The Z-Transform

Mathematically, the z-transform is a mapping between complex sequences
and analytical functions on the complex plane. Given a discrete-time signal
x[n], the z-transform of x[n] is formally defined as the complex function of
a complex variable z € C

o0
X(z)=Z{x[n]} = Z x[n]z™" (6.1)
n=-—00

Contrary to the Fourier transform (as well as to other well-known trans-
forms such as the Laplace transform or the wavelet transform), the z-trans-
form is not an analysis tool per se, in that it does not offer a new physical
insight on the nature of signals and systems. The z-transform, however, de-
rives its status as a fundamental tool in digital signal processing from two

key features:

¢ Its mathematical formalism, which allows us to easily solve constant-
coefficient difference equations as algebraic equations (and this was
precisely the context in which the z-transform was originally inv-
ented).

o Its close association to the DTFT, which provides us with easy stabil-
ity criteria for the design and the use of digital filters. (It is evident
that the z-transform computed on the unit circle, i.e. for z = e/, is
nothing but the DTFT of the sequence).

Probably the best approach to the z-transform is to consider it as a
clever mathematical transformation which facilitates the manipulation of
complex sequences; for discrete-time filters, the z-transform bridges the al-
gorithmic side (i.e. the CCDE) to the analytical side (i.e. the spectral proper-
ties) in an extremely elegant, convenient and ultimately beautiful way.



148 Filter Analysis

6.1 Filter Analysis

To see the usefulness of the z-transform in the context of the analysis and
the design of realizable filters, it is sufficient to consider the following two
formal properties of the z-transform operator:

e Linearity: given two sequences x[n] and y[n] and their respective
z-transforms X(z) and Y(z), we have

Z{ax[n]+Bynl}=aX(z)+BY(z)
o Time-shift: given a sequence x[n] and its z-transform X(z), we have
Z{x[n—N}=z""X(z)
In the above, we have conveniently ignored all convergence issues for the

z-transform; these will be addressed shortly but, for the time being, let us
just make use of the formalism as it stands.

6.1.1 Solving CCDEs

Consider the generic filter CCDE (Constant-Coefficient Difference Equation)
in (5.46):

M-1 N-1
yInl=> bexln—k1= > aryln—k
k=0 k=1

If we apply the z-transform operator to both sides and exploit the linearity
and time-shifting properties, we have

M-1 N-1
Y(z)= Z brz % X(z)— Z arz ¥ Y(2) (6.2)
k=1

k=0

=0 () 6.3)

= H(2)X(z) (6.4)

H(z) is called the transfer function of the LTI filter described by the CCDE.
The following properties hold:



The Z-Transform 149

o The transfer function of a realizable filter is a rational transfer function
(i.e. aratio of finite-degree polynomials in z).

o The transfer function evaluated on the unit circle is the frequency re-
sponse of the filter. In other words, the z-transform gives us the pos-
sibility of obtaining the frequency response of a filter directly from the
underlying CCDE; in a way, we will no longer need to occupy ourselves
with the actual impulse response.

e The transfer function is the z-transform of the filter’s impulse response
(which follows immediately from the fact that the impulse response is
the filter’s output when the input is x[n] = §[n] and that Z{6[n]}
=1).

e The result in (6.4) can be extended to general sequences to yield a
z-transform version of the convolution theorem. In particular, given
the square-summable sequences x[n] and h[n] and their convolution
y[n]=x[n]* h[n], we can state that

Z{y[nl} =Y(2)=X(2)H(z) (6.5)

which can easily be verified using an approach similar to the one used
in Section 5.4.2.

6.1.2 Causality

As we saw in Section 5.7.1, a CCDE can be rearranged to express either a
causal or a noncausal realization of a filter. This ambiguity is reflected in the
z-transform and can be made explicit by the following example. Consider
the sequences

x1[n]=uln] (6.6)
x2[n]=0[n] — u[-n] (6.7)

where u[n] is the unit step. For the first sequence we have

Xi(x) = Z =T (6.8)

(again, let us neglect convergence issues for the moment). For the second
sequence we have

Xx)==)» z'=1- = — (6.9
— 1-z 1-z



150 Filter Analysis

so that, at least formally, X;(z) = X,(z). In other words, the z-transform is
not an invertible operator or, more precisely, it is invertible up to a causality
specification. If we look more in detail, the sum in (6.8) converges only for
|z| > 1 while the sum in (6.9) converges only for |z| < 1. This is actually a
general fact: the values for which a z-transform exists define the causality
or anticausality of the underlying sequence.

6.1.3 Region of Convergence

We are now ready to address the convergence issues that we have put aside
so far. For any given sequence x[n], the set of points on the complex plane
for which ) x[n]z=" exists and is finite, is called the region of convergence
(ROQ) for the z-transform. In order to study the properties of this region, it
is useful to split the sum in (6.1) as

-1 M
X(z) = Z x[n]z‘"—i—Zx[n]z‘” (6.10)
n=—N n=0
N ) M x[n]
=) xlnlz"+> = 6.11)
n=1 n=0 z
= X,(2)+ Xeo(z2) (6.12)

where N, M > 0 and where both N and M can be infinity. Now, for X(z)
to exist and be finite, both power series X,(z) and X.(z) must converge in
zo; since they are power series, when they do converge, they converge ab-
solutely. As a consequence, for all practical purposes, we define the ROC in
terms of absolute convergence:(

z €ROC{X(z)} < i )x[n]z‘"| <0 (6.13)

n=—oo

Then the following properties are easily derived:

e The ROC has circular symmetry. Indeed, the sum in (6.13) depends
only on the magnitude of z; in other words, if zop € ROC, then the set
of complex points {z | |z| = |zo|} is also in the ROC, and such a set
defines a circle.

e The ROC for a finite-support sequence is the entire complex plane (with
the possible exception of zero and infinity). For a finite-support se-

(DThis definition excludes the points on the boundary of the ROC from the ROC itself, but
this has no consequence on the results we will derive and use in what follows.



The Z-Transform 151

quence, both N and M in (6.10) are finite. The z-transform is there-
fore a simple polynomial which exists and is finite for all values of z
(except for z=0if N >0 and/or z =00 if M > 0).

e The ROC for a causal sequence is a circularly symmetric region in the
complex plane extending to infinity (Fig. 6.1a). For a causal sequence,
M = oo while N is finite (and equal to zero for a strictly causal se-
quence). In this case, X,(z) is a finite-degree polynomial and poses
no convergence issues (i.e. ROC{X,(z)} = C \ {oo}). As for X.(z), as-
sume X,(z) exists and is finite and take any z; so that |z;| > |zy|; we
have that for all n:

x[n] x[n]

<

n
1

n

Z 0

z

so that X.(z) is absolutely convergent in z; as well.

e The ROC for an anticausal sequence is a disk in the complex plane,
centered in the origin (Fig. 6.1b). For an anticausal sequence, N = 0o
while M is finite so that X.(z) poses no convergence issues
(i.e. ROC{X,(2)} = C\ {0}). As for X,(z), assume X,(zo) exists and
is finite and take any z; so that |z;| < |z¢|; we have that for all n:

}x[n]zﬂ < }x[n]z(’)’}

so that X,(z) is absolutely convergent in z; as well.

dh QN
NI RN

(@) (b)

Figure 6.1 ROC shapes (hatched area): (a) causal sequence; (b) anticausal se-
quence.



152 The Pole-Zero Plot

6.1.4 ROC and System Stability

The z-transform provides us with a quick and easy way to test the stability
of a linear system. Recall from Section 5.2.2 that a necessary and sufficient
condition for an LTI system to be BIBO stable is the absolute summability
of its impulse response. This is equivalent to saying that a system is BIBO
stable if and only if the z-transform of its impulse response is absolutely
convergent in |z| = 1. In other words, a system is BIBO stable if the ROC of its
transfer function includes the unit circle.

6.1.5 ROC of Rational Transfer Functions
and Filter Stability

For rational transfer functions, the analysis of the ROC is quite simple; in-
deed, the only "trouble spots” for convergence are the values for which the
denominator of (6.3) is zero. These values are called the poles of the transfer
functions and clearly they must lie outside of the ROC. As a consequence,
we have an extremely quick and practical rule to determine the stability of a
realizable filter.

Consider a causal filter:

e Find the roots of the transfer function’s denominator (considered as a
polynomial in z). These are the system’s poles. Call py the pole with
the largest magnitude.

e The ROC has circular symmetry, it extends outwards to infinity and it
cannot include any pole; therefore the ROC will simply be the area on
the complex plane outside of a circle of radius |py|.

e For the ROC to include the unit circle we must have |pg| < 1. There-
fore, in order to have stability, all the poles must be inside the unit
circle.

For an anticausal system the procedure is symmetrical; once the smallest-
magnitude pole is known, the ROC will be a disk of radius |py| and therefore
in order to have stability, all the poles will have to be outside of the unit
circle.

6.2 The Pole-Zero Plot

The rational transfer function derived in (6.3) can be written out explicitly
in terms of the CCDEs coefficients, as follows:

H(z)= bo+byz7' + -+ bp_1z2~M-1) 6.14)
l+aiz ' +-+ayz27N-D '




The Z-Transform 153

The transfer function is the ratio of two polynomials in z~! where the degree
of the numerator polynomial is M — 1 and that of the denominator polyno-
mial is N — 1. As a consequence, the transfer function can be rewritten in
factored form as

M-1
l_[(l—z z™h

H(z)= boN—l— (6.15)
(1- pnz_l)

n=1

where the z,, are the M — 1 complex roots of the numerator polynomial and
are called the zeros of the system; the p,, are the N — 1 complex roots of the
denominator polynomial and, as we have seen, they are called the poles of
the system. Both poles and zeros can have arbitrary multiplicity. Clearly, if
z; = py forsome i and k (i.e. if a pole and a zero coincide) the corresponding
first-order factors cancel each other out and the degrees of numerator and
denominator are both decreased by one. In general, it is assumed that such
factors have already been removed and that the numerator and denomina-
tor polynomials of a given rational transfer function are coprime.

The poles and the zeros of a filter are usually represented graphically
on the complex plane as crosses and dots, respectively. This allows for a
quick visual assessment of stability which, for a causal system, consists of
checking whether all the crosses are inside the unit circle (or, for anticausal
systems, outside).

6.2.1 Pole-Zero Patterns

The pole-zero plot can exhibit distinctive patterns according to the proper-
ties of the filter.

Real-Valued Filters. 1If the filter coefficients are real-valued (and this is
the only case that we consider in this text book) both the numerator and de-
nominator polynomials are going to have real-valued coefficients. We can
now recall a fundamental result from complex algebra: the roots of a poly-
nomial with real-valued coefficients are either real or they occur in complex-
conjugate pairs. So, if zy is a complex zero of the system, z{ is a zero as well.
Similarly, if po is a complex pole, so is p;. The pole-zero plot will therefore
shows a symmetry around the real axis (Fig. 6.2a).



154 The Pole-Zero Plot

Im Im
O
X O
x O
1 Re 1 Re
X O
O

(@) (b)

Figure 6.2 Examples of pole-zero patterns: (a) real-valued IIR filter (note the sym-
metry around the x-axis); (b) linear phase FIR (each zero appears with its recipro-
cal).

Linear-Phase FIR Filters. First of all, note that the pole-zero plot for an
FIR filter is actually just a zero plot, since FIR’s have no poles.’?) A particu-
larly important case is that of linear phase FIR filters; as we will see in detail
in Section 7.2.2, linear phase imposes some symmetry constraints on the
CCDE coefficients (which, of course, coincide with the filter taps). These
constraints have a remarkable consequence: if z is a (complex) zero of the
system, 1/zg is a zero as well. Since we consider real-valued FIR filters ex-
clusively, the presence of a complex zero in zo implies the existence of three
other zeros, namely in 1/z, zz and 1/ zz (Fig. 6.2b). See also the discussion
in Section 7.2.2

6.2.2 Pole-Zero Cancellation

We have seen in Section 5.2.1 that the effect of a cascade of two or more
filters is that of a single filter whose impulse response is the convolution of
all of the filters’ impulse responses. By the convolution theorem, this means
that the overall transfer function of a cascade of K filters 7, i =1,...,K is
simply the product of the single transfer functions H;(z):

K
H(z)=] [ Hi(z)
i=1

If all filters are realizable, we can consider the factored form of each H;(z)
asin (6.15). In the product of transfer functions, it may happen that some of

@Technically, since we use the notation z~! to express a delay, causal FIR filters have a
multiple pole in the origin (z = 0). This is of no consequence for stability, however, so
we will not consider it further.



The Z-Transform 155

the poles of a given H;(z) coincide with the zeros of another transfer func-
tion, which leads to a pole-zero cancellation in the overall transfer function.
This is a method that can be used (at least theoretically) to stabilize an oth-
erwise unstable filter. If one of the poles of the system (assuming causality)
lies outside of the unit circle, this pole can be compensated by cascading an
appropriate first- or second-order FIR section to the original filter. In practi-
cal realizations, care must be taken to make sure that the cancellation is not
jeopardized by numerical precision problems.

6.2.3 Sketching the Transfer Function
from the Pole-Zero Plot

The pole-zero plot represents a convenient starting point in order to esti-
mate the shape of the magnitude for a filter’s transfer function. The basic
idea is to consider the absolute value of H(z), which is a three-dimensional
plot ()H (z)| being a real function of a complex variable). To see what hap-
pens to |H(z)| it is useful to imagine a “rubber sheet” laid over the complex
plane; then,

e every zero corresponds to a point where the rubber sheet is “glued” to
the plane,

e everypole corresponds to a “pole” which is “pushing” the rubber sheet
up (to infinity),

so that the shape of |H (z)| is that of a very lopsided “circus tent”. The mag-
nitude of the transfer function is just the height of this circus tent measured
around the unit circle.

In practice, to sketch a transfer function (in magnitude) given the pole-
zero plot, we proceed as follows. Let us start by considering the upper half
of the unit circle, which maps to the [0, 7] interval for the w axis in the DTFT
plot; for real-valued filters, the magnitude response is an even function and,
therefore, the [—7,0] interval need not be considered explicitly. Then:

1. Check for zeros on the unit circle; these correspond to points on the
frequency axis in which the magnitude response is exactly zero.

2. Draw a line from the origin of the complex plane to each pole and
each zero. The point of intersection of each line with the unit circle
gives the location of a local extremum for the magnitude response.

3. The effect of each pole and each zero is made stronger by their prox-
imity to the unit circle.



156 Filtering by Example — Z-Transform

T T T T T T T

-1 -31/4 -2m/4 -/4 0 n/4 27m/4 3n/4 T

Figure 6.3 Sketch of the magnitude response for the pole-zero plot of Figure 6.2(a).

T T T T T T T

-1 -31/4 -2m/4 -/4 0 n/4 271/4 3n/4 T
Figure 6.4 Sketch of the magnitude response for the pole-zero plot of Figure 6.2(b).

As an example, the magnitude responses of the pole-zero plots in Figure 6.2
are displayed in Figures 6.3 and 6.4.

6.3 Filtering by Example - Z-Transform

We will quickly revisit the examples of the previous chapter to show the ver-
satility of the z-transform.

Moving Average. From the impulse response in (5.14), the transfer func-
tion of the moving average filter is

N-1

1 11-zN
_ -k _
H(z)= — I;:o R (6.16)

from which the frequency response (5.26) is easily derived by setting z =
e/, Tt is easy to see that the zeros of the filter are on all the roots of unity



The Z-Transform 157

=X

1 Re 1 Re

(@) (b)

Figure 6.5 Pole-zero plots and ROC: (a) moving average filter with N = 8; (b) leaky
integrator with A = 0.65.

except for z = 1, where the numerator and denominator in (6.17) cancel
each other out. A factored representation of the transfer function for the
moving average is therefore

N-1
H(z)= % 1_[(1 —wkzk) (6.17)
k=1

and the pole-zero plot (for N = 8) is shown in Figure 6.5(a). There being no
poles, the filter is unconditionally stable.

Leaky Integrator. From the CCDE for the leaky integrator (5.16) we im-
mediately have

Y(z)=Az"'Y(2)+ (1 - 1)X(2) (6.18)
from which
H( )_ i (6.19)
T ’

The transfer function has therefore a single real pole in z = A; for a causal
realization, this implies that the ROC is the region of the complex plane ex-
tending outward from the circle of radius A. The causal filter is stable if A lies
inside the unit circle, i.e. if A < 1. An example of pole-zero plot together with
the associated ROC is shown in Figure 6.5(b) for the (stable) case of A =0.65.

Example 6.1: Transform of periodic functions
The z-transform converges without fuss for infinite-energy sequences which
the Fourier transform has some difficulties dealing with. For instance, the



158 Examples

z-transform manages to “bring down” the unit step because of the vanish-
ing power of z7" for |z| > 1 and n large and this is the case for all one-sided
sequences which grow no more than exponentially. However, if |z~"| — 0 for
n — oo then necessarily |z="| — oo for n — —o0 and this may pose a problem
for the convergence of the z-transform in the case of two-sided sequences.
In particular, the z-transform does not converge in the case of periodic sig-
nals since only one side of the repeating pattern is “brought down” while the
other is amplified limitlessly. We can circumvent this impasse by “killing”
half of the periodic signal with a unit step. Take for instance the one-sided
cosine:

x[n]=cos(won)uln]

its z-transform can be derived as

00

X(z)= Z z " cos(won)un]

n=—oo

o0
=Zz‘” cos(won)
n=0
1 & 1 &
=_Zejwonz—n+_ze—jwonz—n
2 2
n=0 n=0

1 1 1
2 (l—ef""oz‘1 + l—e‘f‘“()z‘l)
B 1—cos(wg)z™!
" 1—2cos(wg)z  +272

Similar results can be obtained for signals such as x[n] = sin(wgn)u[n] or
x[n]=a" cos(won)uln].

Example 6.2: The impossibility of ideal filters

The z-transform of an FIR impulse response can be expressed as a simple
polynomial P(z) of degree L — 1 where L is the number of nonzero taps of
the filter (we can neglect leading factors of the form z~V). The fundamental
theorem of algebra states that such a polynomial has at most L — 1 roots; as
a consequence, the frequency response of an FIR filter can never be iden-
tically zero over a frequency interval since, if it were, its z-transform would
have an infinite number of roots. Similarly, by considering the polynomial
P(z)— C, we can prove that the frequency response can never be constant C
over an interval which proves the impossibility of achieving ideal (i.e. “brick-
wall”) responses with an FIR filter. The argument can be easily extended to
rational transfer functions, confirming the impossibility of a realizable filter
whose characteristic is piecewise perfectly flat.



Filter Design

In discrete-time signal processing, filter design is the art of turning a set of
requirements into a well-defined numerical algorithm. The requirements,
or specifications, are usually formulated in terms of the filter’s frequency
response; the design problem is solved by finding the appropriate coeffi-
cients for a suitable difference equation which implements the filter and
by specifying the filter’s architecture. Since realizable filters are described
by rational transfer functions, filter design can usually be cast in terms of
a polynomial optimization procedure for a given error measure. Additional
design choices include the computational cost of the designed filters, i.e. the
number of mathematical operations and storage necessary to compute each
output sample. Finally, the structure of the difference equation defines an
explicit operational procedure for computing the filter’s output values; by
arranging the terms of the equation in different ways, we can arrive at dif-
ferent algorithmic structures for the implementation of digital filters.

7.1 Design Fundamentals

As we have seen, a realizable filter is described by a rational transfer func-
tion; designing a filter corresponds to determining the coefficients of the
polynomials in transfer function with respect to the desired filter character-
istics. For an FIR filter of length M, there are M coefficients that need to be
determined, and they correspond directly to the filter's impulse response.
Similarly, for an IIR filter with a numerator of degree M —1 and a denomina-
tor of degree N — 1, there are M + N — 1 coefficients to determine (since we
always assume a( = 1). The main questions are the following:



166 Design Fundamentals

o How do we specify the characteristics of the desired filter? This ques-
tion effectively selects the domain in which we will measure the dif-
ference (i.e. the error) between the desired filter and the achieved im-
plementation. This can be the time domain (where we would be com-
paring impulse responses) or the frequency domain (where we would
be comparing frequency responses). Usually the domain of choice is
the frequency domain.

o What are the criteria to measure the quality of the obtained filter? This
question defines the way in which the above-mentionned error is mea-
sured; again, different criteria are possible (such as minimum square
error or minimax) and they do depend on the intended application.

o How do we choose the filter’s coefficients in order to obtain the desired
filtering characteristics? This question defines an optimization prob-
lem in a parameter space of dimension M + N — 1 with the optimality
criterion chosen above; it is usually answered by the existence of a
numerical recipe which performs the task.

o What is the best algorithmic structure (software or hardware) to imple-
ment a given digital filter? This last question concerns the algorithmic
design of the filter itself; the design is subject to various application-
dependent constraints which include computational speed, storage
requirement and arithmetic precision. Some of these design choices
will be addressed at the end of the Chapter.

As is apparent, real-world filters are designed with a variety of practi-
cal requirements in mind, most of which are conflicting. One such require-
ment, for instance, is to obtain a low “computational price” for the filtering
operation; this cost is obviously proportional to the number of coefficients
in the filter, but it also depends heavily on the underlying hardware architec-
ture. The tradeoffs between disparate requirements such as cost, precision
or numerical stability are very subtle and not altogether obvious; the art of
the digital filter designer, although probably less dazzling than the art of the
analog filter designer, is to determine the best design strategy for a given
practical problem.

7.1.1 FIR versus IIR

Filter design has a long and noble history in the analog domain: a linear
electronic network can be described in terms of a differential equation
linking, for instance, the voltage as a function of time at the input of the
network to the voltage at the output. The arrangement of the capacitors,



Filter Design 167

inductances and resistors in the network determine the form of the differ-
ential equation, while their values determine its coefficients. A fundamen-
tal difference between an analog filter and a digital filter is that the trans-
formation from input to output is almost always considered instantaneous
(i.e. the propagation effects along the circuit are neglected). In digital filters,
on the other hand, the delay is always explicit and is actually the fundamen-
tal building block in a processing system. Because of the physical properties
of capacitors, which are ubiquitous in analog filters, the transfer function
of an analog filter (expressed in terms of its Laplace transform) is “similar”
to the transfer function of an IIR filter, in the sense that it contains both
poles and zeros. In a sense, IIR filters can be considered as the discrete-time
counterpart of classic analog filters. FIR filters, on the other hand, are the
flagship of digital signal processing; while one could conceive of an analog
equivalent to an FIR, its realization would require the use of analog delay
lines, which are costly and impractical components to manufacture. In a
digital signal processing scenario, on the other hand, the designer can freely
choose between two lines of attack with respect to a filtering problem, IIR or
FIR, and therefore it is important to highlight advantages and disadvantages
of each.

FIR Filters. The main advantages of FIR filters can be summarized as fol-
lows:

¢ unconditional stability;

e precise control of the phase response and, in particular, exact linear
phase;

e optimal algorithmic design procedures;

¢ robustness with respect to finite numerical precision hardware.
While their disadvantages are mainly:

¢ longer input-output delay;

¢ higher computational cost with respect to IIR solutions.
lIR Filters. IIR filters are often an afterthought in the context of digital sig-
nal processing in the sense that they are designed by mimicking established
design procedures in the analog domain; their appeal lies mostly in their

compact formulation: for a given computational cost, i.e for a given num-
ber of operations per input sample, they can offer a much better magnitude



168 Design Fundamentals

response than an equivalent FIR filter. Furthermore, there are a few fun-
damental processing tasks (such as DC removal, as we will see later) which
are the natural domain of IIR filters. The drawbacks of IIR filters, however,
mirror in the negative the advantages of FIR’s. The main advantages of IIR
filters can be summarized as follows:

o lower computational cost with respect to an FIR with similar behavior;
o shorter input-output delay;
e compact representation.
While their disadvantages are mainly:
o stability is not guaranteed;
¢ phase response is difficult to control;
e design is complex in the general case;
e sensitive to numerical precision.

For these reasons, in this book, we will concentrate mostly on the FIR design
problem and we will consider of IIR filters only in conjunction with some
specific processing tasks which are often encountered in practice.

7.1.2 Filter Specifications and Tradeoffs

A set of filter specifications represents a set of guidelines for the design of
a realizable filter. Generally, the specifications are formulated in the fre-
quency domain and are cast in the form of boundaries for the magnitude
of the frequency response; less frequently, the specifications will take the
phase response into account as well.

A set of filter specifications is best illustrated by example: suppose our
goal is to design a half-band lowpass filter, i.e. a lowpass filter with cutoff
frequency /2. The filter will possess a passband, i.e. a frequency range over
which the input signal is unaffected, and a stopband, i.e. a frequency range
where the input signal is annihilated. In order to turn these requirements
into specifications the following practical issues must be taken into account:

¢ Transition band. The range of frequencies between passband and
stopband is called the transition band. We should know by now (and
we shall see again shortly) that we cannot obtain an instantaneous



Filter Design 169

transition in a realizable filter). Therefore, we must be willing to al-
low for a gap between passband and stopband where we renounce
control over the frequency response; suppose we estimate that we
can tolerate a transition band width up to 20 % of the total bandwidth:
since the cutoff is supposed to be at 0.5 7, the transition band will thus
extend from 0.4 7 to 0.6 7.

e Tolerances. Similarly, we cannot impose a strict value of 1 for the
passband and a value of 0 for the stopband (again, this has to do with
the fact that the rational transfer function, being analytical, cannot be
a constant over an interval). So we must allow for tolerances, i.e. mini-
mum and maximum values for the frequency response over passband
and stopband (while, in the transition band, we don’t care). In our
example, suppose that after examining the filter usage scenario we
decide we can afford a 10% error in the passband and a 30% error in
the stopband. (Note that these are hugetolerances, but they make the
plots easier to read).

passband transition band stopband

0 T 1
0 0.4m /2 0.67 T

Figure 7.1 Typical lowpass filter specifications.

These specifications can be represented graphically as in Figure 7.1; note
that, since we are dealing with real-valued filter coefficients, it is sufficient
to specify the desired frequency response only over the [0, 7] interval, the
magnitude response being symmetric. The filter design problem consists
now in finding the minimum size FIR or IIR filter which fulfills the required

(To get an initial intuition as to why this is, consider that an instantaneous (vertical) tran-
sition constitutes a jump discontinuity in the frequency response. But the frequency
response is just the transfer function computed on the unit circle and, for a realizable
filter, the transfer function is a rational function which must be continuous.



170 Design Fundamentals

0 T
0 0.4m /2 0.67 T

Figure 7.2 Example of monotonic filter which does not satisfies the specifications.

0 0.47 /2 0.6 T

Figure 7.3 Example of FIR filter which does not satisfies the specifications.

. N

T 1

0 0.4m /2 0.67 T

Figure 7.4 Example of monotonic filter which satisfies (and exceeds) the specifi-
cations.



Filter Design 171

specifications. As an example, Figure 7.2 shows an IIR filter which does not
fulfill the specifications since the stopband error is above the maximum er-
ror at the beginning of the stopband. Similarly, Figure 7.3 shows an FIR filter
which breaks the specifications in the passband. Finally, Figure 7.4 shows a
monotonic IIR filter which matches and exceeds the specifications (i.e. the
error is always smaller than the maximum error).

7.2 FIR Filter Design

In this section we will explore two fundamental strategies for FIR filter de-
sign, the window method and the minimax (or Parks-McClellan) method.
Both methods seek to minimize the error between a desired (and often ideal)
filter transfer function and the transfer function of the designed filter; they
differ in the error measure which is used in the minimization. The window
method is completely straightforward and it is often used for quick designs.
The minimax method, on the other hand, is the procedure of choice for ac-
curate, optimal filters. Both methods will be illustrated with respect to the
design of a lowpass filter.

7.2.1 FIR Filter Design by Windowing

We have already seen in Section 5.6 that if there are no constraints (not even
realizability) the best lowpass filter with cutoff frequency w, is the ideal low-
pass. The impulse response is therefore the inverse Fourier transform of the
desired transfer function:

h[n]=iJ H(e!“)el“" dw

21
-7
I I
=— el“"dw
21
—we
1 . »
— . [e]wcn_e ]wcn]
2njn
_sin(w,n)
 7n

We . We
=—SInc|—n
w T

The resulting filter, as we saw, is an ideal filter and it cannot be represented
by a rational transfer function with a finite number of coefficients.



172 FIR Filter Design

Impulse Response Truncation. Asimple idea to obtain a realizable filter
is to take a finite number of samples from the ideal impulse response and
use them as coefficients of a (possibly rather long) FIR filter:®

(7.1)

R hin] —-N<n<N
h[n]=
0 otherwise

This is a (2N + 1)-tap FIR obtained by truncating an ideal impulse response
(Figs 5.10 and 5.11). Note that the filter is noncausal, but that it can be made
causal by using an N-tap delay; it is usually easier to design FIR’s by consid-
ering a noncausal version first, especially if the resulting impulse response is
symmetric (or antisymmetric) around n = 0. Although this approximation
was derived in a sort of “intuitive” way, it actually satisfies a very precise
approximation criterion, namely the minimization of the mean square er-
ror (MSE) between the original and approximated filters. Denote by E, this
error, that is

s
Ej :f |H(e/)— A’ )| dw
-7

We can apply Parseval’s theorem (see (4.59)) to obtain the equivalent expres-
sion in the discrete-time domain:

Ey=21 ) |h[n] - hln][

ne¥

If we now recall that /2[n] =0 for |n| > N, we have

P [ N A ) 00 , N4 2'|
)= nlz |nin]=Rnl| + Y |hlnl] + D )h[n]|J
n=— n=N+1 n=—oo

Obviously the last two terms are nonnegative and independent of hin].
Therefore, the minimization of E, with respect to h[n] is equivalent to the
minimization of the first term only, and this is easily obtained by letting

h[n]= h[n], forn=-N,...,N

In spite of the attractiveness of such a simple and intuitive solution,
there is a major drawback. If we consider the frequency response of the
approximated filter, we have

N
H(el®)= Z hin]e /¢

n=—N

@Here and in the following the “hat” notation will denote an approximated or otherwise
derived filter.



Filter Design 173

which means that H(e/®) is an approximation of H(e/®) obtained by us-
ing only 2N + 1 Fourier coefficients. Since H(e/®) has a jump discontinuity
in w., H(e/®) incurs the well-known Gibbs phenomenon around w,.. The
Gibbs phenomenon states that, when approximating a discontinuous func-
tion with a finite number of Fourier coefficients, the maximum error in an
interval around the jump discontinuity is actually independent of the num-
ber of terms in the approximation and is always equal to roughly 9% of the
jump. In other words, we have no control over the maximum error in the
magnitude response. This is apparent in Figure 7.5 where |H(ef ‘“)| is plot-
ted for increasing values of N; the maximum error does not decrease with
increasing N and, therefore, there are no means to meet a set of specifica-
tions which require less than 9% error in either stopband or passband.

error ~ 0.09

0 T - —mm

0 /2 T

Figure 7.5 Gibbs phenomenon in lowpass approximation; magnitude of the ap-
proximated lowpass filter for N = 4 (light gray), N = 10 (dark gray) and N = 50
(black).

The Rectangular Window. Another way to look at the resulting approx-
imation is to express h[n] as

hin]= h[nlw[n) (7.2)
with
n 1 —-N<n<N
w([n]=rect (—) = ) (7.3)
2N 0 otherwise

w|n] is called a rectangular window of length (2N + 1) taps, which in this
case is centered at n =0.



174 FIR Filter Design

We know from the modulation theorem in (5.22) that the Fourier trans-
form of (7.2) is the convolution (in the space of 27t-periodic functions) of the
Fourier transforms of h[n] and w{n]:

. 1 (™ . .
H(ef“):§f H(e/?yw(el @M q0

-7

It is easy to compute W(e/®) as

. N . sin (a) (N—i— %))
W(el®)= ZNe_f‘“”= Sin(g) (7.4)
2

An example of W(e/®) for N = 6 is shown in Figure 7.6. By analyzing the
form of W(e/«) for arbitrary N, we can determine that:

o the first zero crossing of W(e/®) occurs at w =27/(2N +1);
o thewidth of the main lobe of the magnitude response is A =47 /(2N + 1);

o there are multiple sidelobes, an oscillatory effect around the main lobe
and there are up to 2N sidelobes for a 2N + 1-tap window.

12 1

0
_3,\/\/\/,\/\/\/

-1 -31/4 -2m/4 -1t/ 0 n/4 271/4 3n/4 T

Figure 7.6 Fourier transform of the rectangular window for N =6.

In order to understand the shape of the approximated filter, let us go
back to the lowpass filter example and try to visualize the effect of the con-
volution in the Fourier transform domain. First of all, since all functions
are 2n-periodic, everything happens circularly, i.e. what “goes out” on the
right of the [—, 7r] interval “pops” immediately up on the left. The value at
wy of H(e/®) is the integral of the product between H(e/) and a version of



Filter Design 175

W (eJ ) circularly shifted by wq. Since H(e/®) is zero except over [—w,, w.],
where it is one, this value is actually:

o 1 [« I

H(e/“)= — w(e/@=Mqo

2n o,
When wy is such that the first right sidelobe of W(e/) is outside of the
[—w¢, w.] interval, then the integral reaches its maximum value, since the
sidelobe is negative and it’s the largest. The maximum value is dependent
on the shape of the window (a rectangle in this case) but not on its length.
Hence the Gibbs phenomenon.
To recap, the windowing operation on the ideal impulse response,

i.e. the circular convolution of the ideal frequency response with W(e/«),
produces two main effects:

e The sharp transition from passband to stopband is smoothed by the
convolution with the main lobe of width A.

o Ripples appearboth in the stopband and the passband due to the con-
volution with the sidelobes (the largest ripple being the Gibbs phe-
nomenon).

The sharpness of the transition band and the size of the ripples are de-
pendent on the shape of the window’s Fourier transform; indeed, by care-
fully designing the shape of the windowing sequence we can trade mainlobe
width for sidelobe amplitude and obtain a more controlled behavior in the
frequency response of the approximation filter (although the maximum er-
ror can never be arbitrarily reduced).

Other Windows. In general, the recipe for filter design by windowing in-
volves two steps: the analytical derivation of an ideal impulse response fol-
lowed by a suitable windowing to obtain an FIR filter. The ideal impulse
response h[n] is obtained from the desired frequency response H(e/®) by
the usual DTFT inversion formula

s
hin]=— J H(e/®)e/“" dw
-7
While the analytical evaluation of the above integral may be difficult or im-
possible in the general case, for frequency responses H(e/«)which are piece-
wise linear, the computation of k[n] can be carried out in an exact (if non-
trivial) way; the result will be a linear combination of modulated sinc and
sinc-squared sequences.® The FIR approximation is then obtained by ap-
plying a finite-length window w[n] to the ideal impulse response as in (7.2).

®For more details one can look at the Matlab £ir1 function.



176 FIR Filter Design

The shape of the window can of course be more sophisticated than the sim-
ple rectangular window we have just encountered and, in fact, a hefty body
of literature is devoted to the design of the “best” possible window. In gen-
eral, a window should be designed with the following goals in mind:

o the window should be short, as to minimize the length of the FIR and
therefore its computational cost;

o the spectrum of the window should be concentrated in frequency
around zero as to minimize the “smearing” of the original frequency
response; in other words, the window’s main lobe should be as narrow
as possible (it is clear that for W(e/®) = §(w) the resulting frequency
response is identical to the original);

¢ the unavoidable sidelobes of the window’s spectrum should be small,
so as to minimize the rippling effect in the resulting frequency re-
sponse (Gibbs phenomenon).

It is clear that the first two requirements are openly in conflict; indeed, the
width of the main lobe A is inversely proportional to the length of the win-
dow (we have seen, for instance, that for the rectangular window A =47 /M,
with M, the length of the filter). The second and third requirements are also
in conflict, although the relationship between mainlobe width and sidelobe
amplitude is not straightforward and can be considered a design parameter.
In the frequency response, reduction of the sidelobe amplitude implies that
the Gibbs phenomenon is decreased, but at the “price” of an enlargement
of the filter’s transition band. While a rigorous proof of this fact is beyond
the scope of this book, consider the simple example of a triangular window
(with N odd):

N-—n
—— |n|<N
wen]l=wln]= N (7.5)

0 otherwise

It is easy to verify that w;[n] = w[n]* w(n], with w[n] = rect(2n/(N — 1))
(i.e. the triangle can be obtained as the convolution of a half-support rect-
angle with itself) so that, as a consequence of the convolution theorem, we
have

(7.6)

. 2
Wi(el®)=W(e/)W(e!®)= [—Sm(wN/Z)]

sin(w/2)

The net result is that the amplitude of the sidelobes is quadratically reduced
but the amplitude of the mainlobe A is roughly doubled with respect to an



Filter Design 177

equivalent-length rectangular window; this is displayed in Figure 7.7 for a
17-point window (values are normalized so that both frequency responses
are equal in w = 0). Filters designed with a triangular window therefore
exhibit a much wider transition band.

0 /4 21/4 3n/4 T

Figure 7.7 Fourier transform of the 17-point rectangular window (gray) vs. an
equal-length triangular window (black).

Lo i

05 | i
i TTITT”HHH mﬂﬁmm Y

—40 -30 -20 -10 0 10 20 30 40

Figure 7.8 Hamming window (N =32).

Lo i

05 | i
. . ..QTTTTTIHH Y | HNUTTT??.. . .

—40 -30 -20 -10 0 10 20 30 40

Figure 7.9 Blackman window (N =32).



178 FIR Filter Design

Other commonly used windows admit a simple parametric closed form
representation; the most important are the Hamming window (Fig. 7.8):

n+N
w(n)=0.54—0.46 cos (271 N ) In|<N-1

and the Blackman window (Fig. 7.9):

n+N

n+N
) +0.08cos (47r
2N

w(n)=0.42—-0.5cos (27‘5
2N

), In|<N-1

The magnitude response of both windows is plotted in Figure 7.10 (on a log
scale so as to enhance the difference in sidelobe amplitude); again, we can
remark the tradeoff between mainlobe width (translating to a wider tran-
sition band in the designed filter) and sidelobe amplitude (influencing the
maximum error in passband and stopband).

0.00

-35.00

-70.00

-105.00

-140 T T T
0 /4 21/4 3n/4 T

Figure 7.10 Magnitude response (dB scale) of the 17-point rectangular (light gray),
Hamming (dark gray) and Blackman (black) windows.

Limitations of the Window Method. Lack of total control on passband
and stopband error is the main limitation inherent to the window method;
this said, the method remains a fundamental staple of practical signal pro-
cessing as it yields perfectly usable filters via a quick, flexible and simple
procedure. The error characteristic of a window-designed filter can be par-
ticularly aggravating in sensitive applications such as audio processing,
where the peak in the stopband error can introduce unacceptable artifacts.
In order to improve on the filter performance, we need to completely revise
our design approach. A more suitable optimization criterion may, for in-
stance, be the minimax criterion, where we aim to explicitly minimize the
maximum approximation error over the entire frequency support; this is



Filter Design 179

thoroughly analyzed in the next section. We can already say, however, that
while the minimum square error is an integral criterion, the minimax is a
pointwise criterion; or, mathematically, that the MSE and the minimax are
respectively L, ([—7,7])- and Ly ([—7, 7t])-norm minimizations for the er-
ror function E(w) = H(e/®)—H(e/®). Figure 7.11 illustrates the typical result
of applying both criteria to the ideal lowpass problem. As can be seen, the
minimum square and minimax solutions are very different.

\ \
\ \
0 \‘ 0 \‘

0 047 x/2 0 047 x/2

Figure 7.11 Error shapes in passband for MSE and minimax optimization meth-
ods.

7.2.2 Minimax FIR Filter Design

As we saw in the opening example, FIR filter design by windowing mini-
mizes the overall mean square error between the desired frequency response
and the actual response of the filter. Since this might lead to a very large er-
ror at frequencies near the transition band, we now consider a different ap-
proach, namely the design by minimax optimization. This technique mini-
mizes the maximum allowable error in the filter’s magnitude response, both
in the passband and in the stopband. Optimality in the minimax sense re-
quires therefore the explicit stating of a set of folerances in the prototypi-
cal frequency response, in the form of design specifications as seen in Sec-
tion 7.1.2. Before tackling the design procedure itself, we will need a series
of intermediate results.

Generalized Linear Phase. In Section 5.4.3, we introduced the concept
of linear phase; a filter with linear phase response is particularly desirable
since the phase response translates to just a time delay (possibly fractional)
and we can concentrate on the magnitude response only. We also intro-
duced the notion of group delay and showed that linear phase corresponds
to constant group delay. Clearly, the converse is not true: a frequency re-
sponse of the type

H(eja)): )H(eja))) e—jwd+ja



180 FIR Filter Design

has constant group delay but differs from a linear phase system by a con-
stant phase factor e/%. We will call this type of phase response general-
ized linear phase. Important cases are those for which a = 0 (strictly linear
phase) and a = 7t/2 (generalized linear phase used in differentiators).

FIR Filter Types. Consider a causal, M-tap FIR filter with impulse response
hln], n=0,1,...,M —1; in the following, we are interested in filters whose
impulse response is symmetric or antisymmetric around the “midpoint”. If
the number of taps is odd, the midpoint of the impulse response coincides
with the center tap h[(M — 1)/2]; if the number of taps is even, on the other
hand, the midpoint is still at (M —1)/2 but this value does not coincide with
atap since it is located “right in between” taps h[M/2—1] and h[M/2]. Sym-
metric and antisymmetric FIR filters are important since their frequency re-
sponse has generalized linear phase. The delay introduced by these filters is
equal to (M —1)/2 samples; clearly, this is an integer delay if M is odd, and it
is fractional (half a sample more) if M is even. There are four different pos-
sibilities for linear phase FIR impulse responses, which are listed here with
their corresponding generalized linear phase parameters :

Type Nb. of Taps Symmetry Delay Phase
Type I odd symmetric integer a=0
Typell | even symmetric fractional a=0
TypeIll | odd antisymmetric  integer a=m/2
TypelV | even antisymmetric fractional a=7m/2

The generalized linear phase of (anti)symmetric FIRs is easily shown. Cons-
ider for instance a Type I filter, and define C =(M — 1)/2, the location of the
center tap; we can compute the transfer function of the shifted impulse re-
sponse hg[n] = h[n + C], which is now symmetric around zero.
ie. hg[—n]=hg4[n]:

C
Ha(z)= Y haln)z™"
n=—=_C
—1 C
=hal0l+ D haln)z™ + Y haln]z™"
n=-—C n=1

C
= h4[0] +Zhd[n](z” +z7M) 7.7)
n=1

By undoing the time shift we obtain the original Type I transfer function:

H(z)=2z""7 Hy(z) (7.8)



Filter Design 181

On the unit circle (7.7) becomes

C
Ha(el®)=ha[0]+ ) haln)(e/®" +e7Im)

n=1

C
:hd[0]+22 hg[n]cosnw (7.9)

n=1

which is a real function; the original Type I frequency response is obtained
from (7.8):

M-1

(e/®)= M-1 +2 hin]cosnw| e /® 7

Hiel ) I-h|: 1] Z -I M-1
[ 2 n=(M+1)/2 J

which is clearly linear phase with delay d =(M —1)/2 and a =0. The gener-
alized linear phase of the other three FIR types can be shown in exactly the
same way.

Zero Locations. The symmetric structures of the four types of FIR fil-
ters impose some constraints on the locations of the zeros of the transfer
function. Consider again a Type I filter; from (7.7) it is easy to see that
H,(z7')= Hy4(z); by using (7.8) we therefore have

H(z)=z""7 Hy(z)
H(z"")=z"7 Ha(z)

which leads to
H(z HY=zM"1H(z) (7.10)

It is easy to show that the above relation is also valid for Type II filters, while
for Type III and Type IV (antisymmetric filters) we have

H(z HY=—-z""1H(2) (7.11)

These relations mean that if z( is a zero of a linear phase FIR, then so is
z, !, This result, coupled with the usual fact that all complex zeros come in
conjugate pairs, implies that if z( is a zero of H(z), then:

o If zo=p €Rthen p and 1/p are zeros.
e Ifzo=pe/f thenpel? (1/p)ei?, pe=i? and (1/p)e~7? are zeros.
Consider now equation (7.10) again; if we set z =—1,

H-1)=(-1)""H(-1) (7.12)



182 FIR Filter Design

for Type II filters, M — 1 is an odd number, which leads to the conclusion
that H(—1) = 0; in other words, Type II filters must have a zero at w = 7.
Similar results can be demonstrated for the other filter types, and they are
summarized below:

Filter Type Relation Constraint on Zeros

Typel H(z71)=zM-1H(z) No constraints

Type Il H(z ))=zM-1H(z) Zeroatz=-1(i.e.w=m)

Type 111 H(z7Y)=—-zM-1H(z) Zerosatz==1 (i.e.atw =0, w=")
Type IV H(z \)=—-zM-1H(z) Zeroatz=1 (i.e. w=0)

These constraints are important in the choice of the filter type for a given
set of specifications. Type Il and Type III filters are not suitable in the design
of highpass filters, for instance; similarly, Type III and Type IV filters are not
suitable in in the design of lowpass filters.

Chebyshev Polynomials. Chebyshev polynomials are a family of or-
thogonal polynomials {Ti(x)} oy which have, amongst others, the follow-
ing interesting property:

cosnw = T,(cos w) (7.13)

in other words, the cosine of an integer multiple of an angle w can be ex-
pressed as a polynomial in the variable cos w. The first few Chebyshev poly-
nomials are

To()C) =1
Ti(x)=x
Th(x)=2x>—1

Ty(x) =4x° —3x
Ty(x)=8x*—8x>+1

and, in general, they can be derived from the recursion formula:
Tie1(x) =2x Tie(x) — Tie—1(x) (7.14)

From the above table it is easy to see that we can write, for instance,
cos(3w)=4cos® w—3cosw

The interest in Chebyshev polynomials comes from the fact that the zero-
centered frequency response of a linear phase FIR can be expressed as a lin-
ear combination of cosine functions, as we have seen in detail for Type I



Filter Design 183

filters in (7.9). By using Chebyshev polynomials we can rewrite such a re-
sponse as just one big polynomial in the variable cosw. Let us consider
an explicit example for a length-7 Type I filter with nonzero coefficients
h[n]=[d c b a b c d]; we can state that

Hy(el®)=a+2bcosw+2ccos2w+2d cos3w
and by using the first four Chebyshev polynomials we can write
Ha(e/®Y=a+2bcosw+2c(2cos®> w—1)+2d(4cos® w — 3cos w)
=(a—2c¢)+(2b —6d)cos w +4c cos® w +8d cos® w (7.15)

In this case, Hz(e/®) turns out to be a third degree polynomial in the vari-
able cosw. This is the case for any Type I filter, for which we can always
write

(M-1)/2
Hy(e!®)= Z cr cosk w (7.16)
k=0
— P(x) (7.17)
X=COSw

where P(x) is a polynomial of degree (M — 1)/2 whose coefficients cj are
derived as linear combinations of the original filter coefficients aj as illus-
trated in (7.15). For the other types of linear phase FIR, a similar representa-
tion can be obtained after a few trigonometric manipulations. The general
expression is

L
Hy(el®)= f(co)z crcost w
k=0

= f(w)P(x) (7.18)

X=COosw

where the ci are still linear combinations of the original filter coefficients
and where f(w) is a weighting trigonometric function. Both f(w) and the
polynomial degree L vary as a function of the filter type.® In the following
Sections, however, we will concentrate only on the design of Type I filters,
so these details will be overlooked; in practice, since the design is always

@For the sake of completeness, here is a summary of the details:

Filter Type | L flw)
Typel (M-1)/2 1

Type IT (M—-2)/2 cos(w/2)
Type I11 (M—-3)/2 sin(w)

Type IV (M—-2)/2 sin(w/2)



184 FIR Filter Design

carried out using numerical packages, the appropriate formulation for the
filter expression is taken care of automatically.

Polynomial Optimization. Going back to the filter design problem, we
stipulate that the FIR filters are (generalized) linear phase, so we can con-
centrate on the real frequency response of the zero-centered filter, which
is represented by the trigonometric polynomial (7.18). Moreover, since the
impulse response is real and symmetric, the aforementioned real frequency
response is also symmetric around « = 0. The filter design procedure can
thus be carried out only for values of w over the interval [0, 7t], with the other
half of the spectrum obtained by symmetry. For these values of w, the vari-
able x = cos w is mapped onto the interval [1, —1] and the mapping is invert-
ible. Therefore, the filter design problem becomes a problem of polynomial
approximation over intervals.

To illustrate the procedure by example, consider once more the set of fil-
ter specifications in Figure 7.1 and suppose we decide to use a Type I filter.
Recall that we required the prototype filter to be lowpass, with a transition
band from w, = 0.47 to ws; = 0.67; we further stated that the tolerances
for the realized filter’s magnitude must not exceed 10 % in the passband and
1% in the stopband. This implies that the maximum magnitude error be-
tween the prototype filter and the FIR filter response H(e/®) must not ex-
ceed 6, = 0.1 in the interval [0, w,] and must not exceed 65 = 0.01 in the
interval [wg, t]. We can formulate this as follows: the frequency response of
the desired filter is

1 wel0,wy]

Hp(el®)=

0 welws,n]
(note that Hp(e/®) is not specified in the transition band). Since the tol-
erances on passband and stopband are different, they can be expressed in
terms of a weighting function Hy (w) such that the tolerance on the error is
constant over the two bands:

1 w €[0,wp]
H =10 7.19
wle) 6—p: 10 we[ws, ) ( )

With this notation, the filter specifications amount to the following:

max  {Hw(w)|Ha(e/®)— Hp(e!®)|} <6,=0.1 (7.20)

w€[0,wp]U[ws, 7]

and the question now is to find the coefficients for h[n] (their number M
and their values) which minimize the above error. Note that we leave the



Filter Design 185

transition band unconstrained (i.e. it does not affect the minimization of
the error).

The next step is to use (7.18) to reformulate the above expression as a
polynomial optimization problem. To do so, we replace the frequency re-
sponse H;(e/®) with its polynomial equivalent and set x = cos w; the pass-
band interval [0, w,] and the stopband interval [w, 7] are mapped into the
intervals for x:

I, =[cos wp,1]

I; =[—1,cos w;g]

respectively; similarly, the desired response becomes:

_ 1 wel,
D(x)= (7.21)
0 wel;

and the weighting function becomes:
1 welp
W(x)= (7.22)
0p/6s wels

The new set of specifications are shown in Figure 7.12. Within this polyno-
mial formulation, the optimization problem becomes:

max {W(x)|P(x) - D(x)|} = max{|E(x)|} <5, (7.23)

xelpUl;

where P(x) is the polynomial representation of the FIR frequency response
asin (7.18).

-1 c0s(0.67) cos(0.47) 1

Figure 7.12 Filter specifications as in Figure 7.1 formulated here in terms of poly-
nomial approximation, i.e. for x =cosw, w € [0, 7].



186 FIR Filter Design

Alternation Theorem. The optimization problem stated by (7.23) can be
solved by using the following theorem:

Theorem 7.1 Consider a set {1} of closed, disjoint intervals on the real axis
and their union I = U « I Consider further:

L
e a polynomial P(x) of degree L, P(x) = Z a,x";

n=0

o adesired function D(x), continuous over I;

e a positive weighting function W(x).
Consider now the approximation error function
E(x)=W(x)[D(x)— P(x)]
and the associated maximum approximation error over the set of closed in-
tervals

Emax = max{|E(x) }

Then P(x) is the unique order-L polynomial which minimizes Emax if
and only if there exist at least L + 2 successive values x; in I such that
|E(x,-)| = Enax and

E(x;)=—E(xi+1)
In other words, the error function must have at least L+ 2 alternations be-

tween its maximum and minimum values. Such a function is called equirip-
ple.

Going back to our lowpass filter example, assume we are trying to design
a 9-tap optimal filter. This theorem tells us that if we found a polynomial
P(x) of degree 4 such that the error function (7.23) over I, and I; as is shown
in Figure 7.13 (6 alternations), then the polynomial would be the optimal

)
=
[=2)

N

ya

-1 cos(0.6)  cos(0.47) 1

g

Figure 7.13 Approximation error function E(x) for a 9-tap lowpass prototype; al-
ternations are marked by a dot.



Filter Design 187

and unique solution. Note that the extremal points (i.e. the values of the
error function at the edges of the optimization intervals) do count in the
number of alternations since the intervals I are closed.

The above theorem may seem a bit far-fetched since it does not tell us
how to find the coefficients but it only gives us a test to verify their optimal-
ity. This test, however, is at the core of an iferative algorithm which refines
the polynomial from an initial guess to the point when the optimality condi-
tion is met. Before considering the optimization procedure more in detail,
we will state without formal proof, three consequences of the alternation
theorem as it applies to the design of Type I lowpass filters:

¢ The minimum number of alternations for an optimal M-tap lowpass
filter is L+2, with L =(M —1)/2; this is the result of the alternation the-
orem. The maximum number of alternation, however, is L+ 3; filters
with L+ 3 alternation are called extraripple filters.

e Alternations always take place at x = cosw, and x = cosws (i.e. at
w=wp and w = wy.

e If the error function has a local maximum or minimum, its absolute
value at the extremum must be equal to Epax except possibly in x =—1
or x = 1. In other words, all local maxima and minima of the fre-
quency response must be alternating, exceptin w =0 or w = 1.

o If the filter is extraripple, the extra alternation occurs at either w =0
or w=m.

Optimization Procedure. Finally, by putting all the elements together,
we are ready to state an algorithmic optimization procedure for the design
of optimal minimax FIR filters; this procedure is usually called the Parks-
McClellan algorithm. Remember, we are trying to determine a polynomial
P(x) such that the approximation error in (7.23) is equiripple; for this, we
need to determine both the degree of the polynomial and its coefficients.
For a given degree L, for which the resulting filter has 2L+ 1 taps, the L co-
efficients are found by an iterative procedure which successively refines an
initial guess for the L+ 2 alternation points x; until the error is equiripple.®
After the iteration has converged, we need to check that the corresponding

®Details about this crucial optimization step can be found in the bibliographic refer-
ences. While a thorough discussion of the algorithm is beyond the scope of the book, we
can mention that at each iteration the new set of candidate extremal points is obtained
by exchanging the old set with the ordinates of the current local maxima. This trick is
known as the Remez exchange algorithm and that is why, in Matlab, the Parks-McClellan
algorithm is named remez.



188 FIR Filter Design

Enax satisfies the upper bound imposed by the specifications; when this is
not the case, the degree of the polynomial (and therefore the length of the
filter) must be increased and the procedure must be restarted. Once the
conditions on the error are satisfied, the filter coefficients can be obtained
by inverting the Chebyshev expansion.

As a final note, an initial guess for the number of taps can be obtained
using the empirical formula by Kaiser; for an M-tap FIR h[n], n = 0,...,
M-1:

M —101log;((6,65)—13
2.3240Q

where 6, is the passband tolerance, 9, is the stopband tolerance and Q2 =
w;s — wy, is the width of the transition band.

The Final Design. We now summarize the design steps for the specifica-
tions in Figure 7.1. We use a Type I FIR. We start by using Kaiser’s formula to
obtain an estimate of the number of taps: since 6,6, =103 and 2 =0.27,
we obtain M = 12.6 which we round up to 13 taps. At this point we can
use any numerical package for filter design to run the Parks-McClellan algo-
rithm. In Matlab this would be

[h, err] = remez(12, [0 0.4 0.6 1], [1 1 0 0], [1 101]);

The resulting frequency response is plotted in Figure 7.14; please note
that we are plotting the frequency responses of the zero-centered filter i 4[n],
which is a real function of w. We can verify that the filter has indeed
(M —1)/2 =6 alternation by looking at enlarged picture of the passband and
the stopband, as in Figure 7.15. The maximum error as returned by Mat-
lab is however 0.102 which is larger than what our specifications called for,

0 /4 271/4 31/4 T

Figure 7.14 An optimal 13-tap Type I filter which does not meet the error specifi-
cations.



Filter Design 189

1.1

0.02 | 1
A
0
V. \/
0.8
0 /2 /2 n

Figure 7.15 Details of passband and stopband of the frequency response in Fig-
ure 7.14.

i.e. 0.1. We are thus forced to increase the number of taps; since we are us-
ing a Type I filter, the next choice is M = 15. Again, the error turns out to be
larger than 0.1, since in this case we have Enax = 0.1006. The next choice,
M =17, finally yields an error En,x = 0.05, which exceeds the specifications
by a factor of 2. It is the designer’s choice to decide whether the computa-
tional gains of a shorter filter (M = 15) outweigh the small excess error. The
impulse response and the frequency response of the 17-tap filter are plotted
in Figure 7.16 and Figure 7.17. Figure 7.18 shows the zero locations for the
filter; note the typical linear-phase zero pattern as well as the zeros on the
unit circle in the stopband.

04 R

02 4

Figure 7.16 Impulse response of the 17-tap filter meeting the specifications.

Other Types of Filters. The Parks-McClellan optimal FIR design proce-
dure can be made to work for arbitrary filter types as well, such as highpass
and bandpass, but also for more sophisticated frequency responses. The
constraints imposed by the zero locations as we saw on page 181 determine
the type of filter to use; once the desired response Hp(e/®) is expressed as a
trigonometric function, the optimization algorithm can take its course. For
arbitrary frequency responses, however, the fact that the transition bands
are left unconstrained may lead to unacceptable peaks which render the



190 IIR Filter Design

filter useless. In these cases, visual inspection of the obtained response is
mandatory and experimentation with different filter lengths and tolerance
may improve the final result.

0 /4 21/4 3n/4 T

Figure 7.17 Frequency response of the 17-tap filter meeting the specifications.

Im
O
@)
1 Re
@)
©)

Figure 7.18 Pole-zero plot for the equiripple FIR in Figure 7.17.

7.3 lIR Filter Design

As we mentioned earlier, no optimal procedure exists for the design of IIR
filters. The fundamental reason is that the optimization of the coefficients
of a rational transfer function is a highly nonlinear problem and no satis-
factory algorithm has yet been developed for the task. This, coupled with
the impossibility of obtaining an IIR with linear phase response® makes
the design of the IIR filter a much less formalized art. Many IIR designed

©®1t can be proved rigorously that an infinite impulse response with linear phase is neces-
sarily not realizable — think of a sinc filter, for instance.



Filter Design 191

techniques are described in the literature and their origin is usually in tried-
and- true analog filter design methods. In the early days of digital signal
processing, engineers would own voluminous books with exhaustive lists of
capacitance and inductance values to be used for a given set of (analog) fil-
ter specifications. The idea behind most digital IIR filter design techniques
was to be able to make use of that body of knowledge and to devise formulas
which would translate the analog design into a digital one. The most com-
mon such method is known as bilinear transformation. Today, the formal
step through an analog prototype has become unnecessary and numerical
tools such as Matlab can provide a variety of routines to design an IIR.

Here we concentrate only on some basic IIR filters which are very simple
and which are commonly used in practice.

7.3.1 All-Time Classics

There are a few applications in which simple IIR structures are the design
of choice. These filters are so simple and so well behaved that they are a
fundamental tool in the arsenal of any signal processing engineer.

DC Removal and Mean Estimation. The DC component of a signal
is its mean value; a signal with zero mean is also called an AC signal. This
nomenclature comes from electrical circuit parlance: DC is shorthand for
direct current, while AC stands for alternating current;”) you might be famil-
iar with these terms in relation to the current provided by a battery (constant
and hence DC) and the current available from a mains socket (alternating at
50 or 60 Hz and therefore AC).
For a given sequence x[n], one can always write

x[n]=xac[n]+xpc
where xpc is the mean of the sequence values. Please note the followings:

e The DCvalue of a finite-support signal is the value of its Fourier trans-
form at w = 0 divided by the length of the signal’s support.

e The DC value of an infinite-support signal must be zero for the signal
to be absolutely summable or square summable.

In most signal processing applications, where the input signal comes from
an acquisition device (such as a sampler, a soundcard and so on), it is im-
portant to remove the DC component; this is because the DC offset is often

(MAnd AC/DC for Heavy Metal...



192 IIR Filter Design

arandom offset caused by ground mismatches between the acquisition de-
vice and the associated hardware. In order to eliminate the DC component
we need to first estimate it, i.e. we need to estimate the mean of the signal.

For finite-length signals, computation of the mean is straightforward
since it involves a finite number of operations. In most cases, however, we
do not want to wait until the end of the signal before we try to remove its
mean; what we need is a way to perform DC removal on line. The approach
is therefore to obtain, at each instant, an estimate of the DC component
from the past signal values, with the assumption that the estimate converges
to the real mean of the signal. In order to obtain such an estimate, i.e. in or-
der to obtain the average value of the past input samples, both approaches
detailed in Section 5.3 are of course valid (i.e. the Moving Average and the
Leaky Integrator filters) . We have seen, however, that the leaky integrator
provides a superior benefit- cost tradeoff and therefore the output of a leaky
integrator with A very close to one (usually 1073) is the estimate of choice
for the DC component of a signal. The closer A is to one, the more accurate
the estimation; the speed of convergence of the estimate however becomes
slower and slower as A — 1. This can easily be seen from the group delay at
w =0, which is

A
grd{H()} = 7—

Resonator Filter. Letuslook again athow the leaky integrator works. Con-
sider its z-transform:

_1-2
H(z)= 1-2Az71

and notice that what we really want the filter to do is to extract the zero-
frequency component (i.e. the frequency component that does not oscil-
late, that is, the DC component). To do so, we placed a pole near z = 1,
which of course corresponds to z = e/¢ for w = 0. Since the magnitude re-
sponse of the filter exhibits a peak near a pole, and since the peak will be
higher, the closer the pole is to the unit circle, we are in fact amplifying the
zero-frequency component; this is apparent from the plot of the filter’s fre-
quency response in Figure 5.9. The numerator, 1 — A, is chosen such that
the magnitude of the filter at w = 0 is one; the net result is that the zero-
frequency component will pass unmodified while all the other frequencies
will be attenuated. The value of a filter’s magnitude at a given frequency is

often called the gain.
The very same approach can now be used to extract a signal component
at any frequency. We will use a pole whose magnitude is still close to one
(i.e. a pole near the unit circle) but whose phase is that of the frequency we



Filter Design 193

1 Re 1 Re

(a) (b)

Figure 7.19 Pole-zero plots for the leaky integrator and the simple resonator.

want to extract. We will then choose a numerator so that the magnitude
is unity at the frequency of interest. The one extra detail is that, since we
want a real-valued filter, we must place a complex conjugate pole as well.
The resulting filter is called a resonator and a typical pole-zero plot is shown
in Figure 7.19. The z-transform of a resonator at frequency wy is therefore
determined by the pole p = Ae/ 0 and by its conjugate:

Go _ GO
(1-pz Y (1—-p*zY) 1—(2Acoswg)z~!+A2z2

H(z)= (7.24)

The numerator value Gy is computed so that the filter’s gain at +wy is one;
since in this case |H(ef‘“0)) = )H(e‘f‘L’O)), we have

Go=(1-A)y/1+ 22 —2Acos2wy

The magnitude and phase of a resonator with A = 0.9 and w¢ = 7/3 are
shown in Figure 7.20.

A simple variant on the basic resonator can be obtained by considering
the fact that the resonator is just a bandpass filter with a very narrow pass-
band. As for all bandpass filters, we can therefore place a zero at z ==+1 and
sharpen its midband frequency response. The corresponding z-transform
is now

1—2z72
1—(2Acoswy)z L +A2z72

H(z)=G,

with
Go
v/ 2(1 — cos2wy)

The corresponding magnitude response is shown in Figure 7.21.

G =



194

Magnitude |H(e/®)|

Phase (radians)

Magnitude |H(e/®)|

Phase (radians)

IIR Filter Design

-7 -21/3 -1t/3 0 n/3 21/3
2 .

1 -

0 \//‘\

-1 F

-2 T T T T T
-7 -21/3 -1/3 0 n/3 21/3

Figure 7.20 Frequency response of the simple resonator.
T

Lo

08 |

06 |

04

02

0 T T T T T
- -21/3 -1/3 0 n/3 21/3
2 T T T T T

1 -

0

-1 F

'2 T T T T T
- -21/3 -1/3 0 n/3 21/3

Figure 7.21 Frequency response of the modified resonator.




Filter Design 195

7.4 Filter Structures

We have seen in Section 5.7.2 a practical implementation of a constant-
coefficient difference equation (written in C). That was just one particular
way of translating Equation (5.46) into a numerical procedure; in this Sec-
tion we explore other alternatives for both FIR and IIR and introduce the
concept of computational efficiency for filters.

The cost of a numerical filter is dependent on the number of operations
per output sample and on the storage (memory) required in the implemen-
tation. If we consider a generic CCDE, it is easy to see that the basic building
blocks which make up the recipe for a realizable filter are:

e an addition operator for sequence values, implementing y[n] =
x1[n]+x2[n];

e ascalar multiplication operator, implementing y [n] = ax[n];

e a unit delay operator, implementing y[n] = x[n — 1]. Note that the
unit delay operator is nothing but a memory cell, holding the previous
value of a time-varying quantity.

By properly combining these elements and by exploiting the different pos-
sible decomposition of a filter’s rational transfer function, we can arrive at a
variety of different working implementations of a filter. To study the possi-
bilities at hand, instead of relying on a specific programming language, we
will use self explanatory block diagrams.

Cascade Forms. Recall that a rational transfer function H(z) can always
be written out as follows:

M-1
[Ja-zn2™

H(z)= bol':]j— (7.25)
[Ja-paz™
n=1

where the z,, are the M —1 (complex) roots of the numerator polynomial and
the p, are the N — 1 (complex) roots of the denominator polynomial. Since
the coefficients of the CCDE are assumed to be real, complex roots for both
polynomials always appear in complex-conjugate pairs. A pair of first-order
terms with complex-conjugate roots can be combined into a second-order
term with real coefficients:

(1—az Y)(1-a*z')=1-2Re{a}z ' +|al*z~? (7.26)



196 Filter Structures

As a consequence, the transfer function can be factored into the product of
first- and second-order terms in which the coefficients are all strictly real;
namely:

M, M,
l_[(l — znz_l)l_[(l —2Re{z,}z7 4|z, 72 72)
H(z)= by ]”vzl =l (7.27)

r N
[ Ja-puz™H] [(1-2Re{pu} 27 +Ipalz?)
n=1 n=1

where M, is the number of real zeros, M, is the number of complex-
conjugate zeros and M, +2M, = M — 1 (and, equivalently, for the poles, N, +
2N, = N —1). From this representation of the transfer function we can obtain
an alternative structure for a filter; recall that if we apply a series of filters

in sequence, the overall transfer function is the product of the single trans-

fer functions. Working backwards, we can interpret (7.27) as the cascade of
smaller sections. The resulting structure is called a cascade and it is partic-
ularly important for IIR filters, as we will see later.

Parallel Forms. Another interesting rewrite of the transfer function is
based on a partial fraction expansion of the type:

Ay
Hz)=S Dpz"+3 —"
zn: " ; 1-ppz~!

-1
+Z B, j‘l Cn ¥4 m—

= (1=pnz7 A= prz™")
where the multiplicity of the three types of terms as well as the relative co-
efficients are dependent (in a non-trivial way) on the original filter coeffi-
cients. This generates a parallel structure of filters, whose outputs are
summed together. The first branch corresponds to the first sum and it is
an FIR filter; a further set of branches are associated to each term in the

second sum, each one of them a first order IIR; the last set of branches is a
collection of second order sections, one for each term of the third sum.

(7.28)

7.4.1 FIR Filter Structures

In an FIR transfer function all the denominator coefficients a, other than
ag are zero; we have therefore:

H(z)=bo+ by z! +- 4+ by z~M-1)

where, of course, the coefficients correspond to the nonzero values of the
impulse response h[n], i.e. b, = h[n]. Using the constitutive elements out-
lined above, we can immediately draw a block diagram of an FIR filter as in



Filter Design 197

Figure 7.22. In practice, however, additions are distributed as shown in Fig-
ure 7.23; this kind of implementation is called a transversal filter. Further,
ad-hoc optimizations for FIR structures can be obtained in the the case of
symmetric and antisymmetric linear phase filters; these are considered in
the exercises.

x[n]

Figure 7.22 Direct FIR implementation.

x[n] Z_l . Z_l e Z_l ......... = Z_l

bO bl b2 b3 bM—l

Figure 7.23 Transversal FIR implementation.

7.4.2 1IR Filter Structures

For an IIR filter, all the a,, and b, in (5.46) are nonzero. One possible im-
plementation based on the direct form of the transfer function is given in
Figure 7.24. This implementation is called Direct Form I and it can imme-
diately be seen that the C-code implementation in Section 5.7.2 realizes a
Direct Form I algorithm. Here, for simplicity, we have assumed N = M but
obviously we can set some a;, or b, to zero if this is not the case.

By the commutative properties of the z-transform, we can invert the or-
der of computation to turn the Direct Form I structure into the structure
shown in Figure 7.25 (shown for a second order section); we can then com-
bine the parallel delays together to obtain the structure in Figure 7.26. This
implementation is called Direct Form II; its obvious advantage is the re-
duced number of the required delay elements (hence of memory storage).



198

Filter Structures

bo
x[n] ® ® yin]
z71 z71
bl a
0 O
z71 z71
bz a
y : : i
z71 : : z71
by | ‘ —am-1
Figure 7.24 Direct Form implementation of an IIR filter.
) S
x[n] W, () y(n]
z71 z71
—a bl

_az

O—=

O——

z~1

b,

Figure 7.25 Direct form I with inverted order.



Filter Design

199

bo
) )
i\ i\
271
- b
\ a) 1 /
GJ \9
271
—dy bg

Figure 7.26 Direct Form Il implementation of a second-order section.

The second order filter

H(z)=

1+b1 z~! +b2Z_2

l—a;z™

I —ay,z~

2

which gives rise to the second order section displayed in Figure 7.26, is par-
ticularly important in the case of cascade realizations. Consider the factored
form of H(z) as in (7.27): if we combine the complex conjugate poles and
zeros, and group the real poles and zeros in pairs, we can create a modular
structure composed of second order sections. For instance, Figure 7.27 rep-
resents a 4th order system. Odd order systems can be obtained by setting
some of the a,, or b, to zero.

bl,O

n—()

N\

z-1

(D——

z-1

—aiz2

b1,2

M\
i\

b2,0
@—W [n]

z~1

—az1
(D—

z~1

—dazp2

b2,2

Figure 7.27 4th order IIR: cascade implementation.



200 Filtering and Signal Classes

7.4.3 Some Remarks on Numerical Stability

A very important issue with digital filters is their numerical behavior for a
given implementation. Two key questions are:

e Assume the computations are made with (basically) infinite precision
but that the filter coefficients are represented internally with finite
precision. How good is the resulting filter? Is it still stable?

¢ If computations are also made with finite precision arithmetic (which
implies rounding and truncation error), what is the resulting numeri-
cal behavior of the system?

One important difference is that, in the first case, the system is at least guar-
anteed to be linear; in the second case, however, we can have non-linear
effects such as overflows and limit cycles.

Precision and computational issues are very hard to analyze. Here, we
will just note that the direct form implementation is more sensible to pre-
cision errors than the cascade form, which is why the cascade form is usu-
ally preferred in practice. Moreover, alternative filter structures such as the
lattice are designed to provide robustness for systems with low numerical
precision, albeit at a higher computational cost.

7.5 Filtering and Signal Classes

The filtering structures that we have shown up to now are general-purpose
architectures which apply to the most general class of discrete-time sig-
nals, (infinite) sequences. We now consider the other two main classes of
discrete-time signals, namely finite-length signals and periodic sequences,
and show that specialized filtering algorithms can be advantageously put to
use.

7.5.1 Filtering of Finite-Length Signals

The convolution sum in (5.3) is defined for infinite sequences. For a finite-
length signal of length N we may choose to write simply:

N-1

yInl=s{xnl} = x[klhln -k (7.29)
k=0

i.e. we let the summation index span only the indices for which the signal is
defined. It can immediately be seen, however, that in so doing we are actu-



Filter Design 201

ally computing y [n] = X [n]* h[n], where X[n] is the finite support extension
of x[n] as in (2.24)); that is, by using (7.29), we are implicitly assuming a
finite support extension for the input signal.

Even when the input is finite-length, the output of an LTI system is not
necessarily a finite-support sequence. When the impulse response is FIR,
however, the output has finite support; specifically, if the input sequence
has support N and the impulse response has support L, the support of the
outputis N+ L—1.

7.5.2 Filtering of Periodic Sequences

For periodic sequences, the convolution sum in (5.3) is well defined so there
is no special care to be taken. It is easy to see that, for any LTI system, an
N-periodic input produces an N-periodic output. A case of particular in-
terest is the following: consider a length-N signal x[n] and its N-periodic
extension X[n]. Consider then a filter whose impulse response is FIR with
a length-N support; if we call h[n] the length-N signal obtained by con-
sidering only the values of the impulse response over its finite support, the
impulse response of the filter is l_z[n] (see (2.24)). In this case we can write

00 N-1
e Z ﬂk]h[n—k]:Zh[k]x[(n—k) mod N] (7.30)
k=0

k=—00

Note that in the last sum, only the first period of %[n] is used; we can there-
fore define the sum just in terms of the two N-point signals x[n] and h[n]:

N-1
ylnl =Y hlklx[(n - k) mod N] (7.31)
k=0

The above summation is called the circular convolution of x[n] and h[n]
and is sometimes indicated as

yln]=x[n]® h[n]

Note that, for periodic sequences, the convolution as defined in (5.8) and the
circular convolution coincide. The circular convolution, just like the stan-
dard convolution operator, is associative and commutative:

x[n]® h{n]=h[n]®x[n]
(h[n]+ fln]) ® x[n] = h[n] @ x[n] + f[n] ® x[n]

as is easily proven.



202 Filtering and Signal Classes

Consider now the output of the filter, expressed using the commutative
property of the circular convolution:

N-1
yhﬂ=§:xMMKn—k)mmUﬂ
k=0
Since the output sequence j[n] is itself N-periodic we can consider the
finite-length signal y[n] = j[n], n =0,..., N — 1, i.e. the first period of the
output sequence. The circular convolution can now be expressed in matrix
form as

y=Hx (7.32)

where y, x are the usual vector notation for the finite-length signals y [n], x[n]
and where

[ mjo]  KIN=1] RIN-2] ... h[2] R[]]
hl1] no]  hIN=1] ... h[3] h[2]

H=| . T (7.33
hIN=1] hIN-2] AIN=3] .. k1] h[o]]

The above matrixis called a circulant matrix, since each row is obtained by a
right circular shift of the previous row. A fundamental result, whose proof is
left as an exercise, is that the length- N DFT basis vectors w(*) defined in (4.3)
are left eigenvectors of N x N circulant matrices:

(W) "H= H[k]w®

where H[k] is the k-th DFT coefficient of the length-N signal h[n], n =
0,...,N — 1. If we now take the DFT of (7.32) then

Y=WHx=TWx=IX
with
I =diag(HI[0], H[1],..., H[N —1])
or, in other words
Y[k] = H[k]X[k] (7.34)

We have just proven a finite-length version of the convolution theorem; to
repeat the main points:

¢ The convolution of an N-periodic sequence with a N-tap FIR impulse
response is equal to the periodic convolution of two finite-length sig-



Filter Design 203

nals of length N, where the first signal is one period of the input and
the second signal is the values of the impulse response over the sup-
port.

e The periodic convolution can be expressed as a matrix-vector product
in which the matrix is circulant.

e The DFT of the circular convolution is simply the product of the DFTs
of the two finite-length signals; in particular, (7.34) can be used to eas-
ily prove the commutativity and distributivity of the circular convolu-
tion.

The importance of this particular case of filtering stems from the follow-
ing fact: the matrix-vector product in (7.32) requires O(N?) operations. The
same product can however be written as

1
y=%5 WHTWx = DFT"'{I' DFT{x}}

which, by using the FFT algorithm, requires approximately N + 2Nlog, N
operations and is therefore much more efficient even for moderate values
of N. Practical applications of this idea are the overlap-save and overlap-
add filtering methods, for a thorough description of which see [2]. The basic
idea is that, in order to filter a long input sequence with an N-tap FIR fil-
ter, the input is broken into consecutive length-N pieces and each piece,
considered as the main period of a periodic sequence, is filtered using the
FFT strategy above. The difference between the two methods is in the subtle
technicalities which allow the output pieces to bind together in order to give
the correct final result.

Finally, we want to show that we could have quickly arrived at the same
results just by considering the formal DTFTs of the sequences involved; this
is an instance of the power of the DTFT formalism. From (4.43) and (4.44)
we obtain:

Y(e/®)= H(e/*)X(e!®)
N-1
_ (ZH[k]A(a)—%k)) (%Z:X[kﬁ (w—%k))
- Z HIKIX[k]§ (a) _r k) (7.35)

where the last equality results from the sifting property of the Dirac delta
(see (4.31)) and the fact that A(0) = 1. In the last expression, the DTFT of a
periodic sequence whose DFS coefficients are given by H[k]X[k], is easily
recognezed.



204 Examples

Example 7.1: The Goerizel filter

Consider the IR structure shown in Figure 7.28; the filter is called a Goertzel
filter, and its single coefficient (which is also the only pole of the system) is
the k-th power of the N-th root of unity Wy = e~/27/N_ Note that, contrary
to what we have seen so far, this is a complex-valued filter; the analysis of
this type of structure however is identical to that of a normal real-valued
scheme.

As we said, the only pole of the filter is on the unit circle, so the system is
not stable. We can nevertheless compute its impulse response, a task which
is trivial in the case of a one-pole IIR; we assume zero initial conditions and
we use the difference equation directly: by setting x[n] =6[n] in

ylnl=x[n]+ Wy yln—1]
and by working out the first few iterations, we obtain
h[n] = Wy k" uln]

Note that the impulse response is N-periodic (a common trait of sequences
whose poles are on the unit circle).

x[n] ® yin]

an—k

Figure 7.28 The Goertzel filter.

Assume now we have a length-N signal x[r] and we build a finite-support
extension x[n] so that X[n] =0 for n <0, n > N and %[n] = x[n] otherwise.
If we process such a signal with the Goertzel filter we have

y[0] = x[0]

y[1]=x[1]+ Wy ¥ x[0]

y[2] = x[2] + Wy K x[1] + W2 x[0]
]

y[3]=x[3]+ Wy F x[2] + Wy 2K x[1] + Wy, 3F x[0]



Filter Design 205

so that finally:
N—
yINI= Z N xln) = Zx ] Wik = X[k]
n=0

that is, the output at time n = N is the k-th DFT coefficient of x[n]. The
Goertzel filter is therefore a little machine which allows us to obtain one
specific Fourier coefficient without needing to compute the whole DFT. As
a filter, its usage is nonstandard, since its delay element must be manually
reset to zero initial conditions after each group of N iterations. Goertzel
algorithm is used in digital detectors of DTMF tones.

Example 7.2: Filtering and numerical precision

Digital filters are implemented on general-purpose microprocessors; the
precision of the arithmetics involved in computing the output values de-
pends on the intrinsic word length in the digital architecture, i.e. in the num-
ber of bits used to represent both the data and the filter coefficients. To il-
lustrate some of the issues related to numeric precision consider the case
of an allpass filter. The magnitude response of an allpass filter is constant
over the entire [—m, 7] interval, hence the name. Such filters are often used
in cascade with other filters to gain control on the overall phase response of
the system.

Consider the filter described by the following difference equation:

ylnl=ay[n—1]—ax[n]+x[n—1]
with 0 < a < 1. The transfer function H(z) is

—a+z7! 1-(1/a)z7!
=—qa

H(z)= I

l1—az™

and the filter is indeed allpass since:

|H(z)|" = H(2)H'(2)
_—a+z7! —a+(z71)"
T 1l-az ' 1-a(z)*

a?—aRe{z71}+ |z—1 }2

052|z—1|2 —aRef{z 1} +1
for z = e/ (and therefore |z~ !| = 1):

|H(e?)' =|H(e/®)| =1



206 Examples

x{n] O= (O——vin

a —l/a

Figure 7.29 Allpass filter Direct Form II implementation.

The filter can be implemented in Direct Form II as in Figure 7.29. Note that
the two coefficients of the filter are o and 1/a so that, if & is small then 1/«
will be big, and vice versa. This creates a problem in a digital architecture
in which the internal representation has only a small number of bits. Call
£1{-} the operator which associates a real number to the closest value in
the architecture’s internal representation; the process is called quantization
and we will study it in more detail in Chapter 10. The transfer function with
quantized coefficients becomes

1-2{1/atz7!  —a+pz!
1-2{a}z! 1—-az!

Ho(z)= 2{—a}

where 8 = 2{a}2{1/a}. If the quantization is done with too few bits, f # 1
and the filter characteristic is no longer allpass. Suppose for instance that
the filter uses four bits to store its coefficients using an unsigned fixed point
2.2 format; the 16 possible values are listed in Table 7.1.

Table 7.1 Binary-decimal conversion table for fixed-point 2.2 notation.

binary | decimal binary | decimal
0000 0.00 1000 2.00
0001 0.25 1001 2.25
0010 0.50 1010 2.50
0011 0.75 1011 2.75
0100 1.00 1100 3.00
0101 1.25 1101 3.25
0110 1.50 1110 3.50
0111 1.75 1111 3.75

If a = 0.4 we have that 2{0.4} =0010=0.5, 2{1/0.4} = 2{25}=1010=2.5
and therefore § =0101 =1.25# 1.



Filter Design 207

It is important to point out that the numerical stability of a filter is depen-
dent on the chosen realization. If we rewrite the allpass difference equation
as

yinl=a(y[n-1]-x[n])+x[n-1]

we can a block diagram as in Figure 7.30 which, although a non-canonical
form, implements the filter with no quantization issues independently of a.
Note that the price we pay for robustness is the fact that we have to use two

delays instead of one.
Z—l
-1 a ’

x[n] ® ©, yln]

Figure 7.30 Allpass filter Direct Form II implementation.

Example 7.3: A guitar synthesizer

We have encountered the Karplus-Strong algorithm in Example 2.2. A prac-
tical implementation of the algorithm is shown in Figure 7.31; it is a quite
peculiar filter structure since it has no input! Indeed assume there are N
delays in cascade and neglect for a moment the filter H(z); the structure
forms a feedback loop in which the N values contained in the delay units at
power-up are endlessly cycled at the output. By loading the N delay units
with all sorts of finite-length sequences we can obtain a variety of different
sounds; by changing N we can change the fundamental frequency of the
note.

H(z) +—y[n]

z7l e 2zt | z7! je—.« z7! |~ z!

Figure 7.31 Karplus-Strong implementation.

The detailed analysis of a waveform generated by the device in Figure 7.31 is
complicated by the fact that the filter does not have zero initial conditions.



208 Further Reading

Intuitively, however, we can easily appreciate that we can use the filter to
simulate a natural decay in the waveform; imagine H(z) =a with0<a < 1:
at each passage through the feedback loop the values in the delay line are
scaled down exponentially. More complicated filters can be used to simu-
late different types of acoustic decay as long as |H(ef ‘L’)| < 1 over the entire
[—m, 7] interval.

Further Reading

Filter design has been a very popular topic in signal processing, with a large
literature, a variety of software designs, and several books devoted to the
topic. As examples, we can mention R. Hamming’s Digital Filters (Dover,
1997), and T. W. Parks and C. S. Burrus, Digital Filter Design (Wiley-Inter-
science, 1987), the latter being specifically oriented towards implementa-
tions on a digital signal processor (DSP). All classic signal-processing books
cover the topic, for example Oppenheim and Schafer’s book Discrete-Time
Signal Processing (Prentis Hall, 1999) gives both structures and design meth-
ods for various digital filters.





