=PrL

COM-202: Signal Processing

Chapter 6.b: z-transform, filter structures and filter design

Overview

realizable filters

m the z-transform and rational transfer functions

BIBO stability

pole-zero plots and block diagrams

filter design: intuitive, from specs, IIR, FIR

the z-transform

Overview:

m Constant-Coefficient Difference Equations
m The z-transform
m The transfer function

m Region of convergence

Realizable LTI systems

m ideal filters cannot be implemented

m what is the most general, realizable LTI system?
e linearity: we can only use sums and multiplications
e time-invariance: we can only multiply by constants

e realizability: we can only use a finite amount of resources:
— finite number of operations per output sample

— finite amount of memory (i.e. we can only remember a finite number of past samples)

m causality required for real-time applications

Linear, time-invariant systems

x[n] H y[n]

scalar
multiplication

Constant-Coefficient Difference Equation

N M
D ayn—K = bx[n— K
k=0 k=0

m uses M + 1 input and N output values
m completely specified by M + N + 1 scalar coefficients

m 3y = 1 (otherwise renormalize)

Constant-Coefficient Difference Equation

Causal formulation:

M N
[l =Y bix[n— k] =) awy[n — K]
k=0 k=1

m we can always make a CCDE causal

m CCDE is an algorithm to compute each output value

Constant-Coefficient Difference Equation

Examples:

B moving average:
ylnl = (1/4)x[n] + (1/4)x[n — 1] + (1/4)x[n — 2] + (1/4)x[n — 3]

m leaky integrator:
ylnl = Ay[n — 1]+ (1 = A)xn]

Constant-Coefficient Difference Equation

M N
ylnl = bix[n— k] =D ay[n— k]
k=0 k=1

m what is the frequency response? The DTFT of the impulse response!

m but how do we compute the impulse response from the CCDE?

Apparently unrelated topic: Polynomial Multiplication

p(t) =1+ 3t + 2t
q(t) =2+t —t* + 4t

(L3t +2t)2+t—t2+4t3) =24 t— t2+483
+ 6t 4 3t2 — 3t3 + 12t*
+ 412 + 23 — 2t* 4815
=2+ 7t +6t> + 3t 4 10t* + 8t°

Apparently unrelated topic: Polynomial Multiplication

(143t +2t2) 2+t — t2 +4t3) = 24+ 7t + 612 + 3¢5 + 10t* + 8¢5

define two sequences using the polynomial coefficients and convolve:

xp[n] = 0[n] +30[n —1] +26[n—-2]=...,0,0,1,3,2,0,0,...

xg[n] = 28[n] +6[n — 1] —6[n — 2] +46[n—-3] =...,0,0,2,1,-1,4,0,0,...

(Xp * Xq)[n] = 28[n] + 76[n — 1] 4+ 6d[n — 2] + 35[n — 3] + 105[n — 4] 4 8d[n — 5]

10

Polynomial multiplication

p(t) = po+ prt + ...+ put"

q(t):qo+q1t~|—...+thN

M-+N

r(t) = p(t) - q(t) = D rat”
n=0

min{n,M}

= > PrGn—k

k=max{0,n—N}

0<n<M+N

11

Polynomial multiplication and convolution are the same

if we assume p, = 0 for n & [0, P] and g, = 0 for n & [0, Q] the formula for the n-th
coefficient of the product becomes

which is identical to the convolution of two sequences:

oo

xlnl = 3 xplklxgln — K]

k=—0o0

12

The z-transform

[e.e]

X(z)= > x[nz7", zeC
n=—oo
m associate a power series (i.e. a polynomial) to a sequence
m for us mostly a formal operator...
m ...but also as the extension of the DTFT to the whole complex plane:

X(2)|;=eiw = DTFT {x[n]}

m (and now the notation X(e/) should make more sense)

13

Convergence

the z-transform is a power series

we should (and will) be concerned about its convergence

but not for now...

14

Key properties

linearity:

Z{ax[n] + Bylnl} = aX(2) + BY(2)

time shift:

Z{x[n—N]} = z7VX(2)

convolution:

Z{h[n] = x[n]} = H(z)X(z)

15

Convolution in the z-domain

Consider an LTI system with impulse response h[n]

y[n] = hln] + x[n]
Z{y[nl} = Z{hln] * x[n]}

Y(z) = H(z)X(2)

H(z) is the transfer function of the system

16

Transfer function

m the transfer function is the z-transform of the impulse response

m by setting z = ¢/ in H(z) we get the frequency response

17

Now let’s go back to where we started...

M N
Il =Y bix[n — k] = > awy[n — K]
k=0 k=1

m causal formulation
m provides an algorithm to compute each output value
m the frequency response is the DTFT of the impulse response

m how do we compute the impulse response from the CCDE?

it turns out we don't need to!

18

Applying the z-transform to CCDE'’s

N M
D ayln— K =>_ bixin— K]
k=0 k=0

N M
Y(2) Z az k= X(z2) Z bez™k
k=0 k=0

M
Z ka_k
k=0

Hz) = &) _ ko
1+ Z akz_k
k=1

T X(@)

19

Rational Transfer Function

m we can obtain the transfer function of an LTI directly from the CCDE coefficients!
m the transfer function is a ratio of polynomials

m this ASSUMES that everything converges...

Rational Transfer Function

m feedforward part

m feedback part

21

Leaky Integrator revisited

m CCDE: y[n] = (1 — N)x[n] + Ay[n — 1]
m impulse response: h[n] = (1 — A)\"u[n]

m transfer function from impulse response

n_—n _ 1_>‘)
1—A)ZA T

m transfer function from CCDE:
Y(z) = (1-NX(2)+ A z7tY(2)

1-2

Az =15t

N
N

Remember the delay block?

x[n] ——— z7! f—— x[n—1]

now the notation should make more sense!

The powerful formalism of transfer functions

Manipulating filters using transfer functions

m transfer functions are ratios of polynomials
m cascaded subsystems: product of transfer functions
m parallel subsystems: sum of transfer functions

m complex systems can be analyzed using simple algebra

Cascade of filters

x[n] ———{ F(2)

G(2)

— ylnl

transfer function for the cascade:

25

Filters in parallel

x[n] F(z) —I

6(2) ® vl

transfer function for the cascade:

H(z) = F(z) + G(2)

Filters in feedback configuration

©

x[n] ® F(2)

|— G(2)

transfer function for the cascade:

F(z)

") =1 Fa60

y[n]

Example: CCDE of cascade

x[n] ——

F(z)

w(n]

m CCDE for F: w[n] = aw[n — 1] + x[n]

— vl

m CCDE for G: y[n] = by[n — 1] + cw[n] + dw[n — 1]

m CCDE for the cascade?

Example: CCDE of cascade

win]
x[n] ——— F(2) G(z) — vylInl
m F(z)=1/(1—az?!)
m G(z)=(c+dz71)/(1 - bz1)
c+dz !

m H(z) = F(2)G(z) =]

—(a+b)z7l + abz2
m CCDE for the cascade:

y[n] = (a+ b)y[n—1] —aby[n —2] + cx[n] + d x[n — 1]

Example: impulse response of second-order IIR

yln] = ary[n — 1] + axy[n — 2] + x[n]

1
Y =
(2) 1—ajz7l — a,z72

X[l ® yln)

29

Example: impulse response of second-order IIR

1

H =
(Z) 1-— alz_l — 322_2

m we can factor the denominator:

1
(1= pozt)(1 = prz71)

m and then use partial fraction decomposition:

H(z) =

0 (5]
H(z) =
(Z) 1—p02_1+1—p12_1
c=—P_ i—01

_PO_PI

30

We know the impulse response of a first-order IIR

ylnl = Ayl[n = 1] + x[n]

1
e =150

hx[n] = A" u[n]

31

Example: impulse response of second-order IIR

m second order as a cascade of first-order filters
1 1

HE) = 15 1=yt = Hal@Ha(2)
m as per the convolution theorem, h = h,, * h,,
oo
M= > pkulklp] *uln — K]
k=—o0
n
N
k=0
n+1 n+1
n Po — P
—————— po#p
=pi> (po/P1) =3 po—p

k=0 (n+pg Po=p1

Example: impulse response of second-order IIR

m if pp # p1 we can use partial fraction decomposition

m second order as a parallel structure:

1 Po p1]
H(z) = +
() po — p1 [1 —pozt 1—piz71

m each subsystem is independent

h = (pohp, + p1hp,)/(Po — p1)

— k k
bl = = [po pbulk] + 1 pful]
_ p(r)H-l _ ,Df+1

Po— P1

33

Impulse response of second-order IIR

po,1 = Ao,1 € R, Ao # A1
po1=AER

po=pe?eC,p=p5=pei?

34

Second-order |IR, distinct real-valued roots

H(z) =[1-1.59z71 + 0594z 2], h[n] =
Ao—-Al

n+1 n+1
PYEEY

9

Xo = 0.99,)\; = 0.6

60

35

Second-order |IR, double real-valued root

H(z) =[1—-18z"140.81z72]"Y, h[n]=(n+1)A", A =09

5k —

4k —

3F ()} |

2+

10 20 30 40 50 60

36

Second-order IIR, complex-conjugate roots

n
P sin((n+1)p), p=0.95¢=m/9

H(z) = [1 — 0.8927z~! 4+ 0.9025z72]"1, h[n] =
sin

0 10 20 30 40 50 60

37

region of convergence

The region of convergence

m the z-transform of a sequence is a power series
m the series may not converge for all values of z
m we can only use the z-transform when the series converge

m we need to find the Region of Convergence (ROC)

38

Finding the region of convergence

The ROC is defined by the absolute convergence of the power series:

z € ROC{X(2)} = Z |x[n]z™"| < o0

n=—oo

How can we determine the ROC?

m ROC depends on the values of x
m for rational transfer function we can use indirect methods

m we don’t care about convergence in zero and infinity

39

Region of convergence (ROC)

observation #1:

for finite-support signals, the z-transform converges everywhere (except in 0 and/or co)

N

X(z)= > x[n]z""

n=—M

40

Region of convergence (ROC)

observation #2:

the region of convergence has circular symmetry: set z = ae/’:

[e.e]

Z |x[n]z7"| < 0o = Z Ix[n]|]a~"] < o0

n=—00 n=—00

41

Region of convergence (ROC)

observation #3:

for causal sequences, the ROC extends from a circle to infinity:
assume zp € ROC and |z1| > |z]:

o0 oo

IECERED SEED IR LS

n=0 n=0

ROC shape for causal sequences

Re

43

Region of convergence (ROC)

so where are the convergence problems?

in general, difficult question; but we're only interested in rational transfer functions!

44

ROC for causal systems

Consider the transfer function for an LTI system:

byt bzt 4 byz M

15 e e wr——
It can always be factored as: y
H(l —z,z7 Y
H(z) = by

H(l — Pz)

n=1

45

ROC for causal systems

m z,'s: zeros of the transfer function
m p,'s: poles of the transfer function

m only trouble spots for ROC are the poles

46

ROC for causal systems

We know:

m ROC extends outwards

m ROC cannot include poles

ROC extends outwards from a circle touching the largest-magnitude pole

47

ROC for causal systems

Re

48

ROC for causal systems

Re

49

ROC for causal systems - Proof (sketch)

m G(z)= ig; with A(z) and B(z) coprime

m since B(z) has no poles, ROC of G(z) same as ROC of H(z) = 1/A(z)

m assume all poles distinct

m use partial fraction decomposion:

— N—-1

H 1—pkz

M

k=0 l_pkz

50

ROC for causal systems - Proof (sketch)

Example:

1 1
1-5z714+62z72 (1-2z71)(1-3z71)
B (@) (5]
T1 2,1 T 31
+c=1
2c0+3c1 =0
1 R N 3
1-5z1+4+6z2 1-2z1 1-3z71

51

ROC for causal systems - Proof (sketch)

m remember the leaky integrator...

m each term corresponds to an exponential sequence:

Z{pguln]} = (llez_l)

m the ROC for each term is |z| > |py|

m intersection of all ROCs is |z| > |Pmax|

ROC for causal systems - Proof (sketch)

m same for multiple poles, just more tedious

Z{np" u[n]} = (1;227__

Py ROC || > o

m all LTI impulse responses are linear combinations of weighed exponential sequences

m we could use an inverse z-transform to obtain h[n]

53

system stability

Overview:

m BIBO stability

m Stability criteria

54

Stability

m key concept: avoid “explosions” if the input is nice
m a nice signal is a bounded signal: |x[n]| < M for all n

m Bounded-Input Bounded-Output (BIBO) stability: if the input is nice the output should
be nice

55

Fundamental Stability Theorem

A filter is BIBO stable if and only if its impulse response is absolutely summable

56

Proof (=)

Hypotheses: bounded input
and absolutely summable
impulse response

m [x[n]|] <M
o 5, hl] = L < oo

Thesis: output is bounded
= |y[n]| < oo

Proof:

ylnll = | > hlklx[n—]
k=—o0
< > |hlKIx[n—]|
k=—o0
<M D |h[K]]
k=—0o0

< ML

57

Proof (<)

Hypothesis: output is
bounded for any bounded
input
= |x[n]| < oo =
|(x x h)[n]| < oo

Thesis: impulse response is
absolutely summable

m >, [hln]] < oo

Proof (by contradiction):

assume hypothesis fulfilled, yet Y |h[n]| = oo

build x[n] = {

+1 if h[—n] >0
-1 if h[-n] <O

clearly, |x[n]| < oo

however

(x x h)[0] =

Z hikIx[—k] =

k=—o0

Y K] = o0

k=—o00

58

The good news

FIR filters are always stable

59

Checking the stability of 1IRs — Example

Let's check the Leaky Integrator:

D Al =11 =) AP
n=0

n—=—00
1— |)\|n+1

= lim [1—)]

n—o0]_—|)\|

<oo for A <1

stability is guaranteed for |A| < 1

60

Checking the stability of 1IRs — General case

stability of a filter with impulse response h[n] and transfer function H(z):

o0

1 € ROC <= H(z) converges absolutely in z =1 <= Z |h[n]| < oo

n=—oo

an LTI system is stable if and only if the ROC includes the unit circle

a causal system is stable if and only if all poles are inside the unit circle

61

Stable causal system

62

Unstable causal system

Im

Re

63

Common confusion...

y[n] = 2y[n — 1] + x[n] (obviously unstable)

apply z-transform as a formal operator:

_ Y(z2) B 1

H(z) X(z) 1-2z71

H(1) = —1 < o0, so is the system stable?

64

Common confusion clarified

ROC depends on h[n], NOT on formal value of H(z):

m h[n] = 2" u[n]
m to apply the z-transform operator we assume to be in the ROC

m the region of convergence is |z| > 2 because

1 .
ian z7"= lim 1-(a/2)7 (a/2)" =< 1—az1 i1zl > lal
s N—oo 1—(a/z)

00 otherwise

65

In other words...

. 1 . :
the function 11 s defined for all z € C\ {a}

BUT

it is the z-transform of a"u[n] only for |z| > |a|

66

Rational Transfer Function

for which values of z does a rational H(z) exist?

m option 1: compute h[n] explicitly and find ROC for the power series > h[n]z™"
m option 2: derive ROC indirectly:

e ROC is circular symmetric

e ROC extends outwards for causal sequences

e ROC cannot include poles

67

Understanding a pole-zero plot

The effects of poles and zeros

Looking at the magnitude of the transfer function with the “circus tent” method:

m z-transform magnitude is like a rubber sheet over the complex plane
m zeros glue the sheet to the ground
m poles are like ... poles, pushing it up

m frequency response (in magnitude) is sheet height around the unit circle

68

Example: pole-zero plot

69

Example: pole-zero plot in 3D

[H(2)]

70

Example: pole-zero plot in 3D

[H(2)]

70

Example: pole-zero plot in 3D

|H

70

Example: sketching |H(z)|

[H(2)]

71

Example: sketching |H(z)|

71

Example: sketching |H(z)|

71

Example: sketching |H(z)|

71

Example:

sketching |H(z)|

it iR
ih ik
il

it A
i
i,

,
i)
i
gy
i

|

0
\

g
it I
i
HIR

A ’::s‘s“\ \
o

71

Example:

sketching |H(z)|

e vk
il i
Al

il

f

l
! 5’\

i
I

Al
il
A
e
i T
i l."..‘ ..“

RN

RRKARRNE
RS

SRR

o A
!
AR
e

A

N
W
Wi
IR
W

)
i

QAR

\
SN
T

R
N
R

QR

N

RN
NN

TR
R
)
W

W

_ -z N1tz z Y
T Tmpz D(=ps 27 Y)

71

Exa)
mple: sketching |H(z2)]

fi 5
[
il
il bt
it

I

ik
ilhihe: il
l“\l"i'\‘,?\‘{

W
it \ l\'\\‘.'
" it RN
u\\\\\‘\\n\un“\“\\“‘\h ‘l“‘|\\\\|||\|\\\\\\\\\\;\;}‘\;:.;:~:~ \
1Ty T “‘n\ i il ‘“m\\\m\““|“\\“_
! ‘n!,u\‘mun\\\nm“ X
ail “n‘“ p\“‘“n“\n““
) Jn
I

o AR
il \l‘}“m\\\‘\\‘\\‘:‘:\'\‘l‘l

o e

i) iy g

s n\|||\|‘“‘;“‘\\\\\\h|\‘\\‘“ T

P AR Rl

i SRR Y D
|:‘:‘1‘:“ TN |‘|‘\“‘“‘l\““ “‘““\“‘“

HHI o

A
MR
T

71

Example: sketching |H(z)|

O
| r:y!‘l‘(t v |

1 I’/”ill/’l:!'

il b i
'ulzl’llllr”ll il 'I, I'Ill”llllll;{ ,,,
,,,,,,,sr,;'/,za'”'w"ll/f’ll'I i iy,

il :,,,/,':'II:":,,, i N

iyttt
‘r"'llll//uuul/" IIIl,ll
h.,,;/,,'/,'/ ,:,,r,,a ,""llllll/ml/ll/l!lllll/!lll l:,':,.,‘ *
il
it Ty ,'l.n w,
l ’IIIIIIIIIIIII/IIII/IIII[[y’,’/II i
it
"5’41%%%’:%29[’”" it
7

71

Example:

sketching |H(z)|

iff T i

i

(i
I
ik
il

s
O

i &

TR N,

! W

)

i

At

i

0

i

A
N
RN \

R

AR

ERRORR
S PRI

R

71

Example:

sketching |H(z)|

A
I {\(ﬂ[“\],\\‘ \
Il

!’!‘.‘:w‘"

[(frice i
Jw&‘dﬂ]‘q, il
i

)l }, V\w:.f‘

) ,l%,'v;f,

il A \‘\\\“ (i
Ul
ARy VAN

WG
WA

\!
‘\\“\\\\

T
My VR SR

\!
A \\\\}\“
|

W
R
o N
3

W

R
RO
AN

AN

;‘:":"f“:\“?‘\:::‘\}\:‘\‘\“
R

PRERIR

SR
W A
QR
SRR

W \‘\\g\‘

71

EXam
ple: sketchi
ching |H(
z)|

o
T
AN
TR
i
Friy TR
m\\\m\\‘ IR
I
Hir
fmiR

Tl
it il [
i \‘\““‘“\!““\‘\\n\v |

\l\\l‘p
bl 1t |
- ity g A
L ity A
ol et il o
bt “\‘\“\“n“\‘““‘l&,

suuihy i
Wi L
-“‘:“\‘l‘\‘l\m\‘ T i
S AR
RN A
‘\‘\“\\‘m“\\\u“\‘\, v \|u|“‘\‘\|||nl“““|ﬂ“, N
ST R i,
v

T
R

TS

S
S

n

Example: sketching |H(z)|

M,‘W

u’h'

,,, ”’llll/i'lrl',

III II,I
g i,
,,'/,;/:'//%54’;,2 i /I/"I’l l ’llln///// i
I

il

l,,l:,, ,,,:/,,,,,,mﬂl’%mll'lll
,I:,,,'Ill/n /’”,mlllll’ll N

e il

/,,l

i
."~I'A tuf
'."

' Wiy
'”Iﬂﬂllﬂﬂﬂl’lA” gl
il 107 i Y

i il il

2;"!' l/"/%%m ,//mm";'.,' I ,'.

m
it

T
i m”m'/,;',,, il

'»'.n.. ¥

71

Magnitude

[H(e)]

of the frequency response

72

block diagrams

Overview:

m Algorithms for CCDE's
m Block diagram

m Real-time processing

73

An old friend

class LI:
def __init__(self, lam):
self.buf = 0
self.lam = lam

def filt(self, x):
self.buf self.lam * self.buf + (1 - self.lam) * x
return self.buf

4

Testing the code

>>> from leaky import LI

>>> 1i = LI(0.95)

>>> for x in [0, O, O, O, 1, O, O, O, O, O, O]:
>>> print(1i.filt(x), end=’ ’)

0.0, 0.0, 0.0, 0.0, 0.0500000000000000, 0.047500000000000,
0.045125000000000, 0.042868750000000, 0.0407253125000000,
0.038689046875000, 0.0367545945312500

>>>

75

Key points

m we need a “memory cell” to store previous output
m we need to initialize the storage before first use

m we need 2 multiplications and one addition per output sample

76

Another old friend

1 M1
y[n] = I kz(:) x[n — K]

v

Another old friend

class MA:
def __init__(self, M):
self.buf = np.zeros(M-1)
self.norm = 1.0 / M

def filt(self, x):
y = (x + np.sum(self.buf)) * self.norm
self.buf = np.r_[x, self.buf[:-1]]
return y

78

Key points

m we now need M — 1 memory cells to store previous input values
m we need to initialize the storage before first use

m we need 1 multiplication and M — 1 additions per output sample

79

We can abstract from the implementation

x[n]

y[n]

>@— xin] + yln]

x[n]

ax[n]

x[n] ——

— x[n— N]

80

Leaky Integrator

1-A

ylnl = Ayln = 1] + (1 = A)x[n]

()

x[n]

>

A
|— 21

y[n]

Moving Average

x[n]

ylnl = 77 k5! x[n — K]

o—

O

The second-order section (aka ”biquad”)

y[n] + a1y[n — 1] + asy[n — 2] = box[n] + bix[n — 1] 4+ bax[n — 2]

_ by + blz_l + b22_2 B B(Z)
1t azl+az?2 Az)

H(z)

83

Why are biquads important?
We can always factor a rational transfer function into a cascade of second-order sections:

H(Z) . bo + blz_l 4+ ...+ bMZ_M
14 az7 '+ ... +ayz N

[max{M,N}/2] bo,k + bLkz_l + b2,kz_2

1+ aLkz—l + 327/(2_2

k=1

m if H(z) has real-valued coefficients, so will all the biquad sections
m cascade implementation is numerically more robust

m a lot of useful filters can be implemented with a single biquad

84

Second-order section, direct form |

x[n] —o— @

y[n]

85

Second-order section, direct form |, inverted order

x[n]

O~ —O
z1 z!
O—— O

1/A(2)

V4

-1

.

y[n]

86

Second-order section, direct form |1l

bo

71
———0
71
—az bo

87

intuitive filter design

Simple, useful filters

m many signal processing problems can be solved using simple filters

m e.g. we have already derived simple lowpass filters “intuitively” (Moving Average, Leaky

Integrator)

m with a low-order transfer function we can try to design filters by placing poles and zeros
“by hand"”

88

Simple lowpass

let only low frequencies pass
m used to remove high frequency components (e.g. noise)
m useful in audio, communication, control systems

m we know a simple answer: leaky integrator

89

Leaky Integrator

(1)

H(z) = T

ylnl = (1 = X)x[n] + Ay[n = 1]

Re

71
N/

90

Leaky Integrator, filter structure

y[n]

91

Leaky Integrator, A = 0.98

[H(w)]

—T

1 T T
—3r/4 —m/2 —m/4

T

0

T
w/4

T
/2

1
3w /4

s

92

DC removal

N
DC-bal d signal h 2o =0
ma alanced signal has zero mean: lim Z x[n]

i.e. there is no Direct Current component
m its DTFT value at zero is zero
m to remove the DC bias from a non zero-centered signal...

m ... we just need to kill the frequency component at w =0

93

DC removal

H(z)=1- z1

y[n] = x[n] = x[n —1]

Re

.

94

DC notch

[H(w)]

—7/2

/2

95

Problems with the simple DC notch

we only want to eliminate the DC component but

m too much attenuation around zero, we'd like the magnitude response to climb back up
quickly around zero

m magnitude response at w = +7 is greater than one: amplification of high frequencies

solutions:

m add a pole to “push up” H(z) (remember the circus tent)

m add a gain factor to make sure gain is at most one

96

DC removal, improved

m gainin z = —1 (i.e. w=+m):

m normalization factor: G = %

1—2z71
H(z) = 1—)\z1
2
H(-1)=G——
(=1) Gl—i—)\

97

DC removal, improved

1+A 1—z71
He) = Tt

vl = Avln = 1]+ 252 (0] — x[n — 1)

Re

71

DC notch, A =0.7

[H(w)]

99

DC notch, A\ = 0.98

[H(w)]

100

DC notch, filter structure

1+
2

)

x[n] U

B

©

y[n]

101

Hum removal

m similar to DC removal but we want to remove a specific frequency wg > 0

m very useful for audio equipment since amplifiers tend to pick up the hum from the AC
power supply (50Hz in Europe and 60Hz in North America)

m idea: shift the pole-zero pair of the DC notch to wyq

m but, to keep the filter real-valued, we need to add a conjugate pole-zero pair

102

Hum removal

Im

Re

103

Hum removal

H(z)=G

(1 — /0 z71)(1 — e /w0 z71)

(1 — Xeiwo z71)(1 — Ne—Jwo z—1)

(1+)2
4

G =

104

Hum removal: finding the gain

we want the gain at =7 to be unitary; the transfer function in —1 before normalization is

1+ewo 14 eJw0
A1) = T3 ToaeT

14+ ejwo ejw0/2(e—jwo/2 + ejw0/2)

r=q 1 \ejwo efwo/2(e=jwo/2 4 \eiwo/2)
2 cos(wp/2)

~ cos(wo/2) — jsin(wo/2) + A cos(we/2) + jAsin(wo/2)
2
(L+X) —j(1—X)tan(wo/2)

105

Hum removal: finding the gain

mfor A1 r=2/(1+})

m similarly, .
1+e/®0 2

T 1tde o (14N 41— A tan(wo/2)
mfor A\x1 s~2/(1+X)

S

(1)1 = Il ~ 73

106

Hum

removal

wo = 0.3m, A = 0.95

|H(w)|

—n/2

/2

107

Hum

removal

|H(w)|

/2

108

Hum removal, filter structure

(1+X)?
)
Ai——(— T O,
»—1
2\ cos wp —2 cos wy
A (-
® ! ®

P

109

Tunable Resonator

m a resonator is a narrow bandpass filter
m used to detect the presence of a sinusoidal component of a given frequency
m useful in communication systems and telephony (DTMF)

m idea: shift the passband of the Leaky Integrator

again, to keep the filter real-valued, we need to use a pair of conjugate poles

110

Simple resonator

1
(1—pz 1)1 -pz71)
p = \e/*o

Hs(z) =

y[n] = x[n] — a1y[n — 1] — azy[n — 2]

71

111

Simple resonator

Hs(z) =

al =

ay =

1
(1—pzt)(1—pz7t)
1
1-2R{p}z- 1 +|[p[*z2
1

1—2\coswpz™1 + |A2z72

—2)\ cos wy

AI®

p = \e/*0

112

Simple resonator

1

Hs(z) =
(2) 1 -2\ coswoz 1+ |\?2z72

y[n] = x[n] + 2\ coswoy[n — 1] — |A]2y[n — 2]

wo

Re

113

Simple resonator, A = 0.95, wy = 7/3

3
T
T T T T T
-7 —2m/3 —7/3 0 /3 27/3
T
% N
T N————"
N
-7 T T T T T
-7 —27/3 —7/3 0 /3 27/3

114

Problems with the simple resonator

m the gain at the resonating frequency depends on wy:
i -1
|Hs(wo)| = [|1 = |1 — Ae™2e]]
m we would like to have the same peak gain for all choices of wy

m also, we would like the gain to be zero for w = 0, £7 (bandpass)

115

Simple Resonator: varying peak gain

—i2wn1—1
|Hs(wo)| = [|1 — A1 — Ae /2]

[Hs(w)]

116

Improved resonator

Idea: add a double zero in w = 0: H,(z) = (1 — z72)Hs(2)
m (1 — z72) makes the frequency response zero at w =0 and w = 7
m peak gain now: '
1 |1 e
L= Al |1 = Ae 42«0

|Hr(wo)|
m with some algebra (like we did for the notch):

|1 — e /20| 2
|1 —XeJ2w0| |14+ X —j(1 — \) cot wo|

m for \ close to one, |H,(wo)| ~ 2/(1 — \?)

117

Constant peak gain resonator

1—2z2

H(z) = (1—2)\2>

m negligible extra cost
® unit gain at peak

m DC rejection

1—2Xcoswgz™1+ |A[2z72

118

Resonator, filter structure

x[n]

©

(1-22)/2

S

G+

_/

2\ cos wp

| —

—[A?

y[n]

119

Resonator, \ = 0.95, wy = 7/3

DN

-7 —27r/3 —7r/3 7T/3 27r/3
3 ~) [™
J g —

-7 —27/3 —7/3 0 /3 27/3

Resonator, A = 0.99, wy = 7/3

I

0 1 1
-7 —2m/3 —7r/3 7T/3 27/3 ™
T
3 A R
N { U
-7 T T T T T
-7 —27/3 —7/3 0 /3 27/3 ™

121

Resonator, A = 0.99, wy = 7/10

1]
3
T
0 1 1 T 1 1
-7 —2m/3 —7/3 0 /3 27/3 ™
T
3 1 N
N U L
-7 T T T T T
-7 —27/3 —7/3 0 /3 27/3 ™

We need more systematic methods for filter design

m ‘“intuitive” filter design can only take us so far
m we need more general and more quantitative design methods
m many different “recipes’ exist

m goal is to fulfill a set of requirements while minimizing some error metric

123

filter design: the setup

The filter design problem

You are given a set of requirements:

m frequency response: passband(s) and stopband(s)

m phase: overall delay, linearity

m some limit on computational resources and/or numerical precision

You must determine N, M, ax's and by's in

H(z) = bo+ biz Y+ ...+ by_1zM
14 az i+ Fay_1z N

in order to best fulfill the requirements

Example: lowpass specs

Wce

125

Practical limitations

m passband/stopband transitions cannot be infinitely sharp
= use transition bands

® magnitude response cannot be constant over an interval
= specify magnitude tolerances over bands

m in general:

e smaller transition bands = higher filter order
e smaller error tolerances = higher filter order

o higher filter order = more expensive, larger delay

Example: lowpass specs

Wce

127

Realistic specs

passband

transition band

stopband

Wp Ws

128

Why we can’t have a “vertical” transition

is a rational function with A, B € C*

polynomial rational functions cannot have jump discontinuities

129

Why we can’t have a flat response

H(e/*) = c over an interval

with A and B polynomials

B((z) = 0 over an interval

B(z) — cA(z) has an infinite number of roots
B(z) — cA(z) = 0 for all values of z

H(e/*) = c over the entire [, 7] interval.

130

Deviation from the target response

frequency response cannot be constant so there will be an approximation error:

m it's important to be able to control the max error
m error can change monotonically

m error can oscillate around zero

131

Important case: equiripple error

equiripple: max and min error values alternate with equal magnitude

UL AR RN
LCITIAINNND AN

Wp

132

The big questions

m IIR or FIR?
m how to determine the coefficients?

m how to evaluate the performance?

133

lIRs: pros and cons

Pros:

m computationally efficient
m can achieve strong attenuations easily
m “natural sounding” in audio applications
Cons:
m stability and numerical precision issues
m difficult to design for arbitrary frequency responses

m phase response is always nonlinear

134

FIRs: pros and cons

Pros:

m always stable
m numerically robust
m optimal design techniques exist for arbitrary responses
m can have linear phase
Cons:
m computationally more expensive than similar [IRs

m large processing delay (not suitable for “live” applications)

135

The design methods

m finding N, M, a’s and by's from specs is a difficult nonlinear problem
m established methods:

e |IR: ready-made cookbooks (based on old analog designs)

e FIR: optimal design algorithm (Parks-McClellan)

136

IR filter design methods

lIR: conversion of analog design

Filter design was an established art long before digital processing appeared

m lots of nice analog filters exist
m methods exist to “translate” the analog design into a rational transfer function
m most numerical packages (Matlab, Numpy, etc.) provide ready-made routines

m design involves specifying some parameters and testing that the specs are fulfilled

137

Three classic filter families to be aware of

m Butterworth (smooth monotonic frequency response)
m Chebyshev (monotonic/equiripple)

m Elliptic (equiripple)

138

Butterworth lowpass

Magnitude response:

m maximally flat

m monotonic over [0, 7] Design test criterion:

m width of transition band

Design parameters: m passband error

m order N (N poles and N zeros)

m cutoff frequency

139

Butterworth lowpass design with SciPy

import scipy.signal as sp
b, a = sp.butter(4, 0.25)

wb, Hb = sp.freqz(b, a, 1024);
plt.plot(wb/np.pi, np.abs(Hb));

140

Butterworth lowpass example

|H(w)]

N=4w. =m7/4

—T

|
—37/4

T

—7/2

T

—7/4

0

T
/4

T
w/2

|
3w /4

141

Butterworth lowpass example

|H(w)]

N =8 w.=m7/4

T

—T

3n/a —n)2

—7/4

0

T
/4

W)2

|
3w /4

142

Chebyshev lowpass

Magnitude response:

m equiripple in passband
m monotonic in stopband

m (or vice-versa)

Design parameters:

m order N (N poles and N zeros)
m passband max error

m cutoff frequency

Design test criterion:

m width of transition band

m stopband error

143

Chebyshev lowpass design with SciPy

b, a = sp.chebyl(4, .12, 0.25)

144

Chebyshev lowpass example

N =4 w:.="7/4 enax = 12%

|H(w)]

T T

I
-t —3n/4 —7w/2 —m/4 0

T T T
/4 w/2 3r/4

Chebyshev lowpass example

N =8,we = 7/4, emax = 12%

| oo

|H(w)]

)

T

-7 —3;r/4 —7;/2 —m/4 0 7r}4 7r)2 37r‘/4

Elliptic lowpass

Magnitude response:

m equiripple in passband and
stopband

Design parameters:

m order N
m cutoff frequency
m passband max error

m stopband min attenuation

Design test criterion:

m width of transition band

147

Elliptic lowpass design with SciPy

b, a = sp.ellip(4, .1, 50, 0.25)

148

Elliptic lowpass example

N =4 w.=m7/4, emax = 12%, attmin = 0.03

1r M

|H(w)]

‘ ‘ 7r}2 37;/4 T

0 T T T
-t —3n/4 —7w/2 —m/4 0 /4

Elliptic lowpass example

N =6,wc = /4, emax = 12%, attmin = 0.03

1F VNN

|H(w)]

‘ ‘ 7r}2 37;/4 T

0 T T T
-t —3n/4 —7w/2 —m/4 0 /4

Elliptic lowpass example: numerical errors for high-order

|H(w)]

N =8,wc = /4, emax = 12%, attmin = 0.03

Nw T T T T
/4 w/2 3r/4

L~ 1

N—]

™

—T

—37/4

—7/2

—7/4 0

151

Let's compare

m compare magnitude response of 4th-order lowpass filters
m same cutoff frequency and transition band width

m plot the magnitude response in dB

152

The decibel for amplitude ratios

Relative measure of amplitude in log scale:

H(w
|H(w)|ag = 20logyq 1A /_5)
ref

Here we choose H,ef = 1, target value in passband.

m -6 dB = half the amplitude

m -20 dB = one tenth of the amplitude

153

4-th order |IR lowpass comparison

AN

)
z
©
T == Butterworth
=== Chebyshev
—110 elliptic
—130 T T T T T T T
—r —3n/4 —7w/2 —m/4 0 /4 w/2 3r/4

all filters require 9 multiplications per output sample

Qualitative comparison

For a given order N

m sharpness of transition band: Elliptic > Chebyshev > Butterworth
m phase distortion: Butterworth < Chebyshev < Elliptic
m passband ripples Butterworth < Chebyshev < Elliptic

m stopband attenuation: Elliptic > Chebyshev > Butterworth

155

Elliptic lowpass example: numerical errors for high-order

|H(w)]

N =8,wc = /4, emax = 12%, attmin = 0.03

Nw T T T T
/4 w/2 3r/4

L~ 1

N—]

™

—T

—37/4

—7/2

—7/4 0

156

Numerical precision issues

all digital devices represent numbers using finite precision

poles are the roots of the denominator of the transfer function

filter algorithms store the value of the coefficients, not of the poles
m the value of a pole is a nonlinear function of the filter coefficients

m insufficient numerical precision may cause poles to drift out of unit circle

157

Pole drifting: example
m nominal pole: p = pe/®, magnitude |p| = p
m second-order transfer function: P(z) = (1 — pz~1)(1 — p*z71)
m P(z) =1+ a1z 1+ axz72, with a; = —2pcosf and a; = p?
m coefficients aj » are stored with finite precision

. A 2
m actual pole magnitude = ——=_
p g |p| ‘ /a%—432—31|

decimal digits for a1 || p — |P]

2.22.10716
5.00-107°
5.00-107°
4.00-10%
491.103

N WS N

158

Poles of the 8th order elliptic lowpass

Im

Re

159

Pole magnitude

Magnitude of poles as a function of the number of digits used to store coefficients

digits
9 0.99969893 | 0.99641971 | 0.96231223 | 0.6929287
8 0.99970234 | 0.99641583 | 0.96231266 | 0.69292873
7 0.99987231 | 0.99622669 | 0.96233196 | 0.69292855
6 1.0027213 | 0.99267273 | 0.96304264 | 0.69292212
5 1.00418091 | 0.99647046 | 0.95797945 | 0.69292331

160

Numerical precision: how to mitigate

m design filter in factored form
m use a cascade of second-order sections

m in Python: b, a = sp.ellip(4, .1, 50, 0.25, output=’sos’)

161

FIR filter design methods

IIRs: pros and cons (recap)

Pros:

m computationally efficient
m can achieve strong attenuations easily
m “natural sounding” in audio applications
Cons:
m stability and numerical precision issues
m difficult to design for arbitrary frequency responses

m phase response is always nonlinear

162

FIRs: pros and cons (recap)

Pros:

m always stable
m numerically robust
m optimal design techniques exist for arbitrary responses
m can have linear phase
Cons:
m computationally more expensive than similar [IRs

m large processing delay (not suitable for “live” applications)

163

FIR design methods

FIR filters exist only in discrete time (there are no analog FIRs)

Three important design methods:

m impulse truncation, window method
m frequency sampling

m Parks-McClellan algorithm

164

Quick-and-dirty design methods (recap)

m impulse truncation

m frequency sampling

Advantages:

m simple and intuitive

m can be applied to arbitrary frequency responses
Drawbacks:

m cannot control the approximation error

m longer than optimally-desinged FIRs

165

Impulse truncation (recap)

m start with a zero-phase ideal filter (or combination thereof)
m derive the closed-form expression of the impulse response h[n]
m keep M = 2N + 1 samples around n = 0:
hln] |n| <N
h[n] =

0 otherwise

m we may use a tapering window to reduce ripples

166

The Gibbs phenomenon (recap)

H(w)

/2

167

The Gibbs phenomenon (recap)

N

l——

A(w)

~

168

The Gibbs phenomenon (recap)

N\

et
SN

A(w)

/2

169

The Gibbs phenomenon (recap)

AAAAA
A/
‘ M =101

A(w)

170

The Gibbs phenomenon (recap)

A(w)

M =201

171

Frequency sampling (recap)

m draw desired zero-phase frequency response H(w)

m take M equally-spaced values of the frequency response over the [0, 27] interval:
Hmlk] = H((2m/M)k), k=0,1,....M—1
m compute the inverse DFT: hy[n] = IDFT {Huy[k]}

m use the impulse response

n h < M
blo] = § Pale) 0= 0 <
0 otherwise

172

Example: ideal lowpass with cutoff 7/2

get M samples over the [0, 27] interval, so they are ready for the IDFT

—2r =37/2 —= —7/2 0 /2 ™ 3r/2 27

173

Frequency sampling: impulse response from IDFT

hu[n] Aln]

174

Frequency sampling: frequency response

A(w)

-7 —m/2 0 w/2

still no control over max error

175

linear-phase FIRs

Optimal linear-phase filter design

In the 1970s Parks and McClellan developed an algorithm to design optimal FIR filters with

m (generalized) linear phase

m equiripple error in passband and stopband

176

Linear phase responses

m zero phase: H(w) € R
e no processing delay
e examples: h[n] = §[n], h[n] = sinc(an)
m linear phase: H(w) = A(w)e ™79, A(w) € R
e processing delay of d samples
o examples: h[n] = §[n — d], moving average filter
m generalized linear phase: H(w) = A(w)e/@9=8) A(w) e R
o if h[n] € Rthen 8 =4mor §==+n/2

o examples: h[n] =4d[n] —d[n—2] (d =1,8 = —7/2),
h[n] = é[n] +jé[n—2] (d =1,8 = x/4)

177

Impulse responses with generalized linear phase

H(w) — A(w)e_j(‘“d_ﬁ), A(w) cR
m impulse response '])
I H(w) = A(w)e’® = h[n + d] = & a[n]

m condition on a[n]:
Aw) € R < a[n] = a*[—n]

m condition on h[n]: .
hld + n] = e¥Ph*[d — n]

178

Impulse responses for generalized linear phase

hld 4 n] = e¥Ph*[d — n]
m if h[n] € R:
e symmetric impulse response (8 = +m): h[d 4+ n] = h[d — n]
e antisymmetric impulse response (8 = £7/2): h[d + n] = —h[d — n]
m if h[n] € C:
e hermitian-symmetric impulse response (8 = +n): h[d + n] = h*[d — n]
o hermitian-antisymmetric impulse response (8 = £7/2): h[d 4+ n] = —h*[d — n]

e otherwise: (e /#h[d + n]) = (e /Ph[d — n])*

179

Impulse responses for generalized linear phase

m realizable [IRs cannot have linear phase:

o if IR, h[n] extends at least to +00 or —oo

e h[d + n] = e¥Ph*[d — n] implies that h[n] is infinite, two sided

e only ideal (non-realizable) IIRs like the sinc can have linear phase
m we will consider only real-valued, FIR filters

m there are four types of real-valued, linear-phase FIRs

180

Linear-phase FIRs

symmetric or antisymmetric impulse responses guarantee linear phase

Type |
—e
|—o
Type Il
— o
— o

Type 1l

o—
[]

Type IV
—o

Linear phase (Type I)

filter length is odd: M =2L+1

h[L + n] = A[L — n]

zero-centered filter:
ha[n] = h[n + L]
ha[n] = hg[—n]

182

Causal linear phase (Type I)

hin]

183

Noncausal zero phase (Type 1)

hd[n]

184

Linear phase (Type I)

L
Hq(z) = Z hg[n]z="

n=—L

L
= hgl0] + > halnl(z" +27")

n=1

L
Hg(w) = ha[0] + > _ ha[n](e*" + e™/*")

n=1

L
= hq[0] + 2 Z hg[n]coswn € R

n=1

185

Linear phase (Type I)

H(z) = z7tHy(z2)

L
H(w) = [h[L] +2 Z h[n + L] cos nw| e 9+t

n=1

186

Linear phase (Type II)

filter length is even: M = 2L

h[n] = h[2L — 1 — n]

187

Linear phase (Type II)

h[n]

188

Linear phase (Type II)

H(z) =h[0] +h[1]z 71 +... FhL-1zH14
2L — 1]z725+1 +h2L -2z 4. 4hllzt
=h[0] +h[1]z 71 +... FhL-1zH14
h[0]z 2L+ +h[1]z72E+2 +.. +h[L—1)z7t

1
Z h[n](2L+1+n)

I—
n=0

Linear phase (Type II)

C=(M-1)/2=0L-1)/2=1L—1/2

L-1
— Z h[n](z™" + z72¢+m)

(non-integer!)

CZh[n] Cn)+z Cn))

190

Linear phase (Type Il)

L1
H(w) = 22 h[n] cos(w(C — n)) e—JwC
n=0

191

Linear-phase FIRs

m frequency response is of the form
H(w) = A(e)e 7,
m processing delay is C = (M — 1)/2 samples

m delay is non-integer for even-length filters!

A(e™) e R

192

Zero locations

this applies to all FIRs, linear-phase or not:

m FIRs have only zeros
m transfer function is a finite-degree polynomial: H(z) = Z/Q/,:_ol h[k]z=*

m if h[n] € R and H(z)) =0 then H(z5) =0

the zeros of linear-phase FIRs have additional properties

193

Zero locations for Type |

L
H[O1 + > hln)(z" +27")

n=1

H(z) =zt

L
h[O] + > Aln)(z"+27")

n=1

H(z™Y) =zt

H(z™Y) = 22 H(2)

if H(zp) = 0 then H(1/z) =0

194

Property of all linear-phase FIRs

if zg is a zero, 1/z is also a zero

(easy to prove for all linear-phase FIRs)

195

Zero locations for linear-phase FIRs

If H(zp) = 0:
m H(z;)=0

m H(1/z) =0

If zg = pej9 is a zero, these are zeros too:
[| ,oe_je
m (1/p)el®

m (1/p)e

196

Typical zero plot for linear-phase FIRs

-2

197

Forced zeros in linear-phase FIRs

because of the symmetries in the impulse response,
linear-phase FIRs (xcept Type |) have “automatic” zeros

type

forced zero locations

Type |

Type Il
Type I
Type IV

none

zeroatw =1m

zeros at w =0 and w = +7
zeroat w =0

198

Example: forced zeros in Type Il

H(z) = z L

> halnl(z" ~ Z_”)]

H(z™Y) = =22l H(2)

m Type lll FIRs not good for low- or high-pass

m good for bandpass though!

199

Properties of linear-phase FIRs

‘ type ‘ length ‘ sym. ‘ delay ‘ zeros ‘

!
6« o
odd integer
te
I even non-int. +7
-l
.
" odd integer | 0,7
?
.
\Y} even non-int. 0

200

The Parks-McClellan algorithm

The Parks-McClellan algorithm (also known as minimax optimization)

m can design all types of linear-phase FIRs
m minimizes the maximum error in passband and stopband
m the error is equiripple in passband and stopband

m can be used for “nonstandard” FIR design (Hilbert filter, differentiator, etc.)

Typical lowpass design specs

passband transition band

stopband

202

The Parks-McClellan algorithm: key ideas

Using a zero-centered Type | (symmetric, odd-length):
m frequency response is real: Hy(w) = hg[0] + 22,(7’-:1 hg[n] coswn

m use Chebyshev polynomials to write response as P(x) = ZE:O axxk, with x = cosw
m fit P(x) to the specifications using the Lo, norm (minimizing the maximum error)

m solve the fitting problem with an efficient numerical algorithm
(the Remez exchange algorithm)

Short aside: error norms (aka “loss functions”)

[x[lp = (Zn: \an”)%

m L norm: minimize the Mean Square Error (global minimization)
m L; norm: minimize the sum of the magnitudes

m [, norm: minimize the maximum absolute value

Lq Lp L

e
ZaANP

(1)
L

204

L, polynomial fitting doesn’t work

polynomial will fit well in places and go crazy at edges...

-1 cos(ws) cos(wp)

L, fitting will lead to equiripple error

Wp

206

The Parks-McClellan recipe for a Type | lowpass

User data:
m filter length M =2L +1

m wp and ws

m stopband -to-passband tolerance ratio 65/,

Run the Parks-McClellan algorithm to obtain:
m M filter coefficients

m stopband and passband tolerances ds and d,

m if error too big in either band, increase M and retry.

207

Example

m M=9 (L=4)
m wp,=04r
m ws = 0.6

m 5,/0, =1/10

208

Final Result

N

w/2

209

Final Result (stopband)

: S

NP ~—]

Final Result (Impulse Response)

0.40

0.20

0.00

T

Optimal lowpass filter (recap)

Magnitude response:

m equiripple in passband
and stopband

Design parameters:
m order N (number of taps)

m passband edge wp
m stopband edge wq

m ratio of passband to
stopband error 6, /6

Design test criterion:

m passband max error

m stopband max error

N

N

Butterworth lowpass design with SciPy

Let p = wp/(27) and s = ws/(27):

import scipy.signal as sp

M, p, s=9, 0.1, 0.15
delta_p, delta_s = 10, 1

h = sp.remez(M, [0, p, s, 0.5], [1, 0], [delta_p, delta_s])

wb, Hb = sp.freqz(h, 1, 1024);
plt.plot(wb/np.pi, np.abs(Hb));

Optimal lowpass example

N =9,wp, = 0.2, ws = 0.37,0,/0s = 10

LICH]

0 T T T T T T
-t —3n/4 —7/2 —w/4 0 w/4 /2 3w /4 ™

Optimal lowpass example

N =19,w, = 0.27,ws = 0.37,0,/ds = 10

[H(w)]

0 T T T T T T
-t —3n/4 —7/2 —w/4 0 w/4 /2 3w /4 ™

Optimal lowpass example

N =51,w, = 0.2m,ws = 0.37m,9, /s =1

[H(w)]

g T T T T
-t —3n/4 —7/2 —w/4 0 w/4 /2

-
3w /4

s

216

Lowpass comparison, w. = 7 /4

—10
—30 |

g s0f

E —70 [

T = O-FIR

= —90} 4-Butterworth
0l — 4-Ch_eb_yshev

4-elliptic

—130 T ‘

T T T T T
-t —3n/4 —7w/2 —x/4 0 /4 /2 3r/4

Lowpass

[H(w)] (dB)

comparison, w, =

/4

—10} i
—-30]
—50 -]
—70 i

= 19-FIR
—90r 4-Butterworth o

_110 | — 4-Ch_eb_yshev]

4-elliptic

—130 T T T T T T T

-t —3n/4 —7w/2 —x/4 0 /4 /2 3r/4 ™

Lowpass comparison, w. = 7 /4

—10
730 -
5 50
3 —70
T — 51-FIR I
—90 1 4-Butterworth o
_110 L = 4-Chebyshev |
4-elliptic
—130 T T

T T T T T
-t —3n/4 —7w/2 —x/4 0 /4 /2 3r/4 ™

4th-order elliptic lowpass, w. = 7/4

0
—20 k
S 40
3
T —60
—80 F
—100 T T T T T T T
—r —3n/4 —7w/2 —m/4 0 /4 /2 3r/4

9 multiplications per output sample

N

9-tap optimal FIR lowpass, w. = 7 /4

0
—20 +

:3 —60 -
—80
~100 ‘ ‘

T T T T T
-t —3n/4 —7w/2 -—x/4 0 /4 /2 3r/4

19-tap optimal

FIR lowpass, w. = /4

0
—20 F

IE —60 |-
_80 -
~100

T T T T
—-3r/4 —m/2 —m/4 0 /4

T
w/2

T
3r/4

222

51-tap optimal FIR lowpass, w. = 7/4

[H(w)] (dB)

—20 |

—60

—100

T

—T

—3m/4

T

—m/2

T
—7/4

0

T
/4

T
w/2

T
3r/4

s

223

Life beyond lowpass

The IIR and FIR methods we just described can be used to design more general filter types
than lowpass, with only minor modifications
m |IR bandpass and highpass can be obtain by modulating the lowpass response

m optimal FIR bandpass and highpass can be designed by the Parks-McClellan algorithm
m optimal FIR can also be designed with piecewise linear magnitude response

m the literature on filter design is vast: this is just the tip of the iceberg!

N
N
=

