=PrL

COM-202: Signal Processing

Chapter 6.a: Discrete-Time Filters

Overview

m linear time-invariant systems in discrete time

filters for denoising

impulse response

m convolution

frequency response

modulation and demodulation

m ideal filters and approximations

linear time-invariant systems

A single-input single-output signal processing device

X H y

y = Hx

m all signals assumed to be infinite-length

m we need some restrictions on H to proceed

Linearity

H(OZX1+ﬁX2) :aHx1+ﬁHx2

m realistic requirement: sum of inputs leads to sum of outputs

m in practice systems are linear until they aren’'t (eg. volume too loud)

Linearity

Nonlinearity

Time invariance

HSkx = SkHx

m more explicitly:

xk =Sk x (xx[n] = x[n — K])
yk[n] = y[n — k] with y = Hx
Vi = Hxi

m realistic requirement: device should work the same way today and tomorrow

m analog systems exhibit “aging”, digital systems don't

Time invariance

Time variance

Linear, time-invariant systems

scalar
multiplication

Linear, time-invariant systems

y[n] = H(x[n], x[n — 1], x[n = 2],...,y[n —1],y[n —2],...)

with H(-) a linear function of its arguments

10

filtering by example

Filtering by example

Two fundamental filters:

m Moving average

m Leaky integrator

11

Typical filtering

scenario: denoising

T

0

T T T

100 200 300

T T

400 500

T

0

T T T

100 200 300

T T

400 500

N O

—4
—6

T
0 100 2

T T T T

00 300 400 500

Denoising by averaging

Hypotheses:

m noisy signal samples are true values plus random noise value: x = x. + 1

m noise values are random and with zero mean:

M-1
1
v Z nln— m] =0 for M large enough

m=0

m the signal is varying slowly (current value is very similar to previous values):

x[n— m] = x[n] for m reasonably small

13

Denoising by averaging

Idea: to remove the noise, replace each sample by the average of M consecutive samples:

1 M1 1 M1
MZ)?[n—m]:M (x[n — m] + n[n — m])
m=0 m=0
1 M1 1 M1
=¥ x[n—m]—i—MZn[n—m]
m=0 m=0
1 M1
N — x[n]+0
M m=0

I
=
=)

14

The Moving Average filter

1 M-1
y[n] = I Z x[n — m]
m=0

m each output value averages current and previous M — 1 input values
m average is recomputed at every step (hence “moving”)

m computational requirements:

e M —1 additions
e one multiplication (by 1/M)

e M —1 memory cells (to remember the previous input values)

15

A simple implementation (plain Python)

class MA:
def __init__(self, M):
pre-allocate storage for past input values
self.buf = [0.0] * (M-1)
self.norm = 1.0 / M

def filt(self, x):
compute the local average

y =X
for v in self.buf:
yt=v

y *= self.norm

update the buffer, eg: [a, b, ¢, d, el -> [x, a, b, ¢, d]
self.buf[1:] = self.buf[:-1]

self.buf[0] = x

return y

16

A better implementation using NumPy

import numpy as np

class MA:
def __init__(self, M):
self.buf = np.zeros(M)

def filt(self, x):
self .buf = np.roll(self.buf, 1)
self .buf [0] = x
return np.mean(self.buf)

17

Testing time!

let's test the algorithm on the sequence

x[n] = (~1)"uln]

18

Testing the implementation

> ma = MA(4)
> for n in range(20):
print(ma.filt((-1) #** n), end=’, ’)

> 0.25, 0.0, 0.25, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

19

Question

can you guess what the output is going to be for M = 57

> ma = MA(5)
> for n in range(20):
print(ma.filt((-1) ** n), end=’, ’)

>0.2, 0.0, 0.2, 0.0, 0.2, -0.2, 0.2, -0.2, 0.2, -0.2, 0.2, -0.2, 0.2,
-0.2, 0.2, -0.2, 0.2, -0.2, 0.2, -0.2,

Does it work for denoising? Let’s try it out!

clean signal
== denoised with MA

T
100

T
200

T T
300 400

T
500

Does it work for denoising? Let’s try it out!

clean signal

denoised with MA

T
100

T
200

T
300

T
400

T
500

Does it work for denoising? Let’s try it out!

clean signal

denoised with MA

T
100

T
200

T
300

T
400

T
500

Does it work for denoising? Let’s try it out!

clean signal

== denoised with MA

M =100

1

T
300

T
400

T
500

Performance analysis

m smoothing effect proportional to M
m number of operations and storage also proportional to M

m there appears to be a “delay” between input and output

N
N

Idea: updating the average

Suppose we know the local average at time n — 1,
can we compute the average at time n as an update of the previous value?

ylnl = f(y[n — 1], x[n])

Updating the average

M-1

vl = 55 > xln—m]

m=0

)/[n]:%[x[n]+x[n—1]+...+x[n—(M—2)]+X[n_(M_1)]]

y[n—l]:%[x[n—1]+X[n—2]+...+x[n—1—(M—2)]+X[n—1—(/\/]—1)]]

Updating the average

y[n—l]:%[x[n—1]+x[n—2]+...+x[n—l\/l+1]+x[n—M]]
y[n]:%[x[n]+X[n—1]+x[n—2]+...+x[n—M+1] }

vl = yln 1]~ yoxln— M)+ L xla]

but this still requires M memory cells...

Updating the average
Idea: use the approximation x[n — M] ~ y[n — 1]
m reasonable for “slow” signals, x[n — m] ~ x[n] for m small
m equivalent to “forgetting” (1/M)-th of the previous local average
yln=1] = (1/M)x[n = M] ~ (1 = 1/M)y[n — 1]

m “forgetting factor” A =1 —1/M, close to one for M large

vl =yl —1] — zixln — M) + 2ol
~ Ay[n—1]+ (1 = N)x[n]

The Leaky Integrator

ylnl = Ay[n = 1] + (1 = A)x[n]

m each output value is an update of the previous output
m the algorithm is recursive

m computational requirements:

e one addition
e two multiplications

e one memory cell to remember the previous output

A simple implementation

class LI:

def

def

__init__(self, lam):
self.buf = 0
self.lam = lam

filt(self, x):
self.buf = self.lam * self.buf + (1 - self.lam) * x
return self.buf

Does it work? Let’s try it out!

T T T

0 100 200

300

400

500

Does it work? Let’s try it out!

T T T

0 100 200

T

300

400

500

Does it work? Let’s try it out!

T T T

0 100 200

T

300

400

500

Does it work? Let’s try it out!

A=0.98

1

T T T

0 100 200

T

300

400

500

Performance analysis

m smoothing effect dependent on A
m number of operations and storage independent of A

m there also appears to be a processing “delay”

30

Leaky Integrator: why the name

A discrete-time “integrator” just accumulates input values:

We can rewrite the integrator recursively as

y[n] = y[n — 1] + x[n]

31

Leaky Integrator: why the name

To prevent “explosions” pick A <1

yInl = Ayln = 1] + (1 = A)x[n]

keep only a fraction \ of
the accumulated value
so far and forget
(“leak™) a fraction 1 — A

add only a fraction 1 — A
of the current value to
the accumulator

the impulse response

Linear, time-invariant systems

’H(axl—i-ﬂxz) = aHxy + 8 Hxo

HS*x = SKHx

33

The situation so far

m we “designed” two filters algorithmically

m both algorithms are of the form

N—-1 M-1
ylnl = awyln—kl+) bex[n — K]
k=1 k=0

e moving average: N =1, by =1/M
e leaky integratorr M =1, N=2, a1 =\ bp=1— A
m we were able to find the coefficients intuitively...

m ... but we can't use intuition for more complicated filters

34

The path to filter design

m LTI systems are fully described by their impulse response
m once we know the impulse response we can implement the filter via convolution
m the DTFT of the impulse response describes how a filter works in the frequency domain

m filter design starts from the frequency domain and finds the coefficients of the algorithm

35

Impulse response

h="%Hé

Fundamental result: impulse response fully characterizes the LTI system!

36

Every signal is a linear combination of atomic time elements

[e.e]

x= > x[k]dy,

k=—00

5y =8%6
1 n=k

Seln] = o[n — k] = {0 o

37

Ises

ime pu

sum of t

Time domain

443

362

26

140

T T
* ~
o O
o O
o <
——1} ™
o N
@ —
e O
| |
< AN O
T T
® ~
o O
9 O
o <
o ™M
*—
o —i
e O
| |
< N O
T T
¢~
o O
9 O
o <
o ™M
o N
o— —i
e O
| |
< AN O
T T
® ~
e O
o O
o <
o ™M
o N
@ —
- O
| |
< AN O

267

366

465

544

— ~
o O
o O
o <
[2o
e N
@ —i
e O

* ~
—+F ©
[1)
¢ <
¢ ™
[3K
¢ —
[=)

[
o O
&—1 O
o <
[2o
e N
@ —i
e O

* ~
¢ ©
¢ v

- ™M
e N
@ —i
e O

38

Filter’s output from impulse response

Hx =H < Z x[K] S_k5> using linearity...
k=—o0
= Z H(x[K] S_k6) using linearity...
k=—0o0
= Z x[k] S kHS using time invariance...
k=—o0

39

0

¢
-2-10 1 2 3 4 5

2 n=0

3 =1
x[n] = "

1 n=2

0 otherwise

40

Example

mx=20+301+
m we know the impulse response h = HJ;

m compute y = Hx exploiting linearity and time-invariance

41

Example

x = H{26 + 35716 + S26}

= 2HS +3S YHS + ST2HE

=2h+3S8'h+S8h

x[n] = 2h[n] 4+ 3h[n — 1] + h[n — 2]

42

Example

{[[TITTTryy...,...

2h

5

10

15

43

Example

35S~ th

{[ITTTI?79o?.....

5

10

15

20

43

Example

0l o eooose [TTTTTT??oo..?....?-----

e

-5 0 5 10 15 20 25

Example

y

5“““”‘[?9"......?

10 15 20 25

43

Convolution

y = Hx

= > x[k]S*h

k=—o0

=xx*h

algorithmic expression for the individual output sample

o

ylnl = x[klh[n — K]

k=—o0

44

Convolution algorithm

o0

ylnl = Y x[k]hln — K]

k=—o00

The recipe:

m time-reverse h

Ingredients: m at each step n (from —oo to c0):

B a sequence X e center the time-reversed h in n

m a second sequence h (i-e. delay by n)
e multiply it by x element-wise

e sum all the products

45

Same example, different perspective

0

¢
-2-10 1 2 3 4 5

2 n=0

3 =1
=47 "

1 n=2

0 otherwise

46

Convolution example

=3 | i
X
0=~===-===T{T AAAAAAAAAAAAAAAAAA
¢ ¢ T —4—0—0—0— 90009000000
-8 —4 0 4 8 12 16 20
x 1F m
I
s 1]
< OTTT —0—0—0—9—0—0-—0-—90—0-—0-00-0-0-0-9—0-0-0-90—00090
-8 -4 0 4 8 12 16 20
6
= 4 .
> 2 F 1
0 o900 T T T T T T
-8 —4 0 4 8 12 16 20

47

Convolution example

x L a
X
0=~===-===T{T AAAAAAAAAAAAAAAAAA
¢ ¢ 1 ML SR SRS S A AR Al Sh AR Al S S S S 1
-8 —4 0 4 8 12 16 20
3 1F]
I
S 11
< OTTTT ——0—0—9—0—0—0—9—0-0-0-9—0-0-0-0—0-0-0-90—0-009
-8 —4 0 4 8 12 16 20
6
= 4 .
> 2 b
0 —o—9—o-—0-09- T T T T T T
-8 —4 0 4 8 12 16 20

47

Convolution example

x L a
X
0=~===-===T{T AAAAAAAAAAAAAAAAAA
¢ ¢ 1 ML SR SRS S A AR Al Sh AR Al S S S S 1
-8 —4 0 4 8 12 16 20
3 1F]
I
S 1]
< 0??TTT‘ 0—90—0—0—0—90-—0—0-0—9—0-0-0-0—0-0-—0-90-0-00-9
-8 —4 0 4 8 12 16 20
6
= 4 .
> 2 E
0 —o—9—o-—00900o— T T T T T
-8 —4 0 4 8 12 16 20

47

Convolution example

x L a
X
0=~===-===T{T AAAAAAAAAAAAAAAAAA
¢ ¢ 1 ML SR SRS S A AR Al Sh AR Al S S S S 1
-8 —4 0 4 8 12 16 20
3 1F]
I
S 1]
< 0’?TTTT‘ 9—0—0—0—9—0-0-0-90-0-0-0-90-0-0-90—0009
-8 —4 0 4 8 12 16 20
6
= 4 .
> 2 E
0 —o—9—0-—00-90-0o T T T T T
-8 —4 0 4 8 12 16 20

47

Convolution example

x L .
X
0=~===-===T{T= AAAAAAAAAAAAAAAAA
¢ ¢ \ LSRR A S AR AN S S
-8 —4 0 4 8 12 16 20
3 1F]
I
£ 1]
< 0’???TTT —0—0—0—9—0—0—0—9—0—0—0—90—0—0—0—9—0—0—0—¢
-8 —4 0 4 8 12 16 20
6
= 4r]
> 2 -
0=?===?===T T T T T T
-8 —4 0 4 8 12 16 20

47

Convolution example

= - .
X
0=~===-===T{T= AAAAAAAAAAAAAAAAA
¢ ¢ \ LSRR A S AR AN S S
-8 —4 0 4 8 12 16 20
3 1F]
' 1
<
< 0'?’?TTTTT‘ —0—9—0—0—0—9—0—0—0—9—0—0—0—9—0—0—0—9¢
-8 —4 0 4 8 12 16 20
6
= 4 I i
~ 2+ s
0=?===?===T T T T T T
-8 —4 0 4 8 12 16 20

47

Convolution example

x[k]

h[n — k]

y[n]

oON PO

—§—0—0—0—9—0—0—0—90— 0009000 9¢

4 8 12

16 20

e 00T T | | ||| 0 ¢oeocoe00-0-9-0-0-0-0-0-0-0-0
T T \ 9000900090000
-8 —4 0 4 8 12 16 20
=?===?===TII T T T T T
-8 —4 0 4 8 12 16 20

47

Convolution example

x[k]

h[n — k]

y[n]

oON PO

—9—0—0—0—9—0—0—0

-8 —4

T —§—0—0—0—9—0—0—0—90— 0009000 9¢

4 8 12

16 20

.,oo???TTTTT[

e
-8 —4 0 4 8 12 16 20
=?===?===TIITN T T T T
-8 —4 0 4 8 12 16 20

47

Convolution example

x[k]

h[n — k]

y[n]

oON PO

T —§—0—0—0—9—0—0—0—90— 0009000 9¢

4 8 12

16 20

: f t —
-8 —4 0 4 8 12 16 20
=?===?===TIITT T T T T
-8 —4 0 8 12 16 20

47

Convolution example

x[K]

h[n — k]

y[n]

oON PO

—9—0—0—0—9—0—0—0

-8

—4

T —§—0—0—0—9—0—0—0—90— 0009000 9¢

0 4

8 12

16 20

-t x { T
-8 —4 0 4 8 12 16 20
=;===;===TIITTT . : : ‘
-8 —4 0 8 12 16 20

47

Convolution example

x[k]

h[n — k]

y[n]

oON PO

T —§—0—0—0—9—0—0—0—90— 0009000 9¢

0 4

8 12

16 20

©—0—0—0—0—0—0—&-

©—0—0—0—0—8-

? T T \ 90— 0—9—0—0—0—9—o¢
-8 —4 0 4 8 12 16 20
=?===?===TIITTTT T T T T
-8 —4 0 8 12 16 20

47

Convolution example

=3 | i

) 0 =~===-===T{T=~===-===A===~===-
¢ ¢ 1 ¢ ¢ ¢ ¢ ¢
-8 —4 0 4 8 12 16 20

X 1F]

I

s 1]

< 0 -?-..?.”??TT‘T s

-8 —4 0 4 8 12 16 20

A S| I T T T T

-8 -4 0 4 8 12 16 20

y[n]
ON PO
T T
—.
0
—eo
—e
)
o
—.
o

L1

47

Convolution example

x[k]

h[n — k]

y[n]

oON PO

T —§—0—0—0—9—0—0—0—90— 0009000 9¢

0 4 8

12

16 20

©—0—0—0—0—8-

©—0—0—0—0—8-

¢ ; T 000900090009
8 -4 0 4 8 12 16 20
......... TIITTTTT? i
90009000 1 T T T
-8 —4 0 4 8 12 16 20

47

Convolution example

x[k]

h[n — k]

y[n]

oON PO

—9—0—0—0—9—0—0—0

-8

—4

T —§—0—0—0—9—0—0—0—90— 0009000 9¢

0 4 8

12

16 20

©—0—0—0—0&-

©—0—0—0—0—8-

¢ y T B A S S A ¢
8 -4 0 4 8 12 16 20
......... TIITTTTT?? 1
90009000 1 T T T
8 —a4 0 4 8 12 16 20

47

Convolution example

x[k]

h[n — k]

y[n]

oON PO

T —§—0—0—0—9—0—0—0—90— 0009000 9¢

0 4 8

12

16 20

©—0—0—0-

©—0—0—0—0—8-

g t T 1 900900 oo
-8 4 0 4 8 12 16 20
......... TIITTTTT??Q]
90009000 1 T T T
—8 —4 0 4 8 12 16 20

47

Convolution example

4
SN 1] %
o Tc;:cc;c::;::c;:::;
-8 —4 0 4 8 12 16 20
X 1F]
I
s 1]
< 0 e;;--?.-.?.’,??TTT‘ —
-8 -4 0 4 8 12 16 20
6
e i *
— > | i
> 0 Leo-9-oo-o0-9oo-e T TTTTT?,,.
000900 1 T T T T
-8 —4 0 8 12 16 20

47

Convolution example

4
x | _
x 11,
03;333?333‘ —9—0—0—0—9—0—0—0—90—0—0—09— 0009
-8 —4 0 4 8 12 16 20
x 1F m
I
< 1]
< Oe?---?.--?...???TTT ———————
-8 —4 0 4 8 12 16 20
6
: i i ~
2+ .
> 0Le-ooooo0oeoe T TTTTTT?!QQ
000900 1 T T T T
-8 —4 0 8 12 16 20

47

Convolution example

=3 | i
) 0 =~===-===T{T=~===-===A===~===-
¢ ¢ 1 ¢ ¢ ¢ ¢ ¢
-8 —4 0 4 8 12 16 20
X 1F]
I
s 1]
< 0 3;3-;---.?...?’??TTT . C——
-8 -4 0 4 8 12 16 20
6
s i ~
2k —
> 0Le-ooooo0oeoe T TTTTT??’QQ.

A S| I T T T T

-8 -4 0 4 8 12 16 20

47

Convolution example

=3 | i
) 0 =~===-===T{T=~===-== ----------
¢ ¢ 1 ¢ ¢ ——0——0—p—0——¢
-8 —4 0 4 8 12 16 20
X 1F]
I
s 1]
< 0 3?33-?--..-...’,,TTTT‘ o —
-8 -4 0 4 8 12 16 20
6
s i ~
2k —
> 0=-===-==-T TTTTT?”Q..-
h hd | I T T T T

-8 -4 0 4 8 12 16 20

47

Convolution example

x[k]

h[n — k]

y[n]

—§—0—0—0—9—0—0—0— —§—0—0—0—9—0—0—0—90— 0009000 9¢

-8 —4 0 4 8 12 16 20
1F [b
3-333----.--.0099??TTTTT
0 ¢ * ¢ 1 oo
-8 —4 0 4 8 12 16 20
6
| []]
§k=-===-===T TTTTT?”Q..--]
® * T 1 T T T T

-8 -4 0 4 8 12 16 20

47

Convolution example

x[K]

h[n — k]

y[n]

—§—0—0—0—9—0—0—0— —§—0—0—0—9—0—0—0—90— 0009000 9¢

-8 —4 0 4 8 12 16 20

oON PO
T

—9—0—0—0—9—0—0—0— T

T t
-8 -4 0 4 8 12 16 20

47

Convolution example

=3 | i
) 0 =~===-===T{T=~===-===A===~===-
® * \ ® * * ® *
-8 —4 0 4 8 12 16 20
X 1F]
I
B 1]
< 0 =$===?3-A?-..?...?,,TITT . —
-8 —4 0 4 8 12 16 20
6
e i |
2k -
> 0 Lo9o-o-o-0-9-0-0-o T TTTTT?”Q..-- Py
0009000 1

T t
-8 -4 0 4 8 12 16 20

47

Convolution example

x[k]

h[n — k]

y[n]

—§—0—0—0—9—0—0—0— —§—0—0—0—9—0—0—0—90— 0009000 9¢

-8 —4 0 4 8 12 16 20
1F [b
03;===?=e-?--.?....Q,??TTTTT oo

-8 —4 0 4 8 12 16 20

oON PO
T

40— 0—0—0—0—0 1 T T T T

-8 -4 0 4 8 12 16 20

47

Convolution example

x[k]

h[n — k]

y[n]

—§—0—0—0—9—0—0—0— —§—0—0—0—9—0—0—0—90— 0009000 9¢

-8 —4 0 4 8 12 16 20
1F I~
0=-===-333-----....099??TTTTT °

* * ¢ * T T \ *

-8 —4 0 4 8 12 16 20
6
| il *
§k=-===-===T TTTTT?,,...-..-.-]

h hd T I T T T T

-8 -4 0 4 8 12 16 20

47

Convolution example

x[k]

h[n — k]

y[n]

—§—0—0—0—9—0—0—0— —§—0—0—0—9—0—0—0—90— 0009000 9¢

-8 —4 0 4 8 12 16 20
1F Y
0=-===-===-----..--0099’TTTTTT

hd h hd T 1 1 1 1

-8 —4 0 4 8 12 16 20
6
| il *
§k=-===-===T TTTTT?,,........-AA

h hd T I T T T

-8 -4 0 4 8 12 16 20

47

Convolution properties

m linearity and time invariance (by definition)
m commutativity: x *h = h % x

m associativity for absolutely- and square-summable sequences: (x * h) *w = x* (h * w)

Xx ——> hxw ——y

48

Moving Average: impulse response

M—1
bln) = 7 > oln — K
k=0

{/I\/I for0<n<M

otherwise

x[n] < &[n]

49

Moving Average: impulse response

1/M | 90¢

©-0-0-0-0-0-0-0-0-0-0-0-

0-0-0-0-0-0-0-0-0-0-0-&

50

Leaky integrator: impulse response

ylnl = Ayln = 1]+ (1 = A)d[n]

m y[n] =0foralln<0

m y[0] = Ay[-1] + (1 = A)5[0] = (1 — A)
= y[1] = Ay[0] + (1 = A)J[1] = A(1 - A)

m y[2] = Ay[1] + (1= A)[2] = A3 (1 -)
m y[3] = Ay[2] + (1= A)3] = A3(1 -)

51

Leaky integrator: impulse response

h[n] = (1 — A)A" u[n]

N IR "{{Hmmﬂmmm,,,..

0 15 30

Filter types according to impulse response

m Finite Impulse Response (FIR)
m Infinite Impulse Response (IIR)
m causal

B noncausa

53

FIR

m impulse response has finite support

m only a finite number of samples are involved in the computation of each output sample

54

FIR (example)

1/M

Moving Average filter

b ¢

55

IR

m impulse response has infinite support

m a potentially infinite number of samples are involved in the computation of each output
sample

m surprisingly, in many cases the computation can still be performed in a finite amount of
steps

56

IIR (example)

Leaky Integrator

X[lTTTT???Q......?

15

57

Causal vs Noncausal

m causal:
e impulse response is zero for n < 0

e only past samples (with respect to the present) are involved in the computation of each
output sample

e causal filters can work “on line” since they only need the past
® noncausal:
e impulse response is nonzero for some (or all) n <0

e can still be implemented in a offline fashion (when all input data is available on storage, e.g.
in Image Processing)

58

Causal example

Moving Average filter

Noncausal example

Zero-centered Moving Average filter

Causal and Noncausal Moving Average

6 M =100 -
4+ _
o b i
0

" L/ |

_4 i

-6+

T T T T
0 100 200 300 400

61

Processing delay: intuition

Processing delay: intuition

Processing delay: intuition

Processing delay: intuition

Processing delay: intuition

We assumed the signal is smooth; if it is linear, i.e. x[n] = an,

1 M—-1
Yl = 3 3 xln =4

M—

> a(n-

k=0

-1 M—-1
i

=0 k=0
- M [Mn — M(M —1)/2]
= a(n — (M —1)/2)

[

- (M-1)/2] < delay of (M —1)/2 samples (assume M odd)

|_.\

EIH

o |

= X|nh

63

Processing delay: intuition

What about a slow sinusoid of the form x[n] = cos(won)?

1 M-1
Yl = 5 > cosleo(n — k)
k=0

1 M—1 M—1
{ erJo(n k) } — Re {ejwon Z e—jwok}
k=0 k=0

1 » n]_ _ e_JUJOM 1 - ne_jUJOM/z [ejWQM/2 _ e—jWOM/2]
= i Re { e/«o 1 _ e Jjwo } = i Re {ef 0 e—jwo/2 [ejwo/2 — e—jw0/2]
_ sin (M) jwon ,—jwo(M—1)/2
~ Msin (%) Re{e’ ¢ }

— c(wo, N) cos <w0 <n _ %)) < x[n — (M —1)/2]

64

Processing delay

m all causal filters introuduce a processing delay

m processing delay is best understood in the frequency domain

65

the frequency response

Filtering a complex-valued oscillation

e,: complex exponential sequence at frequency w

e,[n] = &*n

e, — > H [—> 7

66

A remarkable result

e, *h=hxe, convolution is commutative
(o]
= > hKS *e, 5 Feu = e ke,
k=—o00
o0
=e, Y h[kle ¥k
k=—o00

= H(w)e,

67

A remarkable result

m complex exponentials are eigensequences of LTI systems: He, = Ce,,
m scalar factor C is DTFT of impulse response at input frequency

m LTI systems cannot change the frequency of sinusoidal inputs

68

Magnitude and phase

If H(w) = Ae/?, then

(He,)[n] = Aeilwn+0)

amplitude: phase shift:
amplification (A > 1) delay (6 < 0)
attenuation (0 < A < 1) advancement (6 > 0)

69

Filters in the frequency domain

how do filters change the spectrum of an input signal?
DTFT {xxh} =?

Intuition:

m we know how filters modify a sinusoid
m signals can be expressed as a linear combination of sinusoids

m by linearity...

70

The convolution theorem

h y =hxx

DTFT
— X

PEALLENT

DTFT
+——Y

71

The convolution theorem

[e.e]

Y(w)= > ylnle "

n=—oo

[ee]

= Y > x[klhn— Kkle " yinl = > x[klh[n - K]

n=—00 k=—00 k=—o0

= i i x[K]h[n — k]e I«(n=k) g=jwk

n=—00 k=—00

= > x[k]e Ik i h[n — k]e J«(n=k)

k=—00 n—=—oo

The convolution theorem

y=hxx
Y=HX

73

Frequency response

y=hxx
Y=HX

Two effects on the spectrum of the input signal:
m magnitude: amplification (|H(w)| > 1) or attenuation (|H(w)| < 1)

m phase: overall delay and “shape” change

4

Moving Average: frequency response

hin] = (u[n] = u[n — M])/M

1/M* 20000006000

Moving Average: frequency response

M1,
Hw) = e
n=0

11—edM

M 1—eiv
1 e_j% [ef'% — e‘j%}

M- 35 [df et

_ 1sin(S5M) jeqmon
M sin (%)

76

Moving Average: magnitude response

sin(%M)

|H(w)| = % sin(2)

|H(w)]

w/2

v

Moving Average: magnitude response

[H(w)| = 7

sin(3)

|H(w)]

v

Moving Average: magnitude response

|H(w)]

1F

[H(w)| = 7

sin(3)

M =100

v

Denoising revisited

100

T

200

300

400

500

78

Denoising revisited

100

T

200

T

300

400

500

78

Denoising in the frequency domain

time frequency
6 1 1r
4 _
21 _
0
ok
4 F i
76 - .
T T T T T T 0 T T
0 100 200 300 400 500 —T —7/2 0
6 i 1
0
76 - .
T T T T T 0 e |

T
0 100 200 300 400 500 - —7/2 0

Denoising in the frequency domain

/2

80

Denoising in the frequency domain

80

Denoising in the frequency domain

80

Denoising in the frequency domain

I A i

M\"W*’M\&_M

/2 ™

80

Denoising in the frequency domain

80

Denoising in the frequency domain

80

What about the phase?

Assume |H(w)| =1
m zero phase: ZH(w) =0

m linear phase: ZH(w) =dw, d € R

m nonlinear phase

81

Zero phase

If LZH(w) = 0:
m Hw)eR

m impulse response must be real and symmetric
m no causal filter can have a zero phase response

m a zero-phase filter has no processing delay

Noncausal moving average

Zero-centered Moving Average filter

Causal vs Noncausal Moving Average

6 M =100 -

4+ _

o b i

0
" L/ |
_4 i
-6+

T T T T
0 100 200 300 400

84

Phase and signal shape

1 2
X[n] = 5 sin(won) + COS(QwOn) wo = %

_
T

LANNAN AN DAL
VY

68

85

Phase and signal shape: linear phase offset

1 8
x[n] = > sin(won + 6p) + cos(2won + 26o) 0o = ?ﬂ

[y

VAN AL AN
Ly v

0 28 56 84 112 140 168

86

Phase and signal shape: nonlinear phase offset

1
x[n] = 5 sin(won) + cos(2wgn + 26p)

IVITNIPNITYIVS
ARATATAATARTAY

T T T T T T T

0 28 56 84 112 140 168

87

Linear phase

m y[n] = x[n — d]
B Y(w) = e X(w)
m H(w) = e Jwd

m linear phase response

—_— z —»y:S_dx

simple delay

88

Linear phase systems

A linear phase system can be split as the cascade of

m a zero-phase system with frequency response A(w) € R
m a delay

m we will see later how this works if d is not an integer

x —— Aw) delay by d

—

89

Moving Average is linear phase

i sin (%M) M-

M sin(3)

H(w) =

The processing delay introduced by a causal Moving Average is (M — 1)/2 samples

90

Noncausal moving average

he[n] = h[n+ (M —1)/2]

He(w) = &7 % H(w)

1 sin (YM)
— = R
M sin (%) <

91

Leaky integrator: frequency response

h[n] = (1 — A)A" u[n]

NS HHHﬁmnnnm,,,,m.

0 15 30

Leaky integrator: frequency response

Hw) — 1=

Finding magnitude and phase require a little algebra...

1— e v

93

Leaky integrator: frequency response

Recall from complex algebra:
1 a—jb
a+jb a%+ b2

so that if x = 1/(a + jb),

a2 4 b2

/x=tan! [—é]
a

94

Leaky integrator: frequency response

1-A
H =
() (1 —Acosw) — jAsinw
so that:
HeP = 0

1—2\cosw + A2

Asinw
ZHWw)=tan ! | ————
() =tan [I—Acosw]

95

Leaky integrator: magnitude response

[H(w)]

—7/2

/2

96

Leaky integrator: magnitude response

[H(w)]

A =0.95

—7/2

/2

96

Leaky integrator: magnitude response

[H(w)]

A=0.98

—7/2

/2

96

Leaky integrator: phase response

w/2

ZH(w)

—m/2

/2

—7/2

97

Leaky integrator: phase response

w/2
A=0.95
3
Ry
N
—m/2 T T
—7/2 /2

97

Leaky integrator: phase response

w/2
A=0.98
3
Ry
N
—m/2 T T
—7/2 /2

97

Phase is sufficiently linear where it matters

Il

0 T T T
-7 —7/2 0 /2 ™

[H(w)]

/2

ZH(w)
p

_7T/2 T T T

Modulation and demodulation

Classifying signals in frequency

Three broad categories according to where most of the spectral energy resides:

m lowpass signals (also known as “baseband” signals)
m highpass signals

m bandpass signals

99

Lowpass

example

X (w)]

—7/2

/2

100

Highpass example

X (w)]

101

Bandpass example

X (w)]

—7/2

/2

102

Sinusoidal modulation

DTFT {x[n] cos(wen)} = DTFT {%ejwfnx[n] + %e‘jwfnx[n]}
= 2 IX(— we) + X(w +)]

m usually x[n] baseband

m w. is the carrier frequency

103

Example

104

Example

We

104

Example

-

104

Example

We

104

Again, explicitly showing the periodicity of the spectrum

1
c T 27 3 A7

105

Careful when the modulation frequency is too large!

A

106

Careful when the modulation frequency is too large!

—T We 0

We T

107

Sinusoidal modulation: applications

m voice and music are lowpass signals
m radio channels are bandpass, in much higher frequencies
m modulation brings the baseband signal in the transmission band

m demodulation at the receiver brings it back

108

Demodulation

y[n] = x[n] cos(wcn)

x'[n] = 2y[n] cos(wcn)

Y(w) = % [X(w — O.)c) + X(OJ + Wc)]
X'(w) = Y(w—we) + Y(w+we)

= X() + 5 [X(w — 200) + X + 200

109

Demodulation

X(w)

110

Demodulation

110

Demodulation

—47 —37 -2 —m-wo 0 wo 7

Demodulation

n (- T ([T I [
—47 —37 -2 —m-wo 0 wo 7

Demodulation

X' (w)

LA

|

wo wo

WAL

AL

—47

—37

—27

—m-wo 0 wo 7 27

3T

47

111

Demodulation

47

111

Demodulation

m we recovered the baseband signal exactly...
m but we have some spurious high-frequency components

m how do we get rid of those?

112

Demodulation with lowpass filtering

X' (w)

113

Demodulation with lowpass filtering

X' (w)

/\

/\.

-7 0

113

Demodulation with lowpass filtering

X(w)

113

The modulation theorem

The convolution and modulation theorems

another example of time-frequency duality:

x*y<ﬂ>XY

xyﬁ)X*Y

114

What is the convolution of DTFTs?

in (2(2) in Lo([—,)

o

(xy) = > x*[kly[]

1 (" .
k:(;oo (X, Y) = E/_,TX (0)Y(o)do
(< Ry) = Y x[Kly[-K] (RY)(0) = Y(—0)
o (S™“RY)(0) = Y(w - 0)
(x*,8T"Ry) = > x[kly[n— K] (X % Y)(w) = (X*,ST“RY)
k=—o0 1 -
o0 = — X(o)Y(w—o)do
(xxy)ll = > x[Klyln— K] 2m J s

k=—o0

115

Modulation theorem

w = XYy

W=XxY

W(w) = % ' X(0)Y(w —o)do

—T

116

Modulation theorem: proof

Let's compute the inverse DTFT of W = X % Y at index n:

1 s

jwn _ 1 T T _ jwn
| Weends = oo /_ | XY - o) rdad

1 T))
— - on j(w—o)n
L /_7r g X(0)Y(w—0)e?"e dodw

1 /" ; 1 (/7 :
_ on o (w—0o)n
| X(o)e?"do 5 / Y(w—o)e dw

—Tr

= x[n] y[n]

117

Sinusoidal modulation and Dirac deltas

X(w)

118

Sinusoidal modulation and Dirac deltas

Y (w) = DTFT {x[n] cos(won)}

118

Sinusoidal modulation and Dirac deltas

DTFT {x[n] coswon} = X(w) * %[S(w — wo) + 6(w + wo)]

1 ™

e X((,u—0‘)8(0‘—u,)o)da—{—i " X(w—a)g(a—i—wo)da

4 J_ 47

—Tr

- % [X(w — wo) + X (w + wo)]

Dirac deltas must always be inside of an integral!

119

Modulation, frequency beatings, and tuning a guitar

Tuning a guitar

Problem (abstraction):

m reference sinusoid at frequency wg
m tunable sinusoid of frequency w

m make w = wg “by ear”

The procedure

bring w close to wqp (easy)
when w = wq play both sinusoids together

trigonometry comes to the rescue:

x[n] = cos(wgn) + cos(wn)

<w0+w > <
= 2cos n | cos

~ 2 cos(A,,n) cos(won)

wo —w

2

)

What we hear when we tune

x[n] = 2 cos(A,,n) cos(won)| 2 cos(A,n) |- | cos(won)

= “error’ signa|\)

m modulation at wy

m when w = wy, the frequency of the error signal is too low to be heard; modulation brings
it up to hearing range and we perceive it as amplitude oscillations of the carrier frequency

N

In the time domain...

I I I
0 100 200 300

wo=2r-0.2, w=2r-0.22, A, =2r-0.0100

In the time domain...

I I I
100 200 300

wo=2r-0.2, w=2r-0.22, A, =2r-0.0100

In the time domain...

I I I
0 100 200 300

wop=2m-0.2, w=2r-021, A, =2r-0.0050

In the time domain...

I I I
0 100 200 300

wo=2m-0.2, w=2r-0.205 A, =27-0.0025

In the time domain...

I
0 100

wo = 27 - 0.2,

T
200

-0.201,

I
300

A, =27 -0.0005

123

Filter classification

Impulse response

h="Hé

y=hxx

Filter classification based on impulse response

m Finite Impulse Response (FIR)
m Infinite Impulse Response (IIR)

m causal/noncausal

125

Frequency response

H = DTFT {#&}
Y = HX

Magnitude response

Filters act as a multiplicative “mask” in the frequency domain:

m stopband: region where |H(w)| ~ 0

m passband: region where |[H(w)| > 1

filters are classified according to passband location

Filter classification based on frequency response

types of magnitude response:

m Lowpass
m Highpass
m Bandpass

m Allpass

types of phase response:

m Linear phase

m Nonlinear phase

128

Ideal filters

What is the best lowpass we can think of?

H(w)

129

Ideal lowpass filter

H(w) 1 for |w| < we
w) =
0 otherwise

design parameter: cut-off frequency w,

perfectly flat passband with unit amplitude
m infinite attenuation in stopband

m zero-phase (no delay)

(2m-periodicity implicit)

130

Ideal lowpass filter: impulse response

h = IDTFT {H}

hn] = - / " H(w)e duw

2T J_.

1 [9 .
= — e“"dw

21 J_ .

1 ejan _ e—jwcn
~ 2j
_sinwen

™n

131

Ideal lowpass filter:

impulse response

we=7/5

we/m

[[\

0 ket 7113 | | 71138 AT
QLI b g) g AL~
o7 \\ y \ ‘l i
T T T T T
—20 —10 0 10 20

132

Ideal lowpass filter: impulse response

we/m
H

T T

T T T
—100 —50 0 50 100

Ideal lowpass filter: impulse response

we/m

T T T
—800 —600 —400 —200 0

T
200

T
400

T
600

800

134

The sinc and rect functions

The sinc-rect pair:

(1 X <12
rect(x) = {0 x| >1/2

X

dncx) — sin(mx) x40
1 x=0

(note that sinc(m) = 0 for m € Z\ 0)

The ideal lowpass in canonical form

rect (

w

,DTFT We .

2w,

)

A

> |— SINC

(

We
—nN

136

Example

Ideal lowpass filter with cutoff frequency w. = 7/3:

H(w) = rect <#>

h[n] = %sinc (g)

137

Example
We =
1F
3
T
0 ‘ ‘
Ia o/ —7/3 /3 2r/3 T
1/3 |
=
=
‘ T
—20 10 i) ’ ’

T
-30

138

Time-frequency duality

Always remember:

narrow in frequency = wide in time

wide in frequency = narrow in time

w DTFT. Wc .
rect <—— —sinc
2w T

width in frequency: 2w,
width in time: width of main lobe
first zero crossing: n = m/w¢ (since sinc(1) = 0)

width in time: o« 1/w,

g

c
—n
™

)

139

Wide bandwidth

we =2m/3
1 -
3
Ry
0 T T T
-7 —2m/3 —m/3 0 /3 2r/3
we/m
=
=
0
T T T T T T
-30 -20 -10 0 10 20

140

Narrow bandwidth

we =m/10
1]
3
iy
0 | | T | |
-7 —2m/3 —m/3 0 /3 2r/3 T
we/m i
=
Ny
0 et e St
T T T T T
—-30 —20 —10 0 10 20 30

141

To help your memory

m frequency domain is easy to remember: H(w) = rect (2%%)

m time domain is a sinc of the form h[n] = asinc(an)

m to find a:
e remember sinc(0) = 1, so a = h[0]
o use the inverse DTFT formula for n = 0: h[0] = 5= [T H(w)dw

e in this case, h[0] = & [T H(w)dw = (2wc)/(27)

e a=uw./7

142

From the ideal lowpass...

H(w)

—We

We

143

. to the ideal highpass

H(w)

We

144

Ideal highpass filter

th(w) = {

1 form>|wl>w
- jw] 2 we (2m-periodicity implicit)
0 otherwise

Hpp(w) =1 = Hjp(w)

hpp[n] = 0[n] — %sinc (%n)

145

Ideal bandpass filter

H(w)

—wo

0 wo— we

wo

wo + We

s

146

Ideal bandpass filter

—We

We

147

Ideal bandpass filter

147

Ideal bandpass filter

—wo

147

Ideal bandpass filter

pr(w) = {

1 for |w=+ <
lw _ wol < we (2m-periodicity implicit)
0 otherwise

hpp[n] = 2cos(w0n)% sinc (%n)

148

The bad news

the ideal lowpass is... ideal: it cannot be implemented in practice

149

Why we can’t implement an ideal filter (1)

The impulse response h[n] = “ sinc (£2n):
m has two-sided infinte support

m cannot be made causal

computing a single output value requires knowing the entire input (i.e. knowing the future)

by contrast, note that the impulse response of computable IIR filters
(such as the Leaky Integrator) can always be made causal

150

Why we can’t implement an ideal filter (1)

If x has infinite support

il = (o)l = 25 S ik sine (2K)

k=—00

involves an infinite number of terms, i.e. it's not computable in finite time.

151

Why we can’t implement an ideal filter (111)

What if x has finite support (say from 0 to N —1)?

N-1 k

yln] = (h e x)n] = < k}_jox[k] sinc (%)

can be computed but y[n] will be nonzero for all n starting at —oo;
again, we can’'t compute this in finite time

152

Why we can’t implement an ideal filter (1V)

But can't we come up with an algorithm like we did for the Leaky Integrator?
After all, the LI has an infinite impulse response!

Unfortunately no computable algorithm will yield a rect-shaped filter.
We will see why in the upcoming lectures about rational transfer functions.

153

FIR approximations of ideal filters

Overview:

m Impulse truncation
m Window method

m Frequency sampling

154

How can we approximate an ideal lowpass?

Idea #1:

m pick wc
m compute ideal impulse response h
m truncate h to a finite-support h

m h defines an FIR filter, which we can always implement

155

Approximation by truncation

FIR approximation of length M = 2N + 1:

We . (We
— — <
i ﬂsmc(ﬂn) In| <N
h[n] =

0 otherwise

156

Why this looks like a good idea

minimization of MSE (norm in Lp([—m,7])) between ideal filter and its approximation:

_ 1 [_
MSE = ||H — H|]? = g/ |H(w) — H(w)Pdw

—T

using Parseval’s theorem
MSE = ||[H — H|?
= ||h —h|? (norm in (5(Z))

= > [hln] - Aol

n=—oo

157

Remember the conservation of energy

norm in {y(Z) norm in Ly([—7, 7])

IxIf* = [1X[}?

> WP =5 [IX@)Pd

n=—0o0

[sine (20 = 52 [
—sinc | —n = —
T T 2T

-

rect w
2w,

158

Keep the coefficients around n =0

let | = {ng,n1,...,np} the set of indices of the coefficients we keep:
MSE= > [a[n] = h[n]* = D> [|h[n]|* + |h[n]|* — 2[A[n]||A[n]|]
n=—oo n=—oo
= > Al = |Aln]P
n=—o00 nel
= we/m =Y [hln]?
nel

m MSE is minimized by keeping the largest coefficients
m |sinc(an)| < 1/n

m MSE is minimized by symmetric impulse truncation around zero

159

Why it’s not such a good idea, actually

A(w)

/2

160

Why it’s not such a good idea, actually

N

1|——

A(w)

~

/2

160

Why it’s not such a good idea, actually

\ M =21

A(w)

_/AV ~

/2

Why it’s not such a good idea, actually

AAAAA
NSNS
‘ M =101

A(w)

\AA‘
A\

T

w/2

160

Why it’s not such a good idea, actually

Aﬁ M =301

H(w)
S

w/2

The Gibbs phenomenon

The maximum error around the cutoff frequency
is around 9% of the height of the jump
regardless of M

161

Understanding the Gibbs phenomenon

=2l

=hw

o] — {1 In| < N

0 otherwise

H=HxW

162

Understanding the Gibbs phenomenon

h=hw
1]
=
T B e
—20 —10 0 10 20
1 _
=
S
0 L—c-0-0-0-c-cc-0-0-0-0-c-c-0-0-0 t 0-C-O-0-0-G-0-0-0-0-0-0-C-0-0-0
—20 —10 10 20

163

Understanding the Gibbs phenomenon
W(w) = sin(wM/2)/sin(w/2)

W(w)

H=HxW,

20
. o N pa N\ V- >N e

T

0 P~

T

s

—T

T

—7/2

0

/2

164

Remember the modulation theorem

(X*Y)(w) = % /_7T X(0)Y(w —o)do

165

Implicit frequency-domain convolution

N=9M=2N+1

H(w)

e

. 20 |

S 10~/\

§ 0 N e — p— — — e
\ g —" " ——— ~—— m~—— "

Implicit frequency-domain convolution

N=9M=2N+1

. 1 i
3
T

0
. 20 | N
3 10 /\ i
§ Of\ N e — — — — g

NS A\

. 1]
3
[N

0 —

T T T
-7 —7/2 0 w/2 m

Implicit frequency-domain convolution

H(w)

N=9M=2N+1

20
10 [

\AAA‘AAA
T T T

—7/2

w/2 ™

166

Implicit frequency-domain convolution

H(w)

N=9M=2N+1

20

10 [/

0-\ TN
~— A4

LN N e, g e
T T T

-/

—7/2
|

166

Implicit frequency-domain convolution

N=9M=2N+1

H(w)

. 20

S 10f /\ 1

§ 0 — N LN e — — — —
v N R S Be——a e

——r

Implicit frequency-domain convolution

N=9M=2N+1

H(w)

. 20 |
3 10t / .
§ 0 P N

. D SN,
——— T

—r

Implicit frequency-domain convolution

H(w)

20
10

N =

9,M =2N +1

\v/\ Py — — pm—

166

Implicit frequency-domain convolution

H(w)

20
10

-7 —7/2

N =09,

M=2N+1

— ey N /

—— > \J

\v/\ P —— —

N /\’\
——
T

166

Implicit frequency-domain convolution

N =9 M=2N+1

H(w)

. 20

S 10t /\ 1

§ 0 | — —— N LN P a— —
—— v "l " "

Implicit frequency-domain convolution

H(w)

20
10

N=9M=2N+1

\AAA
D

w/2

166

Implicit frequency-domain convolution

H(w)

20
10

N =9 M=2N

+1

\/\AA
S —

w/2

166

Implicit frequency-domain convolution

H(w)

20
10

N=9M=2N+1

\AA
S

— e e e N
vvvvvv

w/2

166

Implicit frequency-domain convolution

H(w)

20
10

N=9M=2N+1

Il 4 .
AV/‘\/W\/
T T T
—7/2 0 w/2

166

Implicit frequency-domain convolution

H(w)

20
10

N=9M=2N+1

I \Av

166

Implicit frequency-domain convolution

H(w)

20
10

N=9M=2N+1

N\

. — p— — — e N /
" — ~— —~— — ~—" S

166

Implicit frequency-domain convolution

N=9M=2N+1

H(w)

20

§ 0 e — p— — — e SN

= e e T S

Implicit frequency-domain convolution

H(w)

N=9M=2N+1

20
10 [

P e R

N

et~

NS

166

Mainlobe and sidelobes

W(w)

167

What if we change the window?

We want:

m narrow mainlobe so that transition is sharp
m small sidelobe so Gibbs error is small

m short window so FIR is efficient

very conflicting requirements!

168

Triangular window

w(n]

169

Rectangular vs Triangular Window

19-tap rectangular
19-tap triangular

170

Window method: pros and cons

Pros:

m extremely simple

m minimizes MSE
Cons:

m can't control max error (Gibbs)

m must know the impulse response (not easy for arbitrary frequency responses)

171

Frequency sampling

Idea #2:
m draw desired frequency response H(w)

m take M equally-spaced values of the frequency response over the [0, 27] interval:
Hmlk] = H(wg), wk = (27 /M)k, k=0,1,....M—1
m compute the inverse DFT: hy, = IDFT {Hy}

m use the impulse response

- h < M
Bloj = b7 9 =1 <
0 otherwise

172

Frequency sampling: desired response

/2

173

Frequency sampling: from DTFT to DFT

get M samples over the [0, 27] interval, so they are ready for the IDFT

—2r =37/2 —= —7/2 0 /2 ™ 3r/2 27

174

Frequency sampling: DFT samples

Hum k]

o
—

N

w -9
S~ 9
o -9
o ¢

~N -9

0 -9

© @

10

11

175

Frequency sampling: impulse response from IDFT

hu(n] hin]

176

Frequency sampling: what happens in the time domain

hy = IDFT {Hp}
2
il

HM[k]:H<M) k=0,1,....M—1

177

Frequency sampling: what happens in the time domain

hM[n] =

1 M—-1 [5 H
k=

m=—0o0

M-1
= 3 g Y- e Hm
k=0

178

a familiar result

M—

k=

[ay

0

e—j%(m—n)k _ {

M
0

if m— n multiple of M
otherwise

179

Frequency sampling: what happens in the time domain

hulnl = Y h[m] 8[(m—n) mod M]

= i h[n 4+ mM]

sampling in the frequency domain results in periodization in the time domain

180

Frequency sampling: impulse response from IDFT

hin]

T T
-33 —22 —11 0 11 22

33

181

Frequency sampling: impulse response from IDFT

h[n], h[n — M|
°
0 oMot et o ®a o R‘u nlu oln u‘o o‘o 5,0%0_0%0_ 0" —

T T T T T

T T
-33 —22 —11 0 11 22 33

181

Frequency sampling: impulse response from IDFT

., h[n+2M], h[n + M}, h[n], h[n — M], hn — 2M], . ..

1 1
-33 —-22 -11 0 11 22 33

181

Frequency sampling: impulse response from IDFT

hmln] =32 o hln + mM]

LLLLLELL

1M M

T T T T T

T T
-33 —22 —11 0 11 22 33

Frequency sampling: impulse response from IDFT

hln]

! TlT

lf

-33

—22

—11

181

Frequency sampling: what happens in the frequency domain

what is the frequency response H?

m hy;: M-point inverse DFT of frequency samples Hy; with Hy[k] = H (%k)
m h: finite-support extension of hy
m DFT coefficients Hy, are known

m use the DFT to DTFT result for finite-support sequences: Lagrangian interpolation

182

DTFT of finite-support signals

smooth interpolation of DFT values:

M-1
Aw) =" HulklAu <w — %k)
k=0

_ 1sin(5M) —j2(M-1)
R

183

Frequency sampling: frequency response

w/2

184

Frequency sampling: pros and cons

Pros:

m simple

m works with arbitrary frequency responses
Cons:

m can't control max error

185

