
COM-202: Signal Processing

Chapter 6.a: Discrete-Time Filters



Overview

linear time-invariant systems in discrete time

filters for denoising

impulse response

convolution

frequency response

modulation and demodulation

ideal filters and approximations
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linear time-invariant systems



A single-input single-output signal processing device

x H y

y = Hx

all signals assumed to be infinite-length

we need some restrictions on H to proceed
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Linearity

H(α x1 + β x2) = αHx1 + βHx2

realistic requirement: sum of inputs leads to sum of outputs

in practice systems are linear until they aren’t (eg. volume too loud)
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Linearity

Play
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Nonlinearity

Play
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Time invariance

HSkx = SkHx

more explicitly:

yk [n] = y [n − k] with











xk = S−kx (xk [n] = x [n − k])

y = Hx

yk = Hxk

realistic requirement: device should work the same way today and tomorrow

analog systems exhibit “aging”, digital systems don’t
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Time invariance
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Time variance

Play
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Linear, time-invariant systems

x H y

addition
scalar
multiplication

delays
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Linear, time-invariant systems

y [n] = H(x [n], x [n − 1], x [n − 2], . . . , y [n − 1], y [n − 2], . . .)

with H(·) a linear function of its arguments
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filtering by example



Filtering by example

Two fundamental filters:

Moving average

Leaky integrator

11



Typical filtering scenario: denoising
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Denoising by averaging

Hypotheses:

noisy signal samples are true values plus random noise value: x = xc + η

noise values are random and with zero mean:

1

M

M−1
∑

m=0

η[n −m] ≈ 0 for M large enough

the signal is varying slowly (current value is very similar to previous values):

x [n −m] ≈ x [n] for m reasonably small
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Denoising by averaging

Idea: to remove the noise, replace each sample by the average of M consecutive samples:

1

M

M−1
∑

m=0

x̂ [n −m] =
1

M

M−1
∑

m=0

(x [n −m] + η[n −m])

=
1

M

M−1
∑

m=0

x [n −m] +
1

M

M−1
∑

m=0

η[n −m]

≈
1

M

M−1
∑

m=0

x [n] + 0

= x [n]
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The Moving Average filter

y [n] =
1

M

M−1
∑

m=0

x [n −m]

each output value averages current and previous M − 1 input values

average is recomputed at every step (hence “moving”)

computational requirements:

• M − 1 additions

• one multiplication (by 1/M)

• M − 1 memory cells (to remember the previous input values)
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A simple implementation (plain Python)

class MA:

def __init__(self, M):

# pre-allocate storage for past input values

self.buf = [0.0] * (M-1)

self.norm = 1.0 / M

def filt(self, x):

# compute the local average

y = x

for v in self.buf:

y += v

y *= self.norm

# update the buffer, eg: [a, b, c, d, e] -> [x, a, b, c, d]

self.buf[1:] = self.buf[:-1]

self.buf[0] = x

return y 16



A better implementation using NumPy

import numpy as np

class MA:

def __init__(self, M):

self.buf = np.zeros(M)

def filt(self, x):

self.buf = np.roll(self.buf, 1)

self.buf[0] = x

return np.mean(self.buf)
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Testing time!

let’s test the algorithm on the sequence

x [n] = (−1)nu[n]

b b b b b
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Testing the implementation

> ma = MA(4)

> for n in range(20):

print(ma.filt((-1) ** n), end=’, ’)

> 0.25, 0.0, 0.25, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
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Question

can you guess what the output is going to be for M = 5?

> ma = MA(5)

> for n in range(20):

print(ma.filt((-1) ** n), end=’, ’)

> 0.2, 0.0, 0.2, 0.0, 0.2, -0.2, 0.2, -0.2, 0.2, -0.2, 0.2, -0.2, 0.2,

-0.2, 0.2, -0.2, 0.2, -0.2, 0.2, -0.2,
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Does it work for denoising? Let’s try it out!

M = 2

clean signal
denoised with MA
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Does it work for denoising? Let’s try it out!

M = 4

clean signal
denoised with MA
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Does it work for denoising? Let’s try it out!

M = 12

clean signal
denoised with MA
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Does it work for denoising? Let’s try it out!

M = 100

clean signal
denoised with MA
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Performance analysis

smoothing effect proportional to M

number of operations and storage also proportional to M

there appears to be a “delay” between input and output
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Idea: updating the average

Suppose we know the local average at time n − 1;
can we compute the average at time n as an update of the previous value?

y [n] = f (y [n − 1], x [n])
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Updating the average

y [n] =
1

M

M−1
∑

m=0

x [n −m]

y [n] =
1

M

[

x [n] + x [n − 1] + . . .+ x [n − (M − 2)] + x [n − (M − 1)]

]

y [n− 1] =
1

M

[

x [n − 1] + x [n − 2] + . . .+ x [n − 1− (M − 2)] + x [n − 1− (M − 1)]

]
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Updating the average

y [n − 1] =
1

M

[

x [n − 1] + x [n − 2] + . . .+ x [n −M + 1] + x [n −M]

]

y [n] =
1

M

[

x [n] + x [n − 1] + x [n − 2] + . . .+ x [n −M + 1]

]

y [n] = y [n − 1]−
1

M
x [n −M] +

1

M
x [n]

but this still requires M memory cells...
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Updating the average

Idea: use the approximation x [n −M] ≈ y [n − 1]

reasonable for “slow” signals, x [n −m] ≈ x [n] for m small

equivalent to “forgetting” (1/M)-th of the previous local average

y [n− 1]− (1/M)x [n −M] ≈ (1− 1/M)y [n − 1]

“forgetting factor” λ = 1− 1/M, close to one for M large

y [n] = y [n − 1]−
1

M
x [n −M] +

1

M
x [n]

≈ λy [n − 1] + (1− λ)x [n]
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The Leaky Integrator

y [n] = λy [n − 1] + (1− λ)x [n]

each output value is an update of the previous output

the algorithm is recursive

computational requirements:

• one addition

• two multiplications

• one memory cell to remember the previous output
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A simple implementation

class LI:

def __init__(self, lam):

self.buf = 0

self.lam = lam

def filt(self, x):

self.buf = self.lam * self.buf + (1 - self.lam) * x

return self.buf
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Does it work? Let’s try it out!

λ = 0.2
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Does it work? Let’s try it out!

λ = 0.5
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Does it work? Let’s try it out!

λ = 0.8
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Does it work? Let’s try it out!

λ = 0.98
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Performance analysis

smoothing effect dependent on λ

number of operations and storage independent of λ

there also appears to be a processing “delay”
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Leaky Integrator: why the name

A discrete-time “integrator” just accumulates input values:

y [n] =

n
∑

k=−∞

x [k]

We can rewrite the integrator recursively as

y [n] = y [n − 1] + x [n]
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Leaky Integrator: why the name

To prevent “explosions” pick λ < 1

y [n] = λy [n − 1] + (1− λ)x [n]

keep only a fraction λ of
the accumulated value
so far and forget
(“leak”) a fraction 1− λ

add only a fraction 1− λ
of the current value to
the accumulator
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the impulse response



Linear, time-invariant systems

x H y

H(α x1 + β x2) = αHx1 + βHx2

HSkx = SkHx
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The situation so far

we “designed” two filters algorithmically

both algorithms are of the form

y [n] =

N−1
∑

k=1

aky [n − k] +

M−1
∑

k=0

bkx [n − k]

• moving average: N = 1, bk = 1/M

• leaky integrator: M = 1,N = 2, a1 = λ, b0 = 1− λ

we were able to find the coefficients intuitively...

... but we can’t use intuition for more complicated filters
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The path to filter design

LTI systems are fully described by their impulse response

once we know the impulse response we can implement the filter via convolution

the DTFT of the impulse response describes how a filter works in the frequency domain

filter design starts from the frequency domain and finds the coefficients of the algorithm
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Impulse response

h = Hδ

Fundamental result: impulse response fully characterizes the LTI system!
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Every signal is a linear combination of atomic time elements

x =

∞
∑

k=−∞

x [k] δk ,

δk = S−kδ

δk [n] = δ[n − k] =

{

1 n = k

0 n 6= k .
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Time domain: sum of time pulses
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Filter’s output from impulse response

Hx = H

(

∞
∑

k=−∞

x [k]S−kδ

)

using linearity...

=

∞
∑

k=−∞

H(x [k]S−kδ) using linearity...

=
∞
∑

k=−∞

x [k]S−kHδ using time invariance...

=
∞
∑

k=−∞

x [k]S−kh
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Example
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Example

x = 2δ + 3δ1 + δ2

we know the impulse response h = Hδ;

compute y = Hx exploiting linearity and time-invariance
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Example

x = H{2δ + 3S−1δ + S−2δ}

= 2Hδ + 3S−1Hδ + S−2Hδ

= 2h+ 3S−1h+ S−2h

x [n] = 2h[n] + 3h[n − 1] + h[n − 2]
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Example
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Example
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Example
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Example
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Convolution

y = Hx

=

∞
∑

k=−∞

x [k]S−kh

= x ∗ h

algorithmic expression for the individual output sample

y [n] =
∞
∑

k=−∞

x [k]h[n − k]
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Convolution algorithm

y [n] =

∞
∑

k=−∞

x [k]h[n − k]

Ingredients:

a sequence x

a second sequence h

The recipe:

time-reverse h

at each step n (from −∞ to ∞):

• center the time-reversed h in n
(i.e. delay by n)

• multiply it by x element-wise

• sum all the products
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Same example, different perspective
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Convolution example
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Convolution example
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Convolution example
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Convolution example
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b b b b b b b b b

b

b

b

b b b b b b b b b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0

2

4
x
[k
]

b b b b b b b b b b
b

b
b

b

b b b b b b b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0

1

h
[n

−
k
]

b b b b b b b b b

b

b b
b

b

−8 −4 0 4 8 12 16 20
0
2
4
6

y
[n
]

47



Convolution example
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Convolution properties

linearity and time invariance (by definition)

commutativity: x ∗ h = h ∗ x

associativity for absolutely- and square-summable sequences: (x ∗ h) ∗ w = x ∗ (h ∗w)

x h w y

x h ∗ w y

48



Moving Average: impulse response

y [n] =
1

M

M−1
∑

k=0

x [n − k]

h[n] =
1

M

M−1
∑

k=0

δ[n − k] x [n] ← δ[n]

=

{

1/M for 0 ≤ n < M

0 otherwise
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Moving Average: impulse response

b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b

b b b b b b b b b b b b

0 M − 1
0

1/M
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Leaky integrator: impulse response

y [n] = λy [n − 1] + (1− λ)δ[n]

y [n] = 0 for all n < 0

y [0] = λy [−1] + (1− λ)δ[0] = (1− λ)

y [1] = λy [0] + (1− λ)δ[1] = λ(1− λ)

y [2] = λy [1] + (1− λ)δ[2] = λ2(1− λ)

y [3] = λy [2] + (1− λ)δ[3] = λ3(1− λ)

. . .
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Leaky integrator: impulse response

h[n] = (1− λ)λn u[n]

b b b b b b b b b b

b

b

b

b
b

b
b

b
b

b
b

b
b b b b b b b b b b b b b b b b b b b

1− λ

0 15 30
0
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Filter types according to impulse response

Finite Impulse Response (FIR)

Infinite Impulse Response (IIR)

causal

noncausal
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FIR

impulse response has finite support

only a finite number of samples are involved in the computation of each output sample
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FIR (example)

Moving Average filter

b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b

b b b b b b b b b b b b

M − 1

1/M

−15 0 15
0
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IIR

impulse response has infinite support

a potentially infinite number of samples are involved in the computation of each output
sample

surprisingly, in many cases the computation can still be performed in a finite amount of
steps
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IIR (example)

Leaky Integrator

b b b b b b b b b b b b b b b
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b

b

b
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b
b

b
b

b b b b b b b b b b b b b b b b b

−15 0 15
0
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Causal vs Noncausal

causal:

• impulse response is zero for n < 0

• only past samples (with respect to the present) are involved in the computation of each
output sample

• causal filters can work “on line” since they only need the past

noncausal:

• impulse response is nonzero for some (or all) n < 0

• can still be implemented in a offline fashion (when all input data is available on storage, e.g.
in Image Processing)
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Causal example

Moving Average filter

b b b b b b b b b b b b b b b b b b b b

b b b b b b

b b b b b b b b b b b b b b b
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0

59



Noncausal example

Zero-centered Moving Average filter

b b b b b b b b b b b b b b b b b b

b b b b b

b b b b b b b b b b b b b b b b b b

−18 −12 −6 0 6 12 18
0
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Causal and Noncausal Moving Average

M = 100

0 100 200 300 400
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−4

−2

0

2

4

6
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Processing delay: intuition

Moving Average:

y [n] =
1

M

M−1
∑

k=0

x [n − k]

b b b b b b b
b

b
b

b
b

b b b b b b
b

b
b
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Processing delay: intuition

Moving Average:

y [n] =
1

M

M−1
∑

k=0

x [n − k]
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b
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b
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Processing delay: intuition

We assumed the signal is smooth; if it is linear, i.e. x [n] = an,

y [n] =
1

M

M−1
∑

k=0

x [n − k]

=
1

M

M−1
∑

k=0

a(n − k)

=
a

M

[

M−1
∑

k=0

n −

M−1
∑

k=0

k

]

=
a

M
[Mn −M(M − 1)/2]

= a(n − (M − 1)/2)

= x [n − (M − 1)/2] ← delay of (M − 1)/2 samples (assume M odd)
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Processing delay: intuition

What about a slow sinusoid of the form x [n] = cos(ω0n)?

y [n] =
1

M

M−1
∑

k=0

cos(ω0(n − k))

=
1

M
Re

{

M−1
∑

k=0

e jω0(n−k)

}

=
1

M
Re

{

e jω0n

M−1
∑

k=0

e−jω0k

}

=
1

M
Re

{

e jω0n
1− e−jω0M

1− e−jω0

}

=
1

M
Re

{

e jω0n
e−jω0M/2

[

e jω0M/2 − e−jω0M/2
]

e−jω0/2
[

e jω0/2 − e−jω0/2
]

}

=
sin
(

ω0
2 M

)

M sin
(

ω0
2

) Re
{

e jω0ne−jω0(M−1)/2
}

= c(ω0,N) cos

(

ω0

(

n−
M − 1

2

))

∝ x [n − (M − 1)/2]
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Processing delay

all causal filters introuduce a processing delay

processing delay is best understood in the frequency domain

65



the frequency response



Filtering a complex-valued oscillation

eω: complex exponential sequence at frequency ω

eω[n] = e jωn

eω H ?
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A remarkable result

eω ∗ h = h ∗ eω convolution is commutative

=

∞
∑

k=−∞

h[k]S−keω S
−k

eω = e
−jωk

eω

= eω

∞
∑

k=−∞

h[k]e−jωk

= H(ω) eω
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A remarkable result

eω H H(ω) eω

complex exponentials are eigensequences of LTI systems: Heω = Ceω

scalar factor C is DTFT of impulse response at input frequency

LTI systems cannot change the frequency of sinusoidal inputs
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Magnitude and phase

If H(ω) = Ae jθ, then

(Heω)[n] = Ae j(ωn+θ)

amplitude:
amplification (A > 1)
attenuation (0 ≤ A < 1)

phase shift:
delay (θ < 0)
advancement (θ > 0)
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Filters in the frequency domain

how do filters change the spectrum of an input signal?

DTFT {x ∗ h} =?

Intuition:

we know how filters modify a sinusoid

signals can be expressed as a linear combination of sinusoids

by linearity...
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The convolution theorem

x h y = h ∗ x

x
DTFT
←−−−→ X

h
DTFT
←−−−→ H

y
DTFT
←−−−→ Y
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The convolution theorem

Y (ω) =

∞
∑

n=−∞

y [n]e−jωn

=

∞
∑

n=−∞

∞
∑

k=−∞

x [k]h[n − k]e−jωn
y [n] =

∞∑

k=−∞

x[k]h[n − k]

=

∞
∑

n=−∞

∞
∑

k=−∞

x [k]h[n − k]e−jω(n−k)e−jωk

=
∞
∑

k=−∞

x [k]e−jωk
∞
∑

n=−∞

h[n − k]e−jω(n−k)

= H(ω)X (ω)

72



The convolution theorem

x h y

y = h ∗ x

Y = HX
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Frequency response

y = h ∗ x

Y = HX

Two effects on the spectrum of the input signal:

magnitude: amplification (|H(ω)| > 1) or attenuation (|H(ω)| < 1)

phase: overall delay and “shape” change
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Moving Average: frequency response

h[n] = (u[n]− u[n−M])/M

b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b

b b b b b b b b b b b

0 M − 1
0

1/M
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Moving Average: frequency response

H(ω) =
M−1
∑

n=0

1

M
e−jωn

=
1

M

1− e−jωM

1− e−jω

=
1

M

e−j ωM
2

[

e j
ωM
2 − e−j ωM

2

]

e−j ω
2

[

e j
ω

2 − e−j ω
2

]

=
1

M

sin
(

ω
2M
)

sin
(

ω
2

) e−j ω
2
(M−1)
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Moving Average: magnitude response

|H(ω)| = 1
M

∣

∣

∣

∣

sin(ω

2
M)

sin(ω

2 )

∣

∣

∣

∣

M = 9

−π −π/2 0 π/2 π
0

1

|H
(ω

)|
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Moving Average: magnitude response
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Moving Average: magnitude response

|H(ω)| = 1
M

∣

∣

∣

∣

sin(ω

2
M)

sin(ω

2 )
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Denoising revisited
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Denoising revisited
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Denoising in the frequency domain
time
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Denoising in the frequency domain

−π −π/2 0 π/2 π
0

1

80



Denoising in the frequency domain

−π −π/2 0 π/2 π
0

1

80



Denoising in the frequency domain

−π −π/2 0 π/2 π
0

1

80



Denoising in the frequency domain

−π −π/2 0 π/2 π
0

1

80



Denoising in the frequency domain

−π −π/2 0 π/2 π
0

1

80



Denoising in the frequency domain
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What about the phase?

Assume |H(ω)| = 1

zero phase: ∠H(ω) = 0

linear phase: ∠H(ω) = dω, d ∈ R

nonlinear phase
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Zero phase

If ∠H(ω) = 0:

H(ω) ∈ R

impulse response must be real and symmetric

no causal filter can have a zero phase response

a zero-phase filter has no processing delay
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Noncausal moving average

Zero-centered Moving Average filter

b b b b b b b b b b b b b b b b b b

b b b b b

b b b b b b b b b b b b b b b b b b
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Causal vs Noncausal Moving Average
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Phase and signal shape

x [n] =
1

2
sin(ω0n) + cos(2ω0n) ω0 =

2π

40

0 28 56 84 112 140 168

−1

0

1
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Phase and signal shape: linear phase offset

x [n] =
1

2
sin(ω0n + θ0) + cos(2ω0n+ 2θ0) θ0 =

8π

5

0 28 56 84 112 140 168

−1

0

1
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Phase and signal shape: nonlinear phase offset

x [n] =
1

2
sin(ω0n) + cos(2ω0n + 2θ0)

0 28 56 84 112 140 168

−1

0

1
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Linear phase

x z−d y = S−dx

simple delay

y [n] = x [n − d ]

Y (ω) = e−jωd X (ω)

H(ω) = e−jωd

linear phase response
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Linear phase systems

A linear phase system can be split as the cascade of

a zero-phase system with frequency response A(ω) ∈ R

a delay

we will see later how this works if d is not an integer

x A(ω) delay by d x
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Moving Average is linear phase

H(ω) =
1

M

sin
(

ω
2M
)

sin
(

ω
2

) e−j M−1
2

ω

The processing delay introduced by a causal Moving Average is (M − 1)/2 samples
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Noncausal moving average

hc [n] = h[n + (M − 1)/2]

Hc (ω) = e j
M−1
2

ω H(ω)

=
1

M

sin
(

ω
2M
)

sin
(

ω
2

) ∈ R
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Leaky integrator: frequency response

h[n] = (1− λ)λn u[n]

b b b b b b b b b b

b

b

b

b
b

b
b

b
b

b
b

b
b b b b b b b b b b b b b b b b b b b

1− λ

0 15 30
0
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Leaky integrator: frequency response

H(ω) =
1− λ

1− λe−jω

Finding magnitude and phase require a little algebra...
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Leaky integrator: frequency response

Recall from complex algebra:
1

a + jb
=

a − jb

a2 + b2

so that if x = 1/(a + jb),

|x |2 =
1

a2 + b2

∠x = tan−1

[

−
b

a

]
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Leaky integrator: frequency response

H(ω) =
1− λ

(1− λ cosω)− jλ sinω

so that:

|H(ω)|2 =
(1− λ)2

1− 2λ cos ω + λ2

∠H(ω) = tan−1

[

λ sinω

1− λ cosω

]
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Leaky integrator: magnitude response

λ = 0.9

−π −π/2 0 π/2 π
0

1

|H
(ω

)|

96



Leaky integrator: magnitude response
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Leaky integrator: magnitude response
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Leaky integrator: phase response
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Leaky integrator: phase response
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Leaky integrator: phase response
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Phase is sufficiently linear where it matters

−π −π/2 0 π/2 π
0

1
|H

(ω
)|

−π/2

π/2

−π −π/2 0 π/2 π

∠
H
(ω
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Modulation and demodulation



Classifying signals in frequency

Three broad categories according to where most of the spectral energy resides:

lowpass signals (also known as “baseband” signals)

highpass signals

bandpass signals
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Lowpass example

−π −π/2 0 π/2 π

|X
(ω

)|
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Highpass example

−π −π/2 0 π/2 π

|X
(ω
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Bandpass example

−π −π/2 0 π/2 π

|X
(ω

)|
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Sinusoidal modulation

DTFT {x [n] cos(ωcn)} = DTFT

{

1

2
e jωcnx [n] +

1

2
e−jωcnx [n]

}

=
1

2
[X (ω − ωc) + X (ω + ωc)]

usually x [n] baseband

ωc is the carrier frequency
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Example

−π 0 π
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Example

ωc−π 0 π
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Example

ωc−ωc−π 0 π
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Example

ωc−ωc−π 0 π
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Again, explicitly showing the periodicity of the spectrum

ωc−ωc ωc−ωc−4π −3π −2π −π 0 π 2π 3π 4π
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Careful when the modulation frequency is too large!

ωc−ωc ωc−ωc−4π −3π −2π −π 0 π 2π 3π 4π
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Careful when the modulation frequency is too large!

ωc−ωc−π 0 π
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Sinusoidal modulation: applications

voice and music are lowpass signals

radio channels are bandpass, in much higher frequencies

modulation brings the baseband signal in the transmission band

demodulation at the receiver brings it back
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Demodulation

y [n] = x [n] cos(ωcn) Y (ω) =
1

2
[X (ω − ωc) + X (ω + ωc)]

x ′[n] = 2y [n] cos(ωcn) X ′(ω) = Y (ω − ωc) + Y (ω + ωc)

= X (ω) +
1

2
[X (ω − 2ωc) + X (ω + 2ωc)]
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Demodulation

X (ω)

−π 0 π
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Demodulation

Y (ω)

ω0−ω0−π 0 π
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Demodulation

Y (ω)

ω0−ω0−4π −3π −2π −π 0 π 2π 3π 4π
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Demodulation

X ′(ω)

ω0ω0

ω0ω0−ω0−4π −3π −2π −π 0 π 2π 3π 4π
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Demodulation

X ′(ω)

ω0 ω0

ω0−ω0−4π −3π −2π −π 0 π 2π 3π 4π
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Demodulation

X ′(ω)

ω0−ω0−4π −3π −2π −π 0 π 2π 3π 4π
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Demodulation

we recovered the baseband signal exactly...

but we have some spurious high-frequency components

how do we get rid of those?
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Demodulation with lowpass filtering

X ′(ω)

−π 0 π
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Demodulation with lowpass filtering

X ′(ω)

−π 0 π
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Demodulation with lowpass filtering

X (ω)

−π 0 π
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The modulation theorem



The convolution and modulation theorems

another example of time-frequency duality:

x ∗ y
DTFT
←−−−→ XY

xy
DTFT
←−−−→ X ∗Y
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What is the convolution of DTFTs?

in ℓ2(Z) in L2([−π, π])

〈x, y〉 =
∞
∑

k=−∞

x∗[k]y [k]

〈x∗,Ry〉 =

∞
∑

k=−∞

x [k]y [−k]

〈x∗,S−nRy〉 =

∞
∑

k=−∞

x [k]y [n − k]

(x ∗ y)[n] =

∞
∑

k=−∞

x [k]y [n − k]

〈X,Y〉 =
1

2π

∫ π

−π
X ∗(σ)Y (σ)dσ

(RY)(σ) = Y (−σ)

(S−ωRY)(σ) = Y (ω − σ)

(X ∗ Y)(ω) = 〈X∗,S−ωRY〉

=
1

2π

∫ π

−π
X (σ)Y (ω − σ)dσ
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Modulation theorem

w = x y

W = X ∗ Y

W (ω) =
1

2π

∫ π

−π
X (σ)Y (ω − σ)dσ
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Modulation theorem: proof

Let’s compute the inverse DTFT of W = X ∗ Y at index n:

1

2π

∫ π

−π
W (ω)e jωndω =

1

(2π)2

∫ π

−π

∫ π

−π
X (σ)Y (ω − σ)e jωndσdω

=
1

(2π)2

∫ π

−π

∫ π

−π
X (σ)Y (ω − σ)e jσne j(ω−σ)ndσdω

=
1

2π

∫ π

−π
X (σ)e jσndσ

1

2π

∫ π

−π
Y (ω − σ)e j(ω−σ)ndω

= x [n] y [n]
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Sinusoidal modulation and Dirac deltas

X (ω)

−π 0 π
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Sinusoidal modulation and Dirac deltas

Y (ω) = DTFT {x [n] cos(ω0n)}

ω0−ω0−π 0 π
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Sinusoidal modulation and Dirac deltas

DTFT {x [n] cosω0n} = X (ω) ∗
1

2
[δ̃(ω − ω0) + δ̃(ω + ω0)]

=
1

4π

∫ π

−π
X (ω − σ)δ̃(σ − ω0)dσ +

1

4π

∫ π

−π
X (ω − σ)δ̃(σ + ω0)dσ

=
1

2
[X (ω − ω0) + X (ω + ω0)]

Dirac deltas must always be inside of an integral!

119



Modulation, frequency beatings, and tuning a guitar



Tuning a guitar

Problem (abstraction):

reference sinusoid at frequency ω0

tunable sinusoid of frequency ω

make ω = ω0 “by ear”
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The procedure

1 bring ω close to ω0 (easy)

2 when ω ≈ ω0 play both sinusoids together

3 trigonometry comes to the rescue:

x [n] = cos(ω0n) + cos(ωn)

= 2 cos

(

ω0 + ω

2
n

)

cos

(

ω0 − ω

2
n

)

≈ 2 cos(∆ωn) cos(ω0n)
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What we hear when we tune

x [n] ≈ 2 cos(∆ωn) cos(ω0n) 2 cos(∆ωn) · cos(ω0n)

“error” signal

modulation at ω0

when ω ≈ ω0, the frequency of the error signal is too low to be heard; modulation brings
it up to hearing range and we perceive it as amplitude oscillations of the carrier frequency
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In the time domain...

0 100 200 300

−2

−1

0

1

2

ω0 = 2π · 0.2, ω = 2π · 0.22, ∆ω = 2π · 0.0100
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In the time domain...

0 100 200 300
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ω0 = 2π · 0.2, ω = 2π · 0.22, ∆ω = 2π · 0.0100

123



In the time domain...

0 100 200 300

−2

−1

0

1

2

ω0 = 2π · 0.2, ω = 2π · 0.21, ∆ω = 2π · 0.0050
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In the time domain...

0 100 200 300

−2

−1

0
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2

ω0 = 2π · 0.2, ω = 2π · 0.205, ∆ω = 2π · 0.0025
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In the time domain...

0 100 200 300

−2

−1

0

1

2

ω0 = 2π · 0.2, ω = 2π · 0.201, ∆ω = 2π · 0.0005
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Filter classification



Impulse response

x H y

h = Hδ

y = h ∗ x
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Filter classification based on impulse response

Finite Impulse Response (FIR)

Infinite Impulse Response (IIR)

causal/noncausal
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Frequency response

x H y

H = DTFT {Hδ}

Y = HX
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Magnitude response

Filters act as a multiplicative “mask” in the frequency domain:

stopband: region where |H(ω)| ≈ 0

passband: region where |H(ω)| ≥ 1

filters are classified according to passband location
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Filter classification based on frequency response

types of magnitude response:

Lowpass

Highpass

Bandpass

Allpass

types of phase response:

Linear phase

Nonlinear phase
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Ideal filters



What is the best lowpass we can think of?

ωc−ωc

ωb = 2ωc

−π 0 π
0

1

H
(ω

)
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Ideal lowpass filter

H(ω) =

{

1 for |ω| ≤ ωc

0 otherwise
(2π-periodicity implicit)

design parameter: cut-off frequency ωc

perfectly flat passband with unit amplitude

infinite attenuation in stopband

zero-phase (no delay)
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Ideal lowpass filter: impulse response

h = IDTFT {H}

h[n] =
1

2π

∫ π

−π
H(ω)e jωndω

=
1

2π

∫ ωc

−ωc

e jωndω

=
1

πn

e jωcn − e−jωcn

2j

=
sinωcn

πn
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Ideal lowpass filter: impulse response

ωc = π/5

b
b b b

b
b

b b
b

b

b
b b

b

b

b

b
b

b

b

b

b

b

b
b

b

b

b

b

b

b
b

b

b

b

b
b b

b

b
b

b b
b

b
b b b

b

0

ωc/π

−20 −10 0 10 20
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Ideal lowpass filter: impulse response

0

ωc/π

−100 −50 0 50 100
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Ideal lowpass filter: impulse response

0

ωc/π

−800 −600 −400 −200 0 200 400 600 800

134



The sinc and rect functions

The sinc-rect pair:

rect(x) =

{

1 |x | ≤ 1/2
0 |x | > 1/2

sinc(x) =







sin(πx)

πx
x 6= 0

1 x = 0

(note that sinc(m) = 0 for m ∈ Z \ 0)
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The ideal lowpass in canonical form

rect

(

ω

2ωc

)

DTFT
←−−→

ωc

π

sinc

(

ωc

π

n

)
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Example

Ideal lowpass filter with cutoff frequency ωc = π/3:

H(ω) = rect

(

ω

2π/3

)

h[n] =
1

3
sinc

(n

3

)
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Example

ωc = π/3

−π −2π/3 −π/3 0 π/3 2π/3 π
0

1

H
(ω

)

b b b b b b b b b b b b b b b b
b b

b
b b

b
b b

b

b b

b

b

b

b

b

b

b

b b

b
b b

b
b b

b
b b

b b b b b b b b b b b b b b b b

1/3

−30 −20 −10 0 10 20 30

0

h
[n
]
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Time-frequency duality

Always remember:

narrow in frequency ⇒ wide in time

wide in frequency ⇒ narrow in time

rect

(

ω

2ωc

)

DTFT
←−−→

ωc

π
sinc

(ωc

π
n
)

width in frequency: 2ωc

width in time: width of main lobe

first zero crossing: n = π/ωc (since sinc(1) = 0)

width in time: ∝ 1/ωc
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Wide bandwidth

ωc = 2π/3

−π −2π/3 −π/3 0 π/3 2π/3 π
0

1

H
(ω

)

b b b b b b b b b b b b b b b b b
b b b

b b b
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b

b
b
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b
b b b
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Narrow bandwidth

ωc = π/10

−π −2π/3 −π/3 0 π/3 2π/3 π
0

1

H
(ω

)
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h
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To help your memory

frequency domain is easy to remember: H(ω) = rect
(

ω
2ωc

)

time domain is a sinc of the form h[n] = a sinc(an)

to find a:

• remember sinc(0) = 1, so a = h[0]

• use the inverse DTFT formula for n = 0: h[0] = 1
2π

∫

π

−π
H(ω)dω

• in this case, h[0] = 1
2π

∫

π

−π
H(ω)dω = (2ωc)/(2π)

• a = ωc/π
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From the ideal lowpass...

ωc−ωc−π 0 π
0

1

H
(ω

)
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... to the ideal highpass

ωc−ωc−π 0 π
0

1

H
(ω

)
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Ideal highpass filter

Hhp(ω) =

{

1 for π ≥ |ω| ≥ ωc

0 otherwise
(2π-periodicity implicit)

Hhp(ω) = 1− Hlp(ω)

hhp[n] = δ[n]−
ωc

π
sinc

(ωc

π
n
)
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Ideal bandpass filter

ω0 − ωc ω0 ω0 + ωc−ω0−π 0 π
0

1

H
(ω

)
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Ideal bandpass filter

ωc−ωc−π 0 π
0

1
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Ideal bandpass filter

ω0−π 0 π
0

1
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Ideal bandpass filter

ω0−ω0−π 0 π
0

1
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Ideal bandpass filter

Hbp(ω) =

{

1 for |ω ± ω0| ≤ ωc

0 otherwise
(2π-periodicity implicit)

hbp[n] = 2 cos(ω0n)
ωc

π
sinc

(ωc

π
n
)
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The bad news

the ideal lowpass is... ideal : it cannot be implemented in practice
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Why we can’t implement an ideal filter (I)

The impulse response h[n] = ωc

π sinc
(

ωc

π n
)

:

has two-sided infinte support

cannot be made causal

computing a single output value requires knowing the entire input (i.e. knowing the future)

by contrast, note that the impulse response of computable IIR filters
(such as the Leaky Integrator) can always be made causal
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Why we can’t implement an ideal filter (II)

If x has infinite support

y [n] = (h ∗ x)[n] =
ωc

π

∞
∑

k=−∞

x [k] sinc

(

n − k

π/ωc

)

involves an infinite number of terms, i.e. it’s not computable in finite time.
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Why we can’t implement an ideal filter (III)

What if x has finite support (say from 0 to N − 1)?

y [n] = (h ∗ x)[n] =
ωc

π

N−1
∑

k=0

x [k] sinc

(

n − k

π/ωc

)

can be computed but y [n] will be nonzero for all n starting at −∞;
again, we can’t compute this in finite time
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Why we can’t implement an ideal filter (IV)

But can’t we come up with an algorithm like we did for the Leaky Integrator?
After all, the LI has an infinite impulse response!

Unfortunately no computable algorithm will yield a rect-shaped filter.
We will see why in the upcoming lectures about rational transfer functions.
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FIR approximations of ideal filters



Overview:

Impulse truncation

Window method

Frequency sampling
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How can we approximate an ideal lowpass?

Idea #1:

pick ωc

compute ideal impulse response h

truncate h to a finite-support h̄

h̄ defines an FIR filter, which we can always implement
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Approximation by truncation

FIR approximation of length M = 2N + 1:

h̄[n] =















ωc

π
sinc

(ωc

π
n
)

|n| ≤ N

0 otherwise
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Why this looks like a good idea

minimization of MSE (norm in L2([−π, π])) between ideal filter and its approximation:

MSE = ‖H− H̄‖2 =
1

2π

∫ π

−π
|H(ω) − H̄(ω)|2dω

using Parseval’s theorem

MSE = ‖H− H̄‖2

= ‖h− h̄‖2 (norm in ℓ2(Z))

=

∞
∑

n=−∞

|h[n]− h̄[n]|2
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Remember the conservation of energy

norm in ℓ2(Z) norm in L2([−π, π])

‖x‖2 = ‖X‖2

∞
∑

n=−∞

|x [n]|2 =
1

2π

∫ π

−π
|X (ω)|2dω

∥

∥

∥

ωc

π
sinc

(ωc

π
n
)∥

∥

∥

2
=

1

2π

∫ π

−π

∣

∣

∣

∣

rect

(

ω

2ωc

)∣

∣

∣

∣

2

dω =
ωc

π
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Keep the coefficients around n = 0

let I = {n0, n1, . . . , nM} the set of indices of the coefficients we keep:

MSE =

∞
∑

n=−∞

|h[n]− h̄[n]|2 =

∞
∑

n=−∞

[

|h[n]|2 + |h̄[n]|2 − 2|h[n]||h̄[n]|
]

=

∞
∑

n=−∞

|h[n]|2 −
∑

n∈I

|h̄[n]|2

= ωc/π −
∑

n∈I

|h̄[n]|2

MSE is minimized by keeping the largest coefficients

| sinc(αn)| ∝ 1/n

MSE is minimized by symmetric impulse truncation around zero
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Why it’s not such a good idea, actually

0 π/2 π

0

1

H̄
(ω

)
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Why it’s not such a good idea, actually

M = 9
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Why it’s not such a good idea, actually

M = 21
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Why it’s not such a good idea, actually

M = 101

0 π/2 π

0

1

H̄
(ω

)
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Why it’s not such a good idea, actually

M = 301

0 π/2 π

0

1

H̄
(ω

)
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The Gibbs phenomenon

The maximum error around the cutoff frequency
is around 9% of the height of the jump

regardless of M
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Understanding the Gibbs phenomenon

h̄ = hw

w [n] =

{

1 |n| ≤ N

0 otherwise

H̄ = H ∗W
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Understanding the Gibbs phenomenon

h̄ = hw
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Understanding the Gibbs phenomenon

H̄ = H ∗W, W (ω) = sin(ωM/2)/ sin(ω/2)

0

1

H
(ω

)

−π −π/2 0 π/2 π

0

10

20

W
(ω

)

164



Remember the modulation theorem

(X ∗ Y)(ω) =
1

2π

∫ π

−π
X (σ)Y (ω − σ)dσ
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Implicit frequency-domain convolution

N = 9,M = 2N + 1
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Implicit frequency-domain convolution

N = 9,M = 2N + 1
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Implicit frequency-domain convolution
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Implicit frequency-domain convolution
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Implicit frequency-domain convolution
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Implicit frequency-domain convolution

N = 9,M = 2N + 1

0

1

H
(ω

)

0

10

20

W
(ω

)

−π −π/2 0 π/2 π

0

1

H̄
(ω

)

166



Implicit frequency-domain convolution
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Mainlobe and sidelobes
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What if we change the window?

We want:

narrow mainlobe so that transition is sharp

small sidelobe so Gibbs error is small

short window so FIR is efficient

very conflicting requirements!
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Triangular window
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Rectangular vs Triangular Window

19-tap rectangular
19-tap triangular

π/2
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Window method: pros and cons

Pros:

extremely simple

minimizes MSE

Cons:

can’t control max error (Gibbs)

must know the impulse response (not easy for arbitrary frequency responses)
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Frequency sampling

Idea #2:

draw desired frequency response H(ω)

take M equally-spaced values of the frequency response over the [0, 2π] interval:

HM [k] = H(ωk), ωk = (2π/M)k , k = 0, 1, . . . ,M − 1

compute the inverse DFT: hM = IDFT {HM}

use the impulse response

h̄[n] =

{

hM [n] 0 ≤ n < M

0 otherwise
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Frequency sampling: desired response

−π −π/2 0 π/2 π
0

1
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Frequency sampling: from DTFT to DFT

get M samples over the [0, 2π] interval, so they are ready for the IDFT

bc bc bc

bc bc bc bc bc bc

bc bc

M = 11

−2π −3π/2 −π −π/2 0 π/2 π 3π/2 2π
0

1
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Frequency sampling: DFT samples

HM [k]

b b b

b b b b b b b

b b

0 1 2 3 4 5 6 7 8 9 10 11
0

1
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Frequency sampling: impulse response from IDFT

hM [n] h̄[n]

b

b

b

b

b

b

b

b

b

b

b

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b0
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Frequency sampling: what happens in the time domain

hM = IDFT {HM}

HM [k] = H

(

2π

M
k

)

, k = 0, 1, . . . ,M − 1
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Frequency sampling: what happens in the time domain

hM [n] =
1

M

M−1
∑

k=0

HM [k] e j
2π
M

nk

=
1

M

M−1
∑

k=0

H

(

2π

M
k

)

e j
2π
M

nk

=
1

M

M−1
∑

k=0

(

∞
∑

m=−∞

h[m]e−j 2π
M

k

)

e j
2π
M

nk

=

∞
∑

m=−∞

h[m]
1

M

M−1
∑

k=0

e−j 2π
M

(m−n)k
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a familiar result

M−1
∑

k=0

e−j 2π
M

(m−n)k =

{

M if m − n multiple of M

0 otherwise
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Frequency sampling: what happens in the time domain

hM [n] =

∞
∑

m=−∞

h[m] δ[(m − n) mod M]

=

∞
∑

m=−∞

h[n+mM]

sampling in the frequency domain results in periodization in the time domain
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Frequency sampling: impulse response from IDFT

h[n]

b b b b b b b b b b b b
b
b
b
b
b
b
b
b
b
b
b
b
b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b
b
b
b
b
b
b
b
b
b
b
b
b
b b b b b b b b b b b b

−33 −22 −11 0 11 22 33

0

181



Frequency sampling: impulse response from IDFT

h[n], h[n −M]
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Frequency sampling: impulse response from IDFT

. . . , h[n + 2M], h[n +M], h[n], h[n −M], h[n − 2M], . . .
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Frequency sampling: impulse response from IDFT

hM [n] =
∑

∞

m=−∞
h[n +mM]
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Frequency sampling: impulse response from IDFT

h̄[n]
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Frequency sampling: what happens in the frequency domain

what is the frequency response H̄?

hM : M-point inverse DFT of frequency samples HM with HM [k] = H
(

2π
M
k
)

h̄: finite-support extension of hM

DFT coefficients HM are known

use the DFT to DTFT result for finite-support sequences: Lagrangian interpolation
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DTFT of finite-support signals

smooth interpolation of DFT values:

H̄(ω) =
M−1
∑

k=0

HM [k]ΛM

(

ω −
2π

M
k

)

ΛM(ω) =
1

M

sin
(

ω
2M
)

sin
(

ω
2

) e−j ω
2
(M−1)
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Frequency sampling: frequency response

H̄

bb bb bb

bb bb bb bb bb

bb bb bb

−π −π/2 0 π/2 π
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Frequency sampling: pros and cons

Pros:

simple

works with arbitrary frequency responses

Cons:

can’t control max error
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