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COM-202: Signal Processing

Chapter 6.a: Discrete-Time Filters



Overview

m linear time-invariant systems in discrete time

filters for denoising

impulse response

m convolution

frequency response

modulation and demodulation

m ideal filters and approximations



linear time-invariant systems



A single-input single-output signal processing device

X H y

y = Hx

m all signals assumed to be infinite-length

m we need some restrictions on H to proceed



Linearity

H(OZX1+ﬁX2) :aHx1+ﬁHx2

m realistic requirement: sum of inputs leads to sum of outputs

m in practice systems are linear until they aren’'t (eg. volume too loud)



Linearity




Nonlinearity




Time invariance

HSkx = SkHx

m more explicitly:

xk =Sk x  (xx[n] = x[n — K])
yk[n] = y[n — k] with y = Hx
Vi = Hxi

m realistic requirement: device should work the same way today and tomorrow

m analog systems exhibit “aging”, digital systems don't



Time invariance




Time variance




Linear, time-invariant systems

scalar
multiplication



Linear, time-invariant systems

y[n] = H(x[n], x[n — 1], x[n = 2],...,y[n —1],y[n —2],...)

with H(-) a linear function of its arguments
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filtering by example



Filtering by example

Two fundamental filters:

m Moving average

m Leaky integrator
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Typical filtering

scenario: denoising
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Denoising by averaging

Hypotheses:

m noisy signal samples are true values plus random noise value: x = x. + 1

m noise values are random and with zero mean:

M-1
1
v Z nln— m] =0 for M large enough

m=0

m the signal is varying slowly (current value is very similar to previous values):

x[n— m] = x[n] for m reasonably small
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Denoising by averaging

Idea: to remove the noise, replace each sample by the average of M consecutive samples:

1 M1 1 M1
MZ)?[n—m]:M (x[n — m] + n[n — m])
m=0 m=0
1 M1 1 M1
=¥ x[n—m]—i—MZn[n—m]
m=0 m=0
1 M1
N — x[n]+0
M m=0

I
=
=)

14



The Moving Average filter

1 M-1
y[n] = I Z x[n — m]
m=0

m each output value averages current and previous M — 1 input values
m average is recomputed at every step (hence “moving”)

m computational requirements:

e M —1 additions
e one multiplication (by 1/M)

e M —1 memory cells (to remember the previous input values)
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A simple implementation (plain Python)

class MA:
def __init__(self, M):
# pre-allocate storage for past input values
self.buf = [0.0] * (M-1)
self.norm = 1.0 / M

def filt(self, x):
# compute the local average

y =X
for v in self.buf:
yt=v

y *= self.norm

# update the buffer, eg: [a, b, ¢, d, el -> [x, a, b, ¢, d]
self.buf[1:] = self.buf[:-1]

self.buf[0] = x

return y
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A better implementation using NumPy

import numpy as np

class MA:
def __init__(self, M):
self.buf = np.zeros(M)

def filt(self, x):
self .buf = np.roll(self.buf, 1)
self .buf [0] = x
return np.mean(self.buf)
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Testing time!

let's test the algorithm on the sequence

x[n] = (~1)"uln]
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Testing the implementation

> ma = MA(4)
> for n in range(20):
print(ma.filt((-1) #** n), end=’, ’)

> 0.25, 0.0, 0.25, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
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Question

can you guess what the output is going to be for M = 57

> ma = MA(5)
> for n in range(20):
print(ma.filt((-1) ** n), end=’, ’)

>0.2, 0.0, 0.2, 0.0, 0.2, -0.2, 0.2, -0.2, 0.2, -0.2, 0.2, -0.2, 0.2,
-0.2, 0.2, -0.2, 0.2, -0.2, 0.2, -0.2,



Does it work for denoising? Let’s try it out!

clean signal
== denoised with MA
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Does it work for denoising? Let’s try it out!
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Performance analysis

m smoothing effect proportional to M
m number of operations and storage also proportional to M

m there appears to be a “delay” between input and output

N
N



Idea: updating the average

Suppose we know the local average at time n — 1,
can we compute the average at time n as an update of the previous value?

ylnl = f(y[n — 1], x[n])



Updating the average

M-1

vl = 55 > xln—m]

m=0

)/[n]:%[x[n]+x[n—1]+...+x[n—(M—2)]+X[n_(M_1)]]

y[n—l]:%[x[n—1]+X[n—2]+...+x[n—1—(M—2)]+X[n—1—(/\/]—1)]]



Updating the average

y[n—l]:%[ x[n—1]+x[n—2]+...+x[n—l\/l+1]+x[n—M]]
y[n]:%[x[n]+X[n—1]+x[n—2]+...+x[n—M+1] }

vl = yln 1]~ yoxln— M)+ L xla]

but this still requires M memory cells...



Updating the average
Idea: use the approximation x[n — M] ~ y[n — 1]
m reasonable for “slow” signals, x[n — m] ~ x[n] for m small
m equivalent to “forgetting” (1/M)-th of the previous local average
yln=1] = (1/M)x[n = M] ~ (1 = 1/M)y[n — 1]

m “forgetting factor” A =1 —1/M, close to one for M large

vl =yl —1] — zixln — M) + 2ol
~ Ay[n—1]+ (1 = N)x[n]



The Leaky Integrator

ylnl = Ay[n = 1] + (1 = A)x[n]

m each output value is an update of the previous output
m the algorithm is recursive

m computational requirements:

e one addition
e two multiplications

e one memory cell to remember the previous output



A simple implementation

class LI:

def

def

__init__(self, lam):
self.buf = 0
self.lam = lam

filt(self, x):
self.buf = self.lam * self.buf + (1 - self.lam) * x
return self.buf



Does it work? Let’s try it out!
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Does it work? Let’s try it out!
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Performance analysis

m smoothing effect dependent on A
m number of operations and storage independent of A

m there also appears to be a processing “delay”
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Leaky Integrator: why the name

A discrete-time “integrator” just accumulates input values:

We can rewrite the integrator recursively as

y[n] = y[n — 1] + x[n]
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Leaky Integrator: why the name

To prevent “explosions” pick A <1

yInl = Ayln = 1] + (1 = A)x[n]

keep only a fraction \ of
the accumulated value
so far and forget
(“leak™) a fraction 1 — A

add only a fraction 1 — A
of the current value to
the accumulator



the impulse response



Linear, time-invariant systems

’H(axl—i-ﬂxz) = aHxy + 8 Hxo

HS*x = SKHx
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The situation so far

m we “designed” two filters algorithmically

m both algorithms are of the form

N—-1 M-1
ylnl = awyln—kl+ ) bex[n — K]
k=1 k=0

e moving average: N =1, by =1/M
e leaky integratorr M =1, N=2, a1 =\ bp=1— A
m we were able to find the coefficients intuitively...

m ... but we can't use intuition for more complicated filters

34



The path to filter design

m LTI systems are fully described by their impulse response
m once we know the impulse response we can implement the filter via convolution
m the DTFT of the impulse response describes how a filter works in the frequency domain

m filter design starts from the frequency domain and finds the coefficients of the algorithm

35



Impulse response

h="%Hé

Fundamental result: impulse response fully characterizes the LTI system!
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Every signal is a linear combination of atomic time elements

[e.e]

x= > x[k]dy,

k=—00

5y =8%6
1 n=k

Seln] = o[n — k] = {0 o
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Filter’s output from impulse response

Hx =H < Z x[K] S_k5> using linearity...
k=—o0
= Z H(x[K] S_k6) using linearity...
k=—0o0
= Z x[k] S kHS using time invariance...
k=—o0
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0

¢
-2-10 1 2 3 4 5

2 n=0

3 =1
x[n] = "

1 n=2

0 otherwise
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Example

mx=20+301+
m we know the impulse response h = HJ;

m compute y = Hx exploiting linearity and time-invariance
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Example

x = H{26 + 35716 + S26}

= 2HS +3S YHS + ST2HE

=2h+3S8'h+S8h

x[n] = 2h[n] 4+ 3h[n — 1] + h[n — 2]
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Example
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Convolution

y = Hx

= > x[k]S*h

k=—o0

=xx*h

algorithmic expression for the individual output sample

o

ylnl = x[klh[n — K]

k=—o0

44



Convolution algorithm

o0

ylnl = Y x[k]hln — K]

k=—o00

The recipe:

m time-reverse h

Ingredients: m at each step n (from —oo to c0):

B a sequence X e center the time-reversed h in n

m a second sequence h (i-e. delay by n)
e multiply it by x element-wise

e sum all the products

45



Same example, different perspective
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1 n=2

0 otherwise
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Convolution example
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Convolution example
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Convolution example
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Convolution example
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Convolution example

x L .
X
0=~===-===T{T= AAAAAAAAAAAAAAAAA
¢ ¢ \ LSRR A S AR AN S S
-8 —4 0 4 8 12 16 20
3 1F ]
I
£ 1]
< 0’???TTT —0—0—0—9—0—0—0—9—0—0—0—90—0—0—0—9—0—0—0—¢
-8 —4 0 4 8 12 16 20
6
= 4r ]
> 2 -
0=?===?===T T T T T T
-8 —4 0 4 8 12 16 20

47



Convolution example
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Convolution example
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Convolution example
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Convolution example
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Convolution example
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Convolution example
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Convolution example

=3 | i

) 0 =~===-===T{T=~===-===A===~===-
¢ ¢ 1 ¢ ¢ ¢ ¢ ¢
-8 —4 0 4 8 12 16 20

X 1F ]

I

s 1]

< 0 -?-..?.”??TT‘T s

-8 —4 0 4 8 12 16 20

A S| I T T T T

-8 -4 0 4 8 12 16 20

y[n]
ON PO
T T
—.
0
—eo
—e
)
o
—.
o

L1

47



Convolution example
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Convolution example
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Convolution example
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Convolution example
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Convolution example
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Convolution example
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Convolution example
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Convolution example
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Convolution example
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Convolution example
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Convolution example

x[k]

h[n — k]

y[n]

—§—0—0—0—9—0—0—0— —§—0—0—0—9—0—0—0—90— 0009000 9¢

-8 —4 0 4 8 12 16 20
1F [ b
03;===?=e-?--.?....Q,??TTTTT oo

-8 —4 0 4 8 12 16 20

oON PO
T

40— 0—0—0—0—0 1 T T T T

-8 -4 0 4 8 12 16 20

47



Convolution example

x[k]

h[n — k]

y[n]

—§—0—0—0—9—0—0—0— —§—0—0—0—9—0—0—0—90— 0009000 9¢

-8 —4 0 4 8 12 16 20
1F I~
0=-===-333-----....099??TTTTT °

* * ¢ * T T \ *

-8 —4 0 4 8 12 16 20
6
| il *
§k=-===-===T TTTTT?,,...-..-.- ]

h hd T I T T T T

-8 -4 0 4 8 12 16 20

47



Convolution example
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Convolution properties

m linearity and time invariance (by definition)
m commutativity: x *h = h % x

m associativity for absolutely- and square-summable sequences: (x * h) *w = x* (h * w)

Xx ——> hxw ——y
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Moving Average: impulse response

M—1
bln) = 7 > oln — K
k=0

{/I\/I for0<n<M

otherwise

x[n] < &[n]
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Moving Average: impulse response

1/M | 90¢
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Leaky integrator: impulse response

ylnl = Ayln = 1]+ (1 = A)d[n]

m y[n] =0foralln<0

m y[0] = Ay[-1] + (1 = A)5[0] = (1 — A)
= y[1] = Ay[0] + (1 = A)J[1] = A(1 - A)

m y[2] = Ay[1] + (1= A)[2] = A3 (1 - )
m y[3] = Ay[2] + (1= A)3] = A3(1 - )
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Leaky integrator: impulse response

h[n] = (1 — A)A" u[n]

N IR "{{Hmmﬂmmm,,,..

0 15 30




Filter types according to impulse response

m Finite Impulse Response (FIR)
m Infinite Impulse Response (IIR)
m causal

B noncausa
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FIR

m impulse response has finite support

m only a finite number of samples are involved in the computation of each output sample
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FIR (example)

1/M

Moving Average filter

b ¢
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IR

m impulse response has infinite support

m a potentially infinite number of samples are involved in the computation of each output
sample

m surprisingly, in many cases the computation can still be performed in a finite amount of
steps
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IIR (example)

Leaky Integrator

X[lTTTT???Q......? .....

15
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Causal vs Noncausal

m causal:
e impulse response is zero for n < 0

e only past samples (with respect to the present) are involved in the computation of each
output sample

e causal filters can work “on line” since they only need the past
® noncausal:
e impulse response is nonzero for some (or all) n <0

e can still be implemented in a offline fashion (when all input data is available on storage, e.g.
in Image Processing)
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Causal example

Moving Average filter




Noncausal example

Zero-centered Moving Average filter




Causal and Noncausal Moving Average

6 M =100 -
4+ _
o b i
0

" L/ |

_4 i

-6+

T T T T
0 100 200 300 400

61



Processing delay: intuition




Processing delay: intuition




Processing delay: intuition




Processing delay: intuition




Processing delay: intuition

We assumed the signal is smooth; if it is linear, i.e. x[n] = an,

1 M—-1
Yl = 3 3 xln =4

M—

> a(n-

k=0

-1 M—-1
i

=0 k=0
- M [Mn — M(M —1)/2]
= a(n — (M —1)/2)

[

- (M-1)/2] < delay of (M —1)/2 samples (assume M odd)

|_.\

EIH

o |

= X|nh
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Processing delay: intuition

What about a slow sinusoid of the form x[n] = cos(won)?

1 M-1
Yl = 5 > cosleo(n — k)
k=0

1 M—1 M—1
{ erJo(n k) } — Re {ejwon Z e—jwok}
k=0 k=0

1 » n]_ _ e_JUJOM 1 - ne_jUJOM/z [ejWQM/2 _ e—jWOM/2]
= i Re { e/«o 1 _ e Jjwo } = i Re {ef 0 e—jwo/2 [ejwo/2 — e—jw0/2]
_ sin (M) jwon ,—jwo(M—1)/2
~ Msin (%) Re{e’ ¢ }

— c(wo, N) cos <w0 <n _ %)) < x[n — (M —1)/2]
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Processing delay

m all causal filters introuduce a processing delay

m processing delay is best understood in the frequency domain

65



the frequency response



Filtering a complex-valued oscillation

e,: complex exponential sequence at frequency w

e,[n] = &*n

e, — > H [—> 7
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A remarkable result

e, *h=hxe, convolution is commutative
(o]
= > hKS *e, 5 Feu = e ke,
k=—o00
o0
=e, Y h[kle ¥k
k=—o00

= H(w)e,
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A remarkable result

m complex exponentials are eigensequences of LTI systems: He, = Ce,,
m scalar factor C is DTFT of impulse response at input frequency

m LTI systems cannot change the frequency of sinusoidal inputs
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Magnitude and phase

If H(w) = Ae/?, then

(He,)[n] = Aeilwn+0)

amplitude: phase shift:
amplification (A > 1) delay (6 < 0)
attenuation (0 < A < 1) advancement (6 > 0)
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Filters in the frequency domain

how do filters change the spectrum of an input signal?
DTFT {xxh} =?

Intuition:

m we know how filters modify a sinusoid
m signals can be expressed as a linear combination of sinusoids

m by linearity...
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The convolution theorem

h y =hxx

DTFT
— X

PEALLENT

DTFT
+——Y
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The convolution theorem

[e.e]

Y(w)= > ylnle "

n=—oo

[ee]

= Y > x[klhn— Kkle " yinl = > x[klh[n - K]

n=—00 k=—00 k=—o0

= i i x[K]h[n — k]e I«(n=k) g=jwk

n=—00 k=—00

= > x[k]e Ik i h[n — k]e J«(n=k)

k=—00 n—=—oo



The convolution theorem

y=hxx
Y=HX
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Frequency response

y=hxx
Y=HX

Two effects on the spectrum of the input signal:
m magnitude: amplification (|H(w)| > 1) or attenuation (|H(w)| < 1)

m phase: overall delay and “shape” change

4



Moving Average: frequency response

hin] = (u[n] = u[n — M])/M

1/M* 20000006000




Moving Average: frequency response

M1,
Hw) = e
n=0

11—edM

M 1—eiv
1 e_j% [ef'% — e‘j%}

M- 35 [df et

_ 1sin(S5M) jeqmon
M sin (%)
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Moving Average: magnitude response

sin(%M)

|H(w)| = % sin(2)

|H(w)]

w/2

v



Moving Average: magnitude response

[H(w)| = 7

sin(3)

|H(w)]

v



Moving Average: magnitude response

|H(w)]

1F

[H(w)| = 7

sin(3)

M =100

v



Denoising revisited
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Denoising revisited
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Denoising in the frequency domain

time frequency
6 1 1r
4 _
21 _
0
ok
4 F i
76 - .
T T T T T T 0 T T
0 100 200 300 400 500 —T —7/2 0
6 i 1
0
76 - .
T T T T T 0 e |

T
0 100 200 300 400 500 - —7/2 0



Denoising in the frequency domain

/2
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Denoising in the frequency domain
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Denoising in the frequency domain
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Denoising in the frequency domain

I A i

M\"W*’M\&_M

/2 ™
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Denoising in the frequency domain

80



Denoising in the frequency domain
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What about the phase?

Assume |H(w)| =1
m zero phase: ZH(w) =0

m linear phase: ZH(w) =dw, d € R

m nonlinear phase
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Zero phase

If LZH(w) = 0:
m Hw)eR

m impulse response must be real and symmetric
m no causal filter can have a zero phase response

m a zero-phase filter has no processing delay



Noncausal moving average

Zero-centered Moving Average filter




Causal vs Noncausal Moving Average

6 M =100 -

4+ _

o b i

0
" L/ |
_4 i
-6+

T T T T
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Phase and signal shape

1 2
X[n] = 5 sin(won) + COS(QwOn) wo = %

_
T

LANNAN AN DAL
VY

68
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Phase and signal shape: linear phase offset

1 8
x[n] = > sin(won + 6p) + cos(2won + 26o) 0o = ?ﬂ

[y

VAN AL AN
Ly v

0 28 56 84 112 140 168
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Phase and signal shape: nonlinear phase offset

1
x[n] = 5 sin(won) + cos(2wgn + 26p)

IVITNIPNITYIVS
ARATATAATARTAY

T T T T T T T

0 28 56 84 112 140 168
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Linear phase

m y[n] = x[n — d]
B Y(w) = e X(w)
m H(w) = e Jwd

m linear phase response

—_— z —»y:S_dx

simple delay
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Linear phase systems

A linear phase system can be split as the cascade of

m a zero-phase system with frequency response A(w) € R
m a delay

m we will see later how this works if d is not an integer

x —— Aw) delay by d

—
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Moving Average is linear phase

i sin (%M) M-

M sin(3)

H(w) =

The processing delay introduced by a causal Moving Average is (M — 1)/2 samples
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Noncausal moving average

he[n] = h[n+ (M —1)/2]

He(w) = &7 % H(w)

1 sin (YM)
— = R
M  sin (%) <
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Leaky integrator: frequency response

h[n] = (1 — A)A" u[n]

NS HHHﬁmnnnm,,,,m.

0 15 30




Leaky integrator: frequency response

Hw) — 1=

Finding magnitude and phase require a little algebra...

1— e v
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Leaky integrator: frequency response

Recall from complex algebra:
1 a—jb
a+jb  a%+ b2

so that if x = 1/(a + jb),

a2 4 b2

/x=tan! [—é]
a
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Leaky integrator: frequency response

1-A
H =
() (1 —Acosw) — jAsinw
so that:
HeP = 0

1—2\cosw + A2

Asinw
ZHWw)=tan ! | ————
() =tan [I—Acosw]
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Leaky integrator: magnitude response

[H(w)]

—7/2

/2
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Leaky integrator: magnitude response

[H(w)]

A =0.95

—7/2

/2
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Leaky integrator: magnitude response

[H(w)]

A=0.98

—7/2

/2
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Leaky integrator: phase response

w/2

ZH(w)

—m/2

/2

—7/2
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Leaky integrator: phase response

w/2
A=0.95
3
Ry
N
—m/2 T T
—7/2 /2
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Leaky integrator: phase response

w/2
A=0.98
3
Ry
N
—m/2 T T
—7/2 /2
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Phase is sufficiently linear where it matters

Il

0 T T T
-7 —7/2 0 /2 ™

[H(w)]

/2

ZH(w)
p

_7T/2 T T T



Modulation and demodulation



Classifying signals in frequency

Three broad categories according to where most of the spectral energy resides:

m lowpass signals (also known as “baseband” signals)
m highpass signals

m bandpass signals

99



Lowpass

example

X (w)]

—7/2

/2
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Highpass example

X (w)]
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Bandpass example

X (w)]

—7/2

/2
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Sinusoidal modulation

DTFT {x[n] cos(wen)} = DTFT {%ejwfnx[n] + %e‘jwfnx[n]}
= 2 IX( — we) + X(w + )]

m usually x[n] baseband

m w. is the carrier frequency

103



Example
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Example

We

104



Example

-
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Example

We
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Again, explicitly showing the periodicity of the spectrum

1
c T 27 3 A7

105



Careful when the modulation frequency is too large!

A
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Careful when the modulation frequency is too large!

—T We 0

We T
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Sinusoidal modulation: applications

m voice and music are lowpass signals
m radio channels are bandpass, in much higher frequencies
m modulation brings the baseband signal in the transmission band

m demodulation at the receiver brings it back
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Demodulation

y[n] = x[n] cos(wcn)

x'[n] = 2y[n] cos(wcn)

Y(w) = % [X(w — O.)c) + X(OJ + Wc)]
X'(w) = Y(w—we) + Y(w+we)

= X() + 5 [X(w — 200) + X + 200

109



Demodulation

X(w)
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Demodulation
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Demodulation

—47 —37 -2 —m-wo 0 wo 7



Demodulation

n (- T ([ T I [
—47 —37 -2 —m-wo 0 wo 7




Demodulation

X' (w)

LA

|

wo wo

WAL

AL

—47

—37

—27

—m-wo 0 wo 7 27

3T

47
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Demodulation

47
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Demodulation

m we recovered the baseband signal exactly...
m but we have some spurious high-frequency components

m how do we get rid of those?
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Demodulation with lowpass filtering

X' (w)

113



Demodulation with lowpass filtering

X' (w)

/\

/\.

-7 0
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Demodulation with lowpass filtering

X(w)

113



The modulation theorem



The convolution and modulation theorems

another example of time-frequency duality:

x*y<ﬂ>XY

xyﬁ)X*Y

114



What is the convolution of DTFTs?

in (2(2) in Lo([—, )

o

(xy) = > x*[kly[]

1 (" .
k:(;oo (X, Y) = E/_,TX (0)Y(o)do
(< Ry) = Y x[Kly[-K] (RY)(0) = Y(—0)
o (S™“RY)(0) = Y(w - 0)
(x*,8T"Ry) = > x[kly[n— K] (X % Y)(w) = (X*,ST“RY)
k=—o0 1 -
o0 = — X(o)Y(w—o)do
(xxy)ll = > x[Klyln— K] 2m J s

k=—o0
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Modulation theorem

w = XYy

W=XxY

W(w) = % ' X(0)Y(w —o)do

—T
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Modulation theorem: proof

Let's compute the inverse DTFT of W = X % Y at index n:

1 s

jwn _ 1 T T _ jwn
| Weends = oo /_ | XY - o) rdad

1 T ) )
— - on j(w—o)n
L /_7r g X(0)Y(w—0)e?"e dodw

1 /" ; 1 (/7 :
_ on o (w—0o)n
| X(o)e?"do 5 / Y(w—o)e dw

—Tr

= x[n] y[n]
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Sinusoidal modulation and Dirac deltas

X(w)

118



Sinusoidal modulation and Dirac deltas

Y (w) = DTFT {x[n] cos(won)}

118



Sinusoidal modulation and Dirac deltas

DTFT {x[n] coswon} = X(w) * %[S(w — wo) + 6(w + wo)]

1 ™

e X((,u—0‘)8(0‘—u,)o)da—{—i " X(w—a)g(a—i—wo)da

4 J_ 47

—Tr

- % [X(w — wo) + X (w + wo)]

Dirac deltas must always be inside of an integral!
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Modulation, frequency beatings, and tuning a guitar



Tuning a guitar

Problem (abstraction):

m reference sinusoid at frequency wg
m tunable sinusoid of frequency w

m make w = wg “by ear”



The procedure

bring w close to wqp (easy)
when w = wq play both sinusoids together

trigonometry comes to the rescue:

x[n] = cos(wgn) + cos(wn)

<w0+w > <
= 2cos n | cos

~ 2 cos(A,,n) cos(won)

wo —w

2

)



What we hear when we tune

x[n] = 2 cos(A,,n) cos(won)| 2 cos(A,n) |- | cos(won)

= “error’ signa|\)

m modulation at wy

m when w = wy, the frequency of the error signal is too low to be heard; modulation brings
it up to hearing range and we perceive it as amplitude oscillations of the carrier frequency

N



In the time domain...

I I I
0 100 200 300
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In the time domain...

I I I
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In the time domain...

I I I
0 100 200 300

wop=2m-0.2, w=2r-021, A, =2r-0.0050



In the time domain...

I I I
0 100 200 300

wo=2m-0.2, w=2r-0.205 A, =27-0.0025



In the time domain...

I
0 100

wo = 27 - 0.2,

T
200

-0.201,

I
300

A, =27 -0.0005
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Filter classification



Impulse response

h="Hé

y=hxx



Filter classification based on impulse response

m Finite Impulse Response (FIR)
m Infinite Impulse Response (IIR)

m causal/noncausal

125



Frequency response

H = DTFT {#&}
Y = HX



Magnitude response

Filters act as a multiplicative “mask” in the frequency domain:

m stopband: region where |H(w)| ~ 0

m passband: region where |[H(w)| > 1

filters are classified according to passband location



Filter classification based on frequency response

types of magnitude response:

m Lowpass
m Highpass
m Bandpass

m Allpass

types of phase response:

m Linear phase

m Nonlinear phase

128



Ideal filters



What is the best lowpass we can think of?

H(w)

129



Ideal lowpass filter

H(w) 1 for |w| < we
w) =
0 otherwise

design parameter: cut-off frequency w,

perfectly flat passband with unit amplitude
m infinite attenuation in stopband

m zero-phase (no delay)

(2m-periodicity implicit)
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Ideal lowpass filter: impulse response

h = IDTFT {H}

hn] = - / " H(w)e duw

2T J_.

1 [9 .
= — e“"dw

21 J_ .

1 ejan _ e—jwcn
~ 2j
_sinwen

™n
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Ideal lowpass filter:

impulse response

we=7/5

we/m

[ [\

0 ket 7113 | | 71138 AT
QLI b g ) g AL~
o7 \\ y \ ‘l i
T T T T T
—20 —10 0 10 20
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Ideal lowpass filter: impulse response

we/m
H

T T

T T T
—100 —50 0 50 100



Ideal lowpass filter: impulse response

we/m

T T T
—800 —600 —400 —200 0

T
200

T
400

T
600

800
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The sinc and rect functions

The sinc-rect pair:

(1 X <12
rect(x) = {0 x| >1/2

X

dncx) — sin(mx) x40
1 x=0

(note that sinc(m) = 0 for m € Z\ 0)



The ideal lowpass in canonical form

rect (

w

,DTFT We .

2w,

)

A

> |— SINC

(

We
—nN
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Example

Ideal lowpass filter with cutoff frequency w. = 7/3:

H(w) = rect <#>

h[n] = %sinc (g)
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Example
We =
1F
3
T
0 ‘ ‘
Ia o/ —7/3 /3 2r/3 T
1/3 |
=
=
‘ T
—20 10 i ) ’ ’

T
-30
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Time-frequency duality

Always remember:

narrow in frequency = wide in time

wide in frequency = narrow in time

w DTFT. Wc .
rect <—— —sinc
2w T

width in frequency: 2w,
width in time: width of main lobe
first zero crossing: n = m/w¢ (since sinc(1) = 0)

width in time: o« 1/w,

g

c
—n
™

)
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Wide bandwidth

we =2m/3
1 -
3
Ry
0 T T T
-7 —2m/3 —m/3 0 /3 2r/3
we/m
=
=
0
T T T T T T
-30 -20 -10 0 10 20
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Narrow bandwidth

we =m/10
1 ]
3
iy
0 | | T | |
-7 —2m/3 —m/3 0 /3 2r/3 T
we/m i
=
Ny
0 et e St
T T T T T
—-30 —20 —10 0 10 20 30
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To help your memory

m frequency domain is easy to remember: H(w) = rect (2%%)

m time domain is a sinc of the form h[n] = asinc(an)

m to find a:
e remember sinc(0) = 1, so a = h[0]
o use the inverse DTFT formula for n = 0: h[0] = 5= [T H(w)dw

e in this case, h[0] = & [T H(w)dw = (2wc)/(27)

e a=uw./7
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From the ideal lowpass...

H(w)

—We

We
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. to the ideal highpass

H(w)

We
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Ideal highpass filter

th(w) = {

1 form>|wl>w
- jw] 2 we (2m-periodicity implicit)
0 otherwise

Hpp(w) =1 = Hjp(w)

hpp[n] = 0[n] — %sinc (%n)
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Ideal bandpass filter

H(w)

—wo

0 wo— we

wo

wo + We

s
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Ideal bandpass filter

—We

We
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Ideal bandpass filter

147



Ideal bandpass filter

—wo
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Ideal bandpass filter

pr(w) = {

1 for |w=+ <
lw _ wol < we (2m-periodicity implicit)
0 otherwise

hpp[n] = 2cos(w0n)% sinc (%n)
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The bad news

the ideal lowpass is... ideal: it cannot be implemented in practice

149



Why we can’t implement an ideal filter (1)

The impulse response h[n] = “ sinc (£2n):
m has two-sided infinte support

m cannot be made causal

computing a single output value requires knowing the entire input (i.e. knowing the future)

by contrast, note that the impulse response of computable IIR filters
(such as the Leaky Integrator) can always be made causal
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Why we can’t implement an ideal filter (1)

If x has infinite support

il = (o)l = 25 S ik sine (2K)

k=—00

involves an infinite number of terms, i.e. it's not computable in finite time.
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Why we can’t implement an ideal filter (111)

What if x has finite support (say from 0 to N —1)?

N-1 k

yln] = (h e x)n] = < k}_jox[k] sinc (%)

can be computed but y[n] will be nonzero for all n starting at —oo;
again, we can’'t compute this in finite time
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Why we can’t implement an ideal filter (1V)

But can't we come up with an algorithm like we did for the Leaky Integrator?
After all, the LI has an infinite impulse response!

Unfortunately no computable algorithm will yield a rect-shaped filter.
We will see why in the upcoming lectures about rational transfer functions.
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FIR approximations of ideal filters



Overview:

m Impulse truncation
m Window method

m Frequency sampling
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How can we approximate an ideal lowpass?

Idea #1:

m pick wc
m compute ideal impulse response h
m truncate h to a finite-support h

m h defines an FIR filter, which we can always implement
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Approximation by truncation

FIR approximation of length M = 2N + 1:

We . (We
— — <
i ﬂsmc(ﬂn) In| <N
h[n] =

0 otherwise
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Why this looks like a good idea

minimization of MSE (norm in Lp([—m,7])) between ideal filter and its approximation:

_ 1 [ _
MSE = ||H — H|]? = g/ |H(w) — H(w)Pdw

—T

using Parseval’s theorem
MSE = ||[H — H|?
= ||h —h|? (norm in (5(Z))

= > [hln] - Aol

n=—oo
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Remember the conservation of energy

norm in {y(Z) norm in Ly([—7, 7])

IxIf* = [1X[}?

> WP =5 [ IX@)Pd

n=—0o0

[ sine (20 = 52 [
—sinc | —n = —
T T 2T

-

rect w
2w,
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Keep the coefficients around n =0

let | = {ng,n1,...,np} the set of indices of the coefficients we keep:
MSE= > [a[n] = h[n]* = D> [|h[n]|* + |h[n]|* — 2[A[n]||A[n]|]
n=—oo n=—oo
= > Al = |Aln]P
n=—o00 nel
= we/m =Y [hln]?
nel

m MSE is minimized by keeping the largest coefficients
m |sinc(an)| < 1/n

m MSE is minimized by symmetric impulse truncation around zero
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Why it’s not such a good idea, actually

A(w)

/2

160



Why it’s not such a good idea, actually

N

1|——

A(w)

~

/2
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Why it’s not such a good idea, actually

\ M =21

A(w)

\\_/AV ~

/2




Why it’s not such a good idea, actually

AAAAA
NSNS
‘ M =101

A(w)

\AA‘
A\

T

w/2
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Why it’s not such a good idea, actually

Aﬁ M =301

H(w)
S

w/2




The Gibbs phenomenon

The maximum error around the cutoff frequency
is around 9% of the height of the jump
regardless of M
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Understanding the Gibbs phenomenon

=2l

=hw

o] — {1 In| < N

0 otherwise

H=HxW
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Understanding the Gibbs phenomenon

h=hw
1 ]
=
T B e
—20 —10 0 10 20
1 _
=
S
0 L—c-0-0-0-c-cc-0-0-0-0-c-c-0-0-0 t 0-C-O-0-0-G-0-0-0-0-0-0-C-0-0-0
—20 —10 10 20
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Understanding the Gibbs phenomenon
W(w) = sin(wM/2)/sin(w/2)

W(w)

H=HxW,

20
. o N pa N\ V- >N e

T

0 P~

T

s

—T

T

—7/2

0

/2
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Remember the modulation theorem

(X*Y)(w) = % /_7T X(0)Y(w —o)do
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Implicit frequency-domain convolution

N=9M=2N+1

H(w)

e

. 20 |

S 10~/\

§ 0 N e — p— — — e
\ g —" " ——— ~—— m~—— "




Implicit frequency-domain convolution

N=9M=2N+1

. 1 i
3
T

0
. 20 | N
3 10 /\ i
§ Of\ N e — — — — g

NS A\

. 1 ]
3
[N

0 —

T T T
-7 —7/2 0 w/2 m




Implicit frequency-domain convolution

H(w)

N=9M=2N+1

20
10 [

\AAA‘AAA
T T T

—7/2

w/2 ™
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Implicit frequency-domain convolution
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Implicit frequency-domain convolution
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Implicit frequency-domain convolution
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Implicit frequency-domain convolution
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Implicit frequency-domain convolution

H(w)

20
10

-7 —7/2

N =09,

M=2N+1

— ey N /

—— > \J

\v/\ P —— —

N /\’\
——
T

166



Implicit frequency-domain convolution
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Implicit frequency-domain convolution
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Implicit frequency-domain convolution
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Implicit frequency-domain convolution
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Implicit frequency-domain convolution
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Implicit frequency-domain convolution
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Implicit frequency-domain convolution
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Implicit frequency-domain convolution
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Mainlobe and sidelobes

W(w)
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What if we change the window?

We want:

m narrow mainlobe so that transition is sharp
m small sidelobe so Gibbs error is small

m short window so FIR is efficient

very conflicting requirements!
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Triangular window

w(n]
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Rectangular vs Triangular Window

19-tap rectangular
19-tap triangular
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Window method: pros and cons

Pros:

m extremely simple

m minimizes MSE
Cons:

m can't control max error (Gibbs)

m must know the impulse response (not easy for arbitrary frequency responses)
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Frequency sampling

Idea #2:
m draw desired frequency response H(w)

m take M equally-spaced values of the frequency response over the [0, 27] interval:
Hmlk] = H(wg), wk = (27 /M)k, k=0,1,....M—1
m compute the inverse DFT: hy, = IDFT {Hy}

m use the impulse response

- h < M
Bloj = b7 9 =1 <
0 otherwise
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Frequency sampling: desired response

/2
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Frequency sampling: from DTFT to DFT

get M samples over the [0, 27] interval, so they are ready for the IDFT

—2r  =37/2 —= —7/2 0 /2 ™ 3r/2 27
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Frequency sampling: DFT samples

Hum k]

o
—

N

w -9
S~ 9
o -9
o ¢

~N -9

0 -9

© @

10

11
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Frequency sampling: impulse response from IDFT

hu(n] hin]
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Frequency sampling: what happens in the time domain

hy = IDFT {Hp}
2
il

HM[k]:H<M ) k=0,1,....M—1
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Frequency sampling: what happens in the time domain

hM[n] =

1 M—-1 [ 5 H
k=

m=—0o0

M-1
= 3 g Y- e Hm
k=0
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a familiar result

M—

k=

[ay

0

e—j%(m—n)k _ {

M
0

if m— n multiple of M
otherwise
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Frequency sampling: what happens in the time domain

hulnl = Y h[m] 8[(m—n) mod M]

= i h[n 4+ mM]

sampling in the frequency domain results in periodization in the time domain
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Frequency sampling: impulse response from IDFT

hin]

T T
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Frequency sampling: impulse response from IDFT

h[n], h[n — M|
°
0 oMot et o ®a o R‘u nlu oln u‘o o‘o 5,0%0_0%0_ 0" —

T T T T T

T T
-33 —22 —11 0 11 22 33
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Frequency sampling: impulse response from IDFT

., h[n+2M], h[n + M}, h[n], h[n — M], hn — 2M], . ..

1 1
-33 —-22 -11 0 11 22 33
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Frequency sampling: impulse response from IDFT

hmln] =32 o hln + mM]
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Frequency sampling: impulse response from IDFT

hln]

! TlT

lf

-33

—22

—11
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Frequency sampling: what happens in the frequency domain

what is the frequency response H?

m hy;: M-point inverse DFT of frequency samples Hy; with Hy[k] = H (%k)
m h: finite-support extension of hy
m DFT coefficients Hy, are known

m use the DFT to DTFT result for finite-support sequences: Lagrangian interpolation
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DTFT of finite-support signals

smooth interpolation of DFT values:

M-1
Aw) =" HulklAu <w — %k)
k=0

_ 1sin(5M) —j2(M-1)
R
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Frequency sampling: frequency response

w/2
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Frequency sampling: pros and cons

Pros:

m simple

m works with arbitrary frequency responses
Cons:

m can't control max error
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