th-order lowpass filters

same cutoff frequency and transition band width

plot the magnitude response in dB
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The decibel for amplitude ratios

Relative measure of amplitude in log scale:

|H(ω)|dB = 20 log10
|H(ω)|
Href

Here we choose Href = 1, target value in passband.

-6 dB = half the amplitude

-20 dB = one tenth of the amplitude

153



4-th order IIR lowpass comparison

Butterworth
Chebyshev
elliptic

−π −3π/4 −π/2 −π/4 0 π/4 π/2 3π/4 π

−130

−110

−90

−70

−50

−30

−10

|H
(ω

)|
(d
B
)

all filters require 9 multiplications per output sample
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Qualitative comparison

For a given order N

sharpness of transition band: Elliptic > Chebyshev > Butterworth

phase distortion: Butterworth < Chebyshev < Elliptic

passband ripples Butterworth < Chebyshev < Elliptic

stopband attenuation: Elliptic > Chebyshev > Butterworth
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Elliptic lowpass example: numerical errors for high-order

N = 8, ωc = π/4, emax = 12%, attmin = 0.03

−π −3π/4 −π/2 −π/4 0 π/4 π/2 3π/4 π
0

1

|H
(ω

)|
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Numerical precision issues

all digital devices represent numbers using finite precision

poles are the roots of the denominator of the transfer function

filter algorithms store the value of the coefficients, not of the poles

the value of a pole is a nonlinear function of the filter coefficients

insufficient numerical precision may cause poles to drift out of unit circle

157



Pole drifting: example

nominal pole: p = ρe jθ, magnitude |p| = ρ

second-order transfer function: P(z) = (1− pz−1)(1 − p∗z−1)

P(z) = 1 + a1z
−1 + a2z

−2, with a1 = −2ρ cos θ and a2 = ρ2

coefficients a1,2 are stored with finite precision

actual pole magnitude |p̂| = 2

|
√

a21−4a2−a1|

# decimal digits for a1,2 ρ− |p̂|

8 2.22 · 10−16

7 5.00 · 10−9

4 5.00 · 10−9

3 4.00 · 10−4

2 4.91 · 10−3
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Poles of the 8th order elliptic lowpass

1

Re

Im

a

a

a

a

a

a

a

a
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Pole magnitude

Magnitude of poles as a function of the number of digits used to store coefficients

# digits

9 0.99969893 0.99641971 0.96231223 0.6929287

8 0.99970234 0.99641583 0.96231266 0.69292873

7 0.99987231 0.99622669 0.96233196 0.69292855

6 1.0027213 0.99267273 0.96304264 0.69292212

5 1.00418091 0.99647046 0.95797945 0.69292331

160



Numerical precision: how to mitigate

design filter in factored form

use a cascade of second-order sections

in Python: b, a = sp.ellip(4, .1, 50, 0.25, output=’sos’)
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FIR filter design methods



IIRs: pros and cons (recap)

Pros:

computationally efficient

can achieve strong attenuations easily

“natural sounding” in audio applications

Cons:

stability and numerical precision issues

difficult to design for arbitrary frequency responses

phase response is always nonlinear
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FIRs: pros and cons (recap)

Pros:

always stable

numerically robust

optimal design techniques exist for arbitrary responses

can have linear phase

Cons:

computationally more expensive than similar IIRs

large processing delay (not suitable for “live” applications)
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FIR design methods

FIR filters exist only in discrete time (there are no analog FIRs)

Three important design methods:

impulse truncation, window method

frequency sampling

Parks-McClellan algorithm
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Quick-and-dirty design methods (recap)

impulse truncation

frequency sampling

Advantages:

simple and intuitive

can be applied to arbitrary frequency responses

Drawbacks:

cannot control the approximation error

longer than optimally-desinged FIRs
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Impulse truncation (recap)

start with a zero-phase ideal filter (or combination thereof)

derive the closed-form expression of the impulse response h[n]

keep M = 2N + 1 samples around n = 0:

ĥ[n] =











h[n] |n| ≤ N

0 otherwise

we may use a tapering window to reduce ripples
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The Gibbs phenomenon (recap)

0 π/2 π

0

1

H
(ω

)
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The Gibbs phenomenon (recap)

M = 9

0 π/2 π

0

1

Ĥ
(ω

)
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The Gibbs phenomenon (recap)

M = 21

0 π/2 π

0

1

Ĥ
(ω

)
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The Gibbs phenomenon (recap)

M = 101

0 π/2 π

0

1

Ĥ
(ω

)
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The Gibbs phenomenon (recap)

M = 201

0 π/2 π

0

1

Ĥ
(ω

)
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Frequency sampling (recap)

draw desired zero-phase frequency response H(ω)

take M equally-spaced values of the frequency response over the [0, 2π] interval:

HM [k] = H((2π/M)k), k = 0, 1, . . . ,M − 1

compute the inverse DFT: hM [n] = IDFT {HM [k]}

use the impulse response

ĥ[n] =

{

hM [n] 0 ≤ n < M

0 otherwise
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Example: ideal lowpass with cutoff π/2

get M samples over the [0, 2π] interval, so they are ready for the IDFT

bc bc bc

bc bc bc bc bc bc

bc bc

M = 11

−2π −3π/2 −π −π/2 0 π/2 π 3π/2 2π
0

1
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Frequency sampling: impulse response from IDFT

hM [n] ĥ[n]

b

b

b

b

b

b

b

b

b

b

b

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b0
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Frequency sampling: frequency response

Ĥ(ω)

bb bb bb

bb bb bb bb bb

bb bb bb

−π −π/2 0 π/2 π

still no control over max error
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linear-phase FIRs



Optimal linear-phase filter design

In the 1970s Parks and McClellan developed an algorithm to design optimal FIR filters with

(generalized) linear phase

equiripple error in passband and stopband

176



Linear phase responses

zero phase: H(ω) ∈ R

• no processing delay

• examples: h[n] = δ[n], h[n] = sinc(an)

linear phase: H(ω) = A(ω)e−jωd , A(ω) ∈ R

• processing delay of d samples

• examples: h[n] = δ[n − d ], moving average filter

generalized linear phase: H(ω) = A(ω)e−j(ωd−β), A(ω) ∈ R

• if h[n] ∈ R then β = ±π or β = ±π/2

• examples: h[n] = δ[n]− δ[n − 2] (d = 1, β = −π/2),
h[n] = δ[n] + jδ[n− 2] (d = 1, β = π/4)
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Impulse responses with generalized linear phase

H(ω) = A(ω)e−j(ωd−β), A(ω) ∈ R

impulse response
e jωdH(ω) = A(ω)e jβ ⇒ h[n+ d ] = e jβ a[n]

condition on a[n]:
A(ω) ∈ R ⇔ a[n] = a∗[−n]

condition on h[n]:
h[d + n] = e2jβh∗[d − n]
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Impulse responses for generalized linear phase

h[d + n] = e2jβh∗[d − n]

if h[n] ∈ R:

• symmetric impulse response (β = ±π): h[d + n] = h[d − n]

• antisymmetric impulse response (β = ±π/2): h[d + n] = −h[d − n]

if h[n] ∈ C:

• hermitian-symmetric impulse response (β = ±π): h[d + n] = h∗[d − n]

• hermitian-antisymmetric impulse response (β = ±π/2): h[d + n] = −h∗[d − n]

• otherwise: (e−jβh[d + n]) = (e−jβh[d − n])∗
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Impulse responses for generalized linear phase

realizable IIRs cannot have linear phase:

• if IIR, h[n] extends at least to +∞ or −∞

• h[d + n] = e2jβh∗[d − n] implies that h[n] is infinite, two sided

• only ideal (non-realizable) IIRs like the sinc can have linear phase

we will consider only real-valued, FIR filters

there are four types of real-valued, linear-phase FIRs
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Linear-phase FIRs

symmetric or antisymmetric impulse responses guarantee linear phase
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Linear phase (Type I)

filter length is odd: M = 2L+ 1

h[L+ n] = h[L− n]

zero-centered filter:

hd [n] = h[n+ L]

hd [n] = hd [−n]
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Causal linear phase (Type I)

h[n]

b b b b b
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b

b

b

b

b
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Noncausal zero phase (Type I)

hd [n]

b b b

b

b

b

b

b

b b b

−L 0 L
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Linear phase (Type I)

Hd (z) =
L
∑

n=−L

hd [n]z
−n

= hd [0] +

L
∑

n=1

hd [n](z
n + z−n)

Hd (ω) = hd [0] +
L
∑

n=1

hd [n](e
jωn + e−jωn)

= hd [0] + 2
L
∑

n=1

hd [n] cosωn ∈ R
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Linear phase (Type I)

H(z) = z−LHd (z)

H(ω) =

[

h[L] + 2

L
∑

n=1

h[n + L] cos nω

]

e−jωL
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Linear phase (Type II)

filter length is even: M = 2L

h[n] = h[2L− 1− n]
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Linear phase (Type II)

h[n]

b b b b b
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b b

b

b b
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Linear phase (Type II)

H(z) =h[0] +h[1]z−1 + . . . +h[L− 1]z−L+1+

h[2L− 1]z−2L+1 +h[2L− 2]z−2L+2 + . . . +h[L]z−L

=h[0] +h[1]z−1 + . . . +h[L− 1]z−L+1+

h[0]z−2L+1 +h[1]z−2L+2 + . . . +h[L− 1]z−L

=

L−1
∑

n=0

h[n](z−n + z−2L+1+n)
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Linear phase (Type II)

C = (M − 1)/2 = (2L− 1)/2 = L− 1/2 (non-integer!)

H(z) =
L−1
∑

n=0

h[n](z−n + z−2C+n)

= z−C

L−1
∑

n=0

h[n](z (C−n) + z−(C−n))
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Linear phase (Type II)

H(ω) =

[

2
L−1
∑

n=0

h[n] cos(ω(C − n))

]

e−jωC

C = L− 1

2

191



Linear-phase FIRs

frequency response is of the form

H(ω) = A(e jω)e−jCω, A(e jω) ∈ R

processing delay is C = (M − 1)/2 samples

delay is non-integer for even-length filters!
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Zero locations

this applies to all FIRs, linear-phase or not:

FIRs have only zeros

transfer function is a finite-degree polynomial: H(z) =
∑M−1

k=0 h[k]z−k

if h[n] ∈ R and H(z0) = 0 then H(z∗0 ) = 0

the zeros of linear-phase FIRs have additional properties
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Zero locations for Type I

H(z) = z−L

[

h[0] +

L
∑

n=1

h[n](zn + z−n)

]

H(z−1) = zL

[

h[0] +

L
∑

n=1

h[n](zn + z−n)

]

H(z−1) = z2LH(z)

if H(z0) = 0 then H(1/z0) = 0
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Property of all linear-phase FIRs

if z0 is a zero, 1/z0 is also a zero

(easy to prove for all linear-phase FIRs)

195



Zero locations for linear-phase FIRs

If H(z0) = 0:

H(z∗0 ) = 0

H(1/z0) = 0

If z0 = ρe jθ is a zero, these are zeros too:

ρe−jθ

(1/ρ)e jθ

(1/ρ)e−jθ
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Typical zero plot for linear-phase FIRs
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Forced zeros in linear-phase FIRs

because of the symmetries in the impulse response,
linear-phase FIRs (xcept Type I) have “automatic” zeros

type forced zero locations

Type I none
Type II zero at ω = π
Type III zeros at ω = 0 and ω = ±π
Type IV zero at ω = 0
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Example: forced zeros in Type III

H(z) = z−L

[

∑

n

hd [n](z
n − z−n)

]

H(z−1) = −z2LH(z)

H(1) = −H(1) =⇒ H(1) = 0

H(−1) = −H(−1) =⇒ H(−1) = 0

Type III FIRs not good for low- or high-pass

good for bandpass though!
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Properties of linear-phase FIRs

type length sym. delay zeros

I odd S integer

b

b

b

b

b

II even S non-int. ±π

b

b b

b

III odd A integer 0,±π

b

b

b

b

b

IV even A non-int. 0

b

b

b

b
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The Parks-McClellan algorithm

The Parks-McClellan algorithm (also known as minimax optimization)

can design all types of linear-phase FIRs

minimizes the maximum error in passband and stopband

the error is equiripple in passband and stopband

can be used for “nonstandard” FIR design (Hilbert filter, differentiator, etc.)
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Typical lowpass design specs

0 ωp ωs π

1− δp

1 + δp

δs

passband transition band stopband

0

1
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The Parks-McClellan algorithm: key ideas

Using a zero-centered Type I (symmetric, odd-length):

frequency response is real: Hd (ω) = hd [0] + 2
∑C

n=1 hd [n] cosωn

use Chebyshev polynomials to write response as P(x) =
∑C

k=0 akx
k , with x = cosω

fit P(x) to the specifications using the L∞ norm (minimizing the maximum error)

solve the fitting problem with an efficient numerical algorithm
(the Remez exchange algorithm)
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Short aside: error norms (aka “loss functions”)

‖x‖p =

(

∑

n

|xn|p
)

1
p

L2 norm: minimize the Mean Square Error (global minimization)

L1 norm: minimize the sum of the magnitudes

L∞ norm: minimize the maximum absolute value
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L2 polynomial fitting doesn’t work

polynomial will fit well in places and go crazy at edges...

−1 cos(ωs) cos(ωp) 1

0

1
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L∞ fitting will lead to equiripple error

0 ωp

1− δp

1 + δp
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The Parks-McClellan recipe for a Type I lowpass

User data:

filter length M = 2L+ 1

ωp and ωs

stopband -to-passband tolerance ratio δs/δp

Run the Parks-McClellan algorithm to obtain:

M filter coefficients

stopband and passband tolerances δs and δp

if error too big in either band, increase M and retry.
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Example

M = 9 (L = 4)

ωp = 0.4π

ωs = 0.6π

δs/δp = 1/10
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Final Result
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Final Result (stopband)

3π/4
0
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Final Result (Impulse Response)
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Optimal lowpass filter (recap)

Magnitude response:

equiripple in passband
and stopband

Design parameters:

order N (number of taps)

passband edge ωp

stopband edge ωs

ratio of passband to
stopband error δp/δs

Design test criterion:

passband max error

stopband max error
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Butterworth lowpass design with SciPy

Let p = ωp/(2π) and s = ωs/(2π):

import scipy.signal as sp

M, p, s = 9, 0.1, 0.15

delta_p, delta_s = 10, 1

h = sp.remez(M, [0, p, s, 0.5], [1, 0], [delta_p, delta_s])

wb, Hb = sp.freqz(h, 1, 1024);

plt.plot(wb/np.pi, np.abs(Hb));
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Optimal lowpass example

N = 9, ωp = 0.2π, ωs = 0.3π, δp/δs = 10
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Optimal lowpass example

N = 19, ωp = 0.2π, ωs = 0.3π, δp/δs = 10
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0
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Optimal lowpass example

N = 51, ωp = 0.2π, ωs = 0.3π, δp/δs = 1

−π −3π/4 −π/2 −π/4 0 π/4 π/2 3π/4 π
0
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Lowpass comparison, ωc = π/4

9-FIR
4-Butterworth
4-Chebyshev
4-elliptic

−π −3π/4 −π/2 −π/4 0 π/4 π/2 3π/4 π

−130

−110

−90

−70

−50

−30

−10

|H
(ω

)|
(d
B
)

217



Lowpass comparison, ωc = π/4

19-FIR
4-Butterworth
4-Chebyshev
4-elliptic
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Lowpass comparison, ωc = π/4

51-FIR
4-Butterworth
4-Chebyshev
4-elliptic
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4th-order elliptic lowpass, ωc = π/4
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9 multiplications per output sample
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9-tap optimal FIR lowpass, ωc = π/4
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19-tap optimal FIR lowpass, ωc = π/4
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51-tap optimal FIR lowpass, ωc = π/4
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Life beyond lowpass

The IIR and FIR methods we just described can be used to design more general filter types
than lowpass, with only minor modifications

IIR bandpass and highpass can be obtain by modulating the lowpass response

optimal FIR bandpass and highpass can be designed by the Parks-McClellan algorithm

optimal FIR can also be designed with piecewise linear magnitude response

the literature on filter design is vast: this is just the tip of the iceberg!
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