
COM-202: Signal Processing

Chapter 6.a: Discrete-Time Filters

Overview

linear time-invariant systems in discrete time

filters for denoising

impulse response

convolution

frequency response

modulation and demodulation

ideal filters and approximations

1

linear time-invariant systems

A single-input single-output signal processing device

x H y

y = Hx

all signals assumed to be infinite-length

we need some restrictions on H to proceed

2

Linearity

H(α x1 + β x2) = αHx1 + βHx2

realistic requirement: sum of inputs leads to sum of outputs

in practice systems are linear until they aren’t (eg. volume too loud)

3

Linearity

Play

4

Nonlinearity

Play

5

Time invariance

HSkx = SkHx

more explicitly:

yk [n] = y [n − k] with











xk = S−kx (xk [n] = x [n − k])

y = Hx

yk = Hxk

realistic requirement: device should work the same way today and tomorrow

analog systems exhibit “aging”, digital systems don’t

6

Time invariance

7

Time variance

Play

8

Linear, time-invariant systems

x H y

addition
scalar
multiplication

delays

9

Linear, time-invariant systems

y [n] = H(x [n], x [n − 1], x [n − 2], . . . , y [n − 1], y [n − 2], . . .)

with H(·) a linear function of its arguments

10

filtering by example

Filtering by example

Two fundamental filters:

Moving average

Leaky integrator

11

Typical filtering scenario: denoising

0 100 200 300 400 500

−6
−4
−2
0
2
4
6

0 100 200 300 400 500

−6

0

6

0 100 200 300 400 500

−6
−4
−2
0
2
4
6

12

Denoising by averaging

Hypotheses:

noisy signal samples are true values plus random noise value: x = xc + η

noise values are random and with zero mean:

1

M

M−1
∑

m=0

η[n −m] ≈ 0 for M large enough

the signal is varying slowly (current value is very similar to previous values):

x [n −m] ≈ x [n] for m reasonably small

13

Denoising by averaging

Idea: to remove the noise, replace each sample by the average of M consecutive samples:

1

M

M−1
∑

m=0

x̂ [n −m] =
1

M

M−1
∑

m=0

(x [n −m] + η[n −m])

=
1

M

M−1
∑

m=0

x [n −m] +
1

M

M−1
∑

m=0

η[n −m]

≈
1

M

M−1
∑

m=0

x [n] + 0

= x [n]

14

The Moving Average filter

y [n] =
1

M

M−1
∑

m=0

x [n −m]

each output value averages current and previous M − 1 input values

average is recomputed at every step (hence “moving”)

computational requirements:

• M − 1 additions

• one multiplication (by 1/M)

• M − 1 memory cells (to remember the previous input values)

15

A simple implementation (plain Python)

class MA:

def __init__(self, M):

pre-allocate storage for past input values

self.buf = [0.0] * (M-1)

self.norm = 1.0 / M

def filt(self, x):

compute the local average

y = x

for v in self.buf:

y += v

y *= self.norm

update the buffer, eg: [a, b, c, d, e] -> [x, a, b, c, d]

self.buf[1:] = self.buf[:-1]

self.buf[0] = x

return y 16

A better implementation using NumPy

import numpy as np

class MA:

def __init__(self, M):

self.buf = np.zeros(M)

def filt(self, x):

self.buf = np.roll(self.buf, 1)

self.buf[0] = x

return np.mean(self.buf)

17

Testing time!

let’s test the algorithm on the sequence

x [n] = (−1)nu[n]

b b b b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

−4 0 4 8 12 16 20

−1

0

1

18

Testing the implementation

> ma = MA(4)

> for n in range(20):

print(ma.filt((-1) ** n), end=’, ’)

> 0.25, 0.0, 0.25, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

19

Question

can you guess what the output is going to be for M = 5?

> ma = MA(5)

> for n in range(20):

print(ma.filt((-1) ** n), end=’, ’)

> 0.2, 0.0, 0.2, 0.0, 0.2, -0.2, 0.2, -0.2, 0.2, -0.2, 0.2, -0.2, 0.2,

-0.2, 0.2, -0.2, 0.2, -0.2, 0.2, -0.2,

20

Does it work for denoising? Let’s try it out!

M = 2

clean signal
denoised with MA

0 100 200 300 400 500

−6

−4

−2

0

2

4

6

21

Does it work for denoising? Let’s try it out!

M = 4

clean signal
denoised with MA

0 100 200 300 400 500

−6

−4

−2

0

2

4

6

21

Does it work for denoising? Let’s try it out!

M = 12

clean signal
denoised with MA

0 100 200 300 400 500

−6

−4

−2

0

2

4

6

21

Does it work for denoising? Let’s try it out!

M = 100

clean signal
denoised with MA

0 100 200 300 400 500

−6

−4

−2

0

2

4

6

21

Performance analysis

smoothing effect proportional to M

number of operations and storage also proportional to M

there appears to be a “delay” between input and output

22

Idea: updating the average

Suppose we know the local average at time n − 1;
can we compute the average at time n as an update of the previous value?

y [n] = f (y [n − 1], x [n])

23

Updating the average

y [n] =
1

M

M−1
∑

m=0

x [n −m]

y [n] =
1

M

[

x [n] + x [n − 1] + . . .+ x [n − (M − 2)] + x [n − (M − 1)]

]

y [n− 1] =
1

M

[

x [n − 1] + x [n − 2] + . . .+ x [n − 1− (M − 2)] + x [n − 1− (M − 1)]

]

24

Updating the average

y [n − 1] =
1

M

[

x [n − 1] + x [n − 2] + . . .+ x [n −M + 1] + x [n −M]

]

y [n] =
1

M

[

x [n] + x [n − 1] + x [n − 2] + . . .+ x [n −M + 1]

]

y [n] = y [n − 1]−
1

M
x [n −M] +

1

M
x [n]

but this still requires M memory cells...

25

Updating the average

Idea: use the approximation x [n −M] ≈ y [n − 1]

reasonable for “slow” signals, x [n −m] ≈ x [n] for m small

equivalent to “forgetting” (1/M)-th of the previous local average

y [n− 1]− (1/M)x [n −M] ≈ (1− 1/M)y [n − 1]

“forgetting factor” λ = 1− 1/M, close to one for M large

y [n] = y [n − 1]−
1

M
x [n −M] +

1

M
x [n]

≈ λy [n − 1] + (1− λ)x [n]

26

The Leaky Integrator

y [n] = λy [n − 1] + (1− λ)x [n]

each output value is an update of the previous output

the algorithm is recursive

computational requirements:

• one addition

• two multiplications

• one memory cell to remember the previous output

27

A simple implementation

class LI:

def __init__(self, lam):

self.buf = 0

self.lam = lam

def filt(self, x):

self.buf = self.lam * self.buf + (1 - self.lam) * x

return self.buf

28

Does it work? Let’s try it out!

λ = 0.2

0 100 200 300 400 500

−6

−4

−2

0

2

4

6

29

Does it work? Let’s try it out!

λ = 0.5

0 100 200 300 400 500

−6

−4

−2

0

2

4

6

29

Does it work? Let’s try it out!

λ = 0.8

0 100 200 300 400 500

−6

−4

−2

0

2

4

6

29

Does it work? Let’s try it out!

λ = 0.98

0 100 200 300 400 500

−6

−4

−2

0

2

4

6

29

Performance analysis

smoothing effect dependent on λ

number of operations and storage independent of λ

there also appears to be a processing “delay”

30

Leaky Integrator: why the name

A discrete-time “integrator” just accumulates input values:

y [n] =

n
∑

k=−∞

x [k]

We can rewrite the integrator recursively as

y [n] = y [n − 1] + x [n]

31

Leaky Integrator: why the name

To prevent “explosions” pick λ < 1

y [n] = λy [n − 1] + (1− λ)x [n]

keep only a fraction λ of
the accumulated value
so far and forget
(“leak”) a fraction 1− λ

add only a fraction 1− λ
of the current value to
the accumulator

32

the impulse response

Linear, time-invariant systems

x H y

H(α x1 + β x2) = αHx1 + βHx2

HSkx = SkHx

33

The situation so far

we “designed” two filters algorithmically

both algorithms are of the form

y [n] =

N−1
∑

k=1

aky [n − k] +

M−1
∑

k=0

bkx [n − k]

• moving average: N = 1, bk = 1/M

• leaky integrator: M = 1,N = 2, a1 = λ, b0 = 1− λ

we were able to find the coefficients intuitively...

... but we can’t use intuition for more complicated filters

34

The path to filter design

LTI systems are fully described by their impulse response

once we know the impulse response we can implement the filter via convolution

the DTFT of the impulse response describes how a filter works in the frequency domain

filter design starts from the frequency domain and finds the coefficients of the algorithm

35

Impulse response

h = Hδ

Fundamental result: impulse response fully characterizes the LTI system!

36

Every signal is a linear combination of atomic time elements

x =

∞
∑

k=−∞

x [k] δk ,

δk = S−kδ

δk [n] = δ[n − k] =

{

1 n = k

0 n 6= k .

37

Time domain: sum of time pulses

b

b

b

b

b

b

b

b

0 1 2 3 4 5 6 7
0

5

b

b b b b b b b

1δ0

0 1 2 3 4 5 6 7
0
2
4

b

b

b b b b b b

2δ1

0 1 2 3 4 5 6 7
0
2
4

b b

b

b b b b b

3δ2

0 1 2 3 4 5 6 7
0
2
4

b b b

b

b b b b

4δ3

0 1 2 3 4 5 6 7
0
2
4

b b b b

b

b b b

5δ4

0 1 2 3 4 5 6 7
0
2
4

b b b b b

b

b b

4δ5

0 1 2 3 4 5 6 7
0
2
4

b b b b b b

b

b

3δ6

0 1 2 3 4 5 6 7
0
2
4

b b b b b b b

b

2δ7

0 1 2 3 4 5 6 7
0
2
4

38

Filter’s output from impulse response

Hx = H

(

∞
∑

k=−∞

x [k]S−kδ

)

using linearity...

=

∞
∑

k=−∞

H(x [k]S−kδ) using linearity...

=
∞
∑

k=−∞

x [k]S−kHδ using time invariance...

=
∞
∑

k=−∞

x [k]S−kh

39

Example

h

b b b

b

b

b

b

b

b
b

b
b

b b b b b b b

−3 0 3 6 9 12 15
0

1

h[n] = αn u[n]

x

b b

b

b

b

b b b

−2 −1 0 1 2 3 4 5
0

1

2

3

4

x [n] =























2 n = 0

3 n = 1

1 n = 2

0 otherwise

40

Example

x = 2δ + 3δ1 + δ2

we know the impulse response h = Hδ;

compute y = Hx exploiting linearity and time-invariance

41

Example

x = H{2δ + 3S−1δ + S−2δ}

= 2Hδ + 3S−1Hδ + S−2Hδ

= 2h+ 3S−1h+ S−2h

x [n] = 2h[n] + 3h[n − 1] + h[n − 2]

42

Example

b b b b b

b

b

b

b
b

b
b

b b b b b b b b b b b b b b b b b b b

2h

−5 0 5 10 15 20 25
0

1

2

3

4

5

43

Example

b b b b b

b

b

b

b
b

b
b

b b b b b b b b b b b b b b b b b b bb b b b b b

b

b

b

b

b

b
b

b
b

b b b b b b b b b b b b b b b b

3S−1h

−5 0 5 10 15 20 25
0

1

2

3

4

5

43

Example

b b b b b

b

b

b

b
b

b
b

b b b b b b b b b b b b b b b b b b bb b b b b b

b

b

b

b

b

b
b

b
b

b b b b b b b b b b b b b b b bb b b b b b b

b
b

b
b

b b b b b b b b b b b b b b b b b b b b

S−2h

−5 0 5 10 15 20 25
0

1

2

3

4

5

43

Example

b b b b b

b

b b

b

b

b

b

b

b

b
b

b
b

b b b b b b b b b b b b b

y

−5 0 5 10 15 20 25
0

1

2

3

4

5

43

Convolution

y = Hx

=

∞
∑

k=−∞

x [k]S−kh

= x ∗ h

algorithmic expression for the individual output sample

y [n] =
∞
∑

k=−∞

x [k]h[n − k]

44

Convolution algorithm

y [n] =

∞
∑

k=−∞

x [k]h[n − k]

Ingredients:

a sequence x

a second sequence h

The recipe:

time-reverse h

at each step n (from −∞ to ∞):

• center the time-reversed h in n
(i.e. delay by n)

• multiply it by x element-wise

• sum all the products

45

Same example, different perspective

h

b b b

b

b

b

b

b

b
b

b
b

b b b b b b b

−3 0 3 6 9 12 15
0

1

h[n] = αn u[n]

x

b b

b

b

b

b b b

−2 −1 0 1 2 3 4 5
0

1

2

3

4

x [n] =























2 n = 0

3 n = 1

1 n = 2

0 otherwise

46

Convolution example

b b b b b b b b b

b

b

b

b b b b b b b b b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0

2

4
x
[k
]

b b
b

b
b

b

b b

−8 −4 0 4 8 12 16 20
0

1

h
[n

−
k
]

b b b b b b

−8 −4 0 4 8 12 16 20
0
2
4
6

y
[n
]

47

Convolution example

b b b b b b b b b

b

b

b

b b b b b b b b b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0

2

4
x
[k
]

b b b
b

b
b

b

b b

−8 −4 0 4 8 12 16 20
0

1

h
[n

−
k
]

b b b b b b b

−8 −4 0 4 8 12 16 20
0
2
4
6

y
[n
]

47

Convolution example

b b b b b b b b b

b

b

b

b b b b b b b b b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0

2

4
x
[k
]

b b b b
b

b
b

b

b b

−8 −4 0 4 8 12 16 20
0

1

h
[n

−
k
]

b b b b b b b b

−8 −4 0 4 8 12 16 20
0
2
4
6

y
[n
]

47

Convolution example

b b b b b b b b b

b

b

b

b b b b b b b b b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0

2

4
x
[k
]

b b b b b
b

b
b

b

b b

−8 −4 0 4 8 12 16 20
0

1

h
[n

−
k
]

b b b b b b b b b

−8 −4 0 4 8 12 16 20
0
2
4
6

y
[n
]

47

Convolution example

b b b b b b b b b

b

b

b

b b b b b b b b b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0

2

4
x
[k
]

b b b b b b
b

b
b

b

b b b b b b b b b b b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0

1

h
[n

−
k
]

b b b b b b b b b

b

−8 −4 0 4 8 12 16 20
0
2
4
6

y
[n
]

47

Convolution example

b b b b b b b b b

b

b

b

b b b b b b b b b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0

2

4
x
[k
]

b b b b b b b
b

b
b

b

b b b b b b b b b b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0

1

h
[n

−
k
]

b b b b b b b b b

b

b

−8 −4 0 4 8 12 16 20
0
2
4
6

y
[n
]

47

Convolution example

b b b b b b b b b

b

b

b

b b b b b b b b b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0

2

4
x
[k
]

b b b b b b b b
b

b
b

b

b b b b b b b b b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0

1

h
[n

−
k
]

b b b b b b b b b

b

b b

−8 −4 0 4 8 12 16 20
0
2
4
6

y
[n
]

47

Convolution example

b b b b b b b b b

b

b

b

b b b b b b b b b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0

2

4
x
[k
]

b b b b b b b b b
b

b
b

b

b b b b b b b b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0

1

h
[n

−
k
]

b b b b b b b b b

b

b b
b

−8 −4 0 4 8 12 16 20
0
2
4
6

y
[n
]

47

Convolution example

b b b b b b b b b

b

b

b

b b b b b b b b b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0

2

4
x
[k
]

b b b b b b b b b b
b

b
b

b

b b b b b b b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0

1

h
[n

−
k
]

b b b b b b b b b

b

b b
b

b

−8 −4 0 4 8 12 16 20
0
2
4
6

y
[n
]

47

Convolution example

b b b b b b b b b

b

b

b

b b b b b b b b b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0

2

4
x
[k
]

b b b b b b b b b b b
b

b
b

b

b b b b b b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0

1

h
[n

−
k
]

b b b b b b b b b

b

b b
b

b
b

−8 −4 0 4 8 12 16 20
0
2
4
6

y
[n
]

47

Convolution example

b b b b b b b b b

b

b

b

b b b b b b b b b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0

2

4
x
[k
]

b b b b b b b b b b b b
b

b
b

b

b b b b b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0

1

h
[n

−
k
]

b b b b b b b b b

b

b b
b

b
b

b

−8 −4 0 4 8 12 16 20
0
2
4
6

y
[n
]

47

Convolution example

b b b b b b b b b

b

b

b

b b b b b b b b b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0

2

4
x
[k
]

b b b b b b b b b b b b b
b

b
b

b

b b b b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0

1

h
[n

−
k
]

b b b b b b b b b

b

b b
b

b
b

b b

−8 −4 0 4 8 12 16 20
0
2
4
6

y
[n
]

47

Convolution example

b b b b b b b b b

b

b

b

b b b b b b b b b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0

2

4
x
[k
]

b b b b b b b b b b b b b b
b

b
b

b

b b b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0

1

h
[n

−
k
]

b b b b b b b b b

b

b b
b

b
b

b b b

−8 −4 0 4 8 12 16 20
0
2
4
6

y
[n
]

47

Convolution example

b b b b b b b b b

b

b

b

b b b b b b b b b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0

2

4
x
[k
]

b b b b b b b b b b b b b b b
b

b
b

b

b b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0

1

h
[n

−
k
]

b b b b b b b b b

b

b b
b

b
b

b b b b

−8 −4 0 4 8 12 16 20
0
2
4
6

y
[n
]

47

Convolution example

b b b b b b b b b

b

b

b

b b b b b b b b b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0

2

4
x
[k
]

b b b b b b b b b b b b b b b b
b

b
b

b

b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0

1

h
[n

−
k
]

b b b b b b b b b

b

b b
b

b
b

b b b b b

−8 −4 0 4 8 12 16 20
0
2
4
6

y
[n
]

47

Convolution example

b b b b b b b b b

b

b

b

b b b b b b b b b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0

2

4
x
[k
]

b b b b b b b b b b b b b b b b b
b

b
b

b

b b b b b b b b b

−8 −4 0 4 8 12 16 20
0

1

h
[n

−
k
]

b b b b b b b b b

b

b b
b

b
b

b b b b b b

−8 −4 0 4 8 12 16 20
0
2
4
6

y
[n
]

47

Convolution example

b b b b b b b b b

b

b

b

b b b b b b b b b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0

2

4
x
[k
]

b b b b b b b b b b b b b b b b b b
b

b
b

b

b b b b b b b b

−8 −4 0 4 8 12 16 20
0

1

h
[n

−
k
]

b b b b b b b b b

b

b b
b

b
b

b b b b b b b

−8 −4 0 4 8 12 16 20
0
2
4
6

y
[n
]

47

Convolution example

b b b b b b b b b

b

b

b

b b b b b b b b b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0

2

4
x
[k
]

b b b b b b b b b b b b b b b b b b b
b

b
b

b

b b b b b b b

−8 −4 0 4 8 12 16 20
0

1

h
[n

−
k
]

b b b b b b b b b

b

b b
b

b
b

b b b b b b b b

−8 −4 0 4 8 12 16 20
0
2
4
6

y
[n
]

47

Convolution example

b b b b b b b b b

b

b

b

b b b b b b b b b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0

2

4
x
[k
]

b b b b b b b b b b b b b b b b b b b b
b

b
b

b

b b b b b b

−8 −4 0 4 8 12 16 20
0

1

h
[n

−
k
]

b b b b b b b b b

b

b b
b

b
b

b b b b b b b b b

−8 −4 0 4 8 12 16 20
0
2
4
6

y
[n
]

47

Convolution example

b b b b b b b b b

b

b

b

b b b b b b b b b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0

2

4
x
[k
]

b b
b

b
b

b

b b b b b

−8 −4 0 4 8 12 16 20
0

1

h
[n

−
k
]

b b b b b b b b b

b

b b
b

b
b

b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0
2
4
6

y
[n
]

47

Convolution example

b b b b b b b b b

b

b

b

b b b b b b b b b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0

2

4
x
[k
]

b b
b

b
b

b

b b b b

−8 −4 0 4 8 12 16 20
0

1

h
[n

−
k
]

b b b b b b b b b

b

b b
b

b
b

b b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0
2
4
6

y
[n
]

47

Convolution example

b b b b b b b b b

b

b

b

b b b b b b b b b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0

2

4
x
[k
]

b b
b

b
b

b

b b b

−8 −4 0 4 8 12 16 20
0

1

h
[n

−
k
]

b b b b b b b b b

b

b b
b

b
b

b b b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0
2
4
6

y
[n
]

47

Convolution example

b b b b b b b b b

b

b

b

b b b b b b b b b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0

2

4
x
[k
]

b b
b

b
b

b

b b

−8 −4 0 4 8 12 16 20
0

1

h
[n

−
k
]

b b b b b b b b b

b

b b
b

b
b

b b b b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0
2
4
6

y
[n
]

47

Convolution example

b b b b b b b b b

b

b

b

b b b b b b b b b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0

2

4
x
[k
]

b b
b

b
b

b

b

−8 −4 0 4 8 12 16 20
0

1

h
[n

−
k
]

b b b b b b b b b

b

b b
b

b
b

b b b b b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0
2
4
6

y
[n
]

47

Convolution example

b b b b b b b b b

b

b

b

b b b b b b b b b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0

2

4
x
[k
]

b b
b

b
b

b

−8 −4 0 4 8 12 16 20
0

1

h
[n

−
k
]

b b b b b b b b b

b

b b
b

b
b

b b b b b b b b b b b b b b b

−8 −4 0 4 8 12 16 20
0
2
4
6

y
[n
]

47

Convolution properties

linearity and time invariance (by definition)

commutativity: x ∗ h = h ∗ x

associativity for absolutely- and square-summable sequences: (x ∗ h) ∗ w = x ∗ (h ∗w)

x h w y

x h ∗ w y

48

Moving Average: impulse response

y [n] =
1

M

M−1
∑

k=0

x [n − k]

h[n] =
1

M

M−1
∑

k=0

δ[n − k] x [n] ← δ[n]

=

{

1/M for 0 ≤ n < M

0 otherwise

49

Moving Average: impulse response

b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b

b b b b b b b b b b b b

0 M − 1
0

1/M

50

Leaky integrator: impulse response

y [n] = λy [n − 1] + (1− λ)δ[n]

y [n] = 0 for all n < 0

y [0] = λy [−1] + (1− λ)δ[0] = (1− λ)

y [1] = λy [0] + (1− λ)δ[1] = λ(1− λ)

y [2] = λy [1] + (1− λ)δ[2] = λ2(1− λ)

y [3] = λy [2] + (1− λ)δ[3] = λ3(1− λ)

. . .

51

Leaky integrator: impulse response

h[n] = (1− λ)λn u[n]

b b b b b b b b b b

b

b

b

b
b

b
b

b
b

b
b

b
b b b b b b b b b b b b b b b b b b b

1− λ

0 15 30
0

52

Filter types according to impulse response

Finite Impulse Response (FIR)

Infinite Impulse Response (IIR)

causal

noncausal

53

FIR

impulse response has finite support

only a finite number of samples are involved in the computation of each output sample

54

FIR (example)

Moving Average filter

b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b

b b b b b b b b b b b b

M − 1

1/M

−15 0 15
0

55

IIR

impulse response has infinite support

a potentially infinite number of samples are involved in the computation of each output
sample

surprisingly, in many cases the computation can still be performed in a finite amount of
steps

56

IIR (example)

Leaky Integrator

b b b b b b b b b b b b b b b

b

b

b

b

b

b
b

b
b

b b b b b b b b b b b b b b b b b

−15 0 15
0

57

Causal vs Noncausal

causal:

• impulse response is zero for n < 0

• only past samples (with respect to the present) are involved in the computation of each
output sample

• causal filters can work “on line” since they only need the past

noncausal:

• impulse response is nonzero for some (or all) n < 0

• can still be implemented in a offline fashion (when all input data is available on storage, e.g.
in Image Processing)

58

Causal example

Moving Average filter

b b b b b b b b b b b b b b b b b b b b

b b b b b b

b b b b b b b b b b b b b b b

−18 −12 −6 0 6 12 18
0

59

Noncausal example

Zero-centered Moving Average filter

b b b b b b b b b b b b b b b b b b

b b b b b

b b b b b b b b b b b b b b b b b b

−18 −12 −6 0 6 12 18
0

60

Causal and Noncausal Moving Average

M = 100

0 100 200 300 400

−6

−4

−2

0

2

4

6

61

Processing delay: intuition

Moving Average:

y [n] =
1

M

M−1
∑

k=0

x [n − k]

b b b b b b b
b

b
b

b
b

b b b b b b
b

b
b

62

Processing delay: intuition

Moving Average:

y [n] =
1

M

M−1
∑

k=0

x [n − k]

b b b b b b b
b

b
b

b
b

b b b b b b
b

b
b

b b b b b
b

b
b

b
b

b

n

62

Processing delay: intuition

Moving Average:

y [n] =
1

M

M−1
∑

k=0

x [n − k]

b b b b b b b
b

b
b

b
b

b b b b b b
b

b
b

b b b b
b

b
b

b
b

b b

n + 1

62

Processing delay: intuition

Moving Average:

y [n] =
1

M

M−1
∑

k=0

x [n − k]

b b b b b b b
b

b
b

b
b

b b b b b b
b

b
b

b b b
b

b
b

b
b

b b b

n + 2

62

Processing delay: intuition

We assumed the signal is smooth; if it is linear, i.e. x [n] = an,

y [n] =
1

M

M−1
∑

k=0

x [n − k]

=
1

M

M−1
∑

k=0

a(n − k)

=
a

M

[

M−1
∑

k=0

n −

M−1
∑

k=0

k

]

=
a

M
[Mn −M(M − 1)/2]

= a(n − (M − 1)/2)

= x [n − (M − 1)/2] ← delay of (M − 1)/2 samples (assume M odd)

63

Processing delay: intuition

What about a slow sinusoid of the form x [n] = cos(ω0n)?

y [n] =
1

M

M−1
∑

k=0

cos(ω0(n − k))

=
1

M
Re

{

M−1
∑

k=0

e jω0(n−k)

}

=
1

M
Re

{

e jω0n

M−1
∑

k=0

e−jω0k

}

=
1

M
Re

{

e jω0n
1− e−jω0M

1− e−jω0

}

=
1

M
Re

{

e jω0n
e−jω0M/2

[

e jω0M/2 − e−jω0M/2
]

e−jω0/2
[

e jω0/2 − e−jω0/2
]

}

=
sin
(

ω0
2 M

)

M sin
(

ω0
2

) Re
{

e jω0ne−jω0(M−1)/2
}

= c(ω0,N) cos

(

ω0

(

n−
M − 1

2

))

∝ x [n − (M − 1)/2]

64

Processing delay

all causal filters introuduce a processing delay

processing delay is best understood in the frequency domain

65

the frequency response

Filtering a complex-valued oscillation

eω: complex exponential sequence at frequency ω

eω[n] = e jωn

eω H ?

66

A remarkable result

eω ∗ h = h ∗ eω convolution is commutative

=

∞
∑

k=−∞

h[k]S−keω S
−k

eω = e
−jωk

eω

= eω

∞
∑

k=−∞

h[k]e−jωk

= H(ω) eω

67

A remarkable result

eω H H(ω) eω

complex exponentials are eigensequences of LTI systems: Heω = Ceω

scalar factor C is DTFT of impulse response at input frequency

LTI systems cannot change the frequency of sinusoidal inputs

68

Magnitude and phase

If H(ω) = Ae jθ, then

(Heω)[n] = Ae j(ωn+θ)

amplitude:
amplification (A > 1)
attenuation (0 ≤ A < 1)

phase shift:
delay (θ < 0)
advancement (θ > 0)

69

Filters in the frequency domain

how do filters change the spectrum of an input signal?

DTFT {x ∗ h} =?

Intuition:

we know how filters modify a sinusoid

signals can be expressed as a linear combination of sinusoids

by linearity...

70

The convolution theorem

x h y = h ∗ x

x
DTFT
←−−−→ X

h
DTFT
←−−−→ H

y
DTFT
←−−−→ Y

71

The convolution theorem

Y (ω) =

∞
∑

n=−∞

y [n]e−jωn

=

∞
∑

n=−∞

∞
∑

k=−∞

x [k]h[n − k]e−jωn
y [n] =

∞∑

k=−∞

x[k]h[n − k]

=

∞
∑

n=−∞

∞
∑

k=−∞

x [k]h[n − k]e−jω(n−k)e−jωk

=
∞
∑

k=−∞

x [k]e−jωk
∞
∑

n=−∞

h[n − k]e−jω(n−k)

= H(ω)X (ω)

72

The convolution theorem

x h y

y = h ∗ x

Y = HX

73

Frequency response

y = h ∗ x

Y = HX

Two effects on the spectrum of the input signal:

magnitude: amplification (|H(ω)| > 1) or attenuation (|H(ω)| < 1)

phase: overall delay and “shape” change

74

Moving Average: frequency response

h[n] = (u[n]− u[n−M])/M

b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b

b b b b b b b b b b b

0 M − 1
0

1/M

75

Moving Average: frequency response

H(ω) =
M−1
∑

n=0

1

M
e−jωn

=
1

M

1− e−jωM

1− e−jω

=
1

M

e−j ωM
2

[

e j
ωM
2 − e−j ωM

2

]

e−j ω
2

[

e j
ω

2 − e−j ω
2

]

=
1

M

sin
(

ω
2M
)

sin
(

ω
2

) e−j ω
2
(M−1)

76

Moving Average: magnitude response

|H(ω)| = 1
M

∣

∣

∣

∣

sin(ω

2
M)

sin(ω

2)

∣

∣

∣

∣

M = 9

−π −π/2 0 π/2 π
0

1

|H
(ω

)|

77

Moving Average: magnitude response

|H(ω)| = 1
M

∣

∣

∣

∣

sin(ω

2
M)

sin(ω

2)

∣

∣

∣

∣

M = 20

−π −π/2 0 π/2 π
0

1

|H
(ω

)|

77

Moving Average: magnitude response

|H(ω)| = 1
M

∣

∣

∣

∣

sin(ω

2
M)

sin(ω

2)

∣

∣

∣

∣

M = 100

−π −π/2 0 π/2 π
0

1

|H
(ω

)|

77

Denoising revisited

0 100 200 300 400 500

−6

−4

−2

0

2

4

6

78

Denoising revisited

M = 12

0 100 200 300 400 500

−6

−4

−2

0

2

4

6

78

Denoising in the frequency domain
time

0 100 200 300 400 500

−6
−4
−2
0
2
4
6

0 100 200 300 400 500

−6

0

6

frequency

−π −π/2 0 π/2 π
0

1

−π −π/2 0 π/2 π
0

1

79

Denoising in the frequency domain

−π −π/2 0 π/2 π
0

1

80

Denoising in the frequency domain

−π −π/2 0 π/2 π
0

1

80

Denoising in the frequency domain

−π −π/2 0 π/2 π
0

1

80

Denoising in the frequency domain

−π −π/2 0 π/2 π
0

1

80

Denoising in the frequency domain

−π −π/2 0 π/2 π
0

1

80

Denoising in the frequency domain

−π −π/2 0 π/2 π
0

1

80

What about the phase?

Assume |H(ω)| = 1

zero phase: ∠H(ω) = 0

linear phase: ∠H(ω) = dω, d ∈ R

nonlinear phase

81

Zero phase

If ∠H(ω) = 0:

H(ω) ∈ R

impulse response must be real and symmetric

no causal filter can have a zero phase response

a zero-phase filter has no processing delay

82

Noncausal moving average

Zero-centered Moving Average filter

b b b b b b b b b b b b b b b b b b

b b b b b

b b b b b b b b b b b b b b b b b b

−18 −12 −6 0 6 12 18
0

83

Causal vs Noncausal Moving Average

M = 100

0 100 200 300 400

−6

−4

−2

0

2

4

6

84

Phase and signal shape

x [n] =
1

2
sin(ω0n) + cos(2ω0n) ω0 =

2π

40

0 28 56 84 112 140 168

−1

0

1

85

Phase and signal shape: linear phase offset

x [n] =
1

2
sin(ω0n + θ0) + cos(2ω0n+ 2θ0) θ0 =

8π

5

0 28 56 84 112 140 168

−1

0

1

86

Phase and signal shape: nonlinear phase offset

x [n] =
1

2
sin(ω0n) + cos(2ω0n + 2θ0)

0 28 56 84 112 140 168

−1

0

1

87

Linear phase

x z−d y = S−dx

simple delay

y [n] = x [n − d]

Y (ω) = e−jωd X (ω)

H(ω) = e−jωd

linear phase response

88

Linear phase systems

A linear phase system can be split as the cascade of

a zero-phase system with frequency response A(ω) ∈ R

a delay

we will see later how this works if d is not an integer

x A(ω) delay by d x

89

Moving Average is linear phase

H(ω) =
1

M

sin
(

ω
2M
)

sin
(

ω
2

) e−j M−1
2

ω

The processing delay introduced by a causal Moving Average is (M − 1)/2 samples

90

Noncausal moving average

hc [n] = h[n + (M − 1)/2]

Hc (ω) = e j
M−1
2

ω H(ω)

=
1

M

sin
(

ω
2M
)

sin
(

ω
2

) ∈ R

91

Leaky integrator: frequency response

h[n] = (1− λ)λn u[n]

b b b b b b b b b b

b

b

b

b
b

b
b

b
b

b
b

b
b b b b b b b b b b b b b b b b b b b

1− λ

0 15 30
0

92

Leaky integrator: frequency response

H(ω) =
1− λ

1− λe−jω

Finding magnitude and phase require a little algebra...

93

Leaky integrator: frequency response

Recall from complex algebra:
1

a + jb
=

a − jb

a2 + b2

so that if x = 1/(a + jb),

|x |2 =
1

a2 + b2

∠x = tan−1

[

−
b

a

]

94

Leaky integrator: frequency response

H(ω) =
1− λ

(1− λ cosω)− jλ sinω

so that:

|H(ω)|2 =
(1− λ)2

1− 2λ cos ω + λ2

∠H(ω) = tan−1

[

λ sinω

1− λ cosω

]

95

Leaky integrator: magnitude response

λ = 0.9

−π −π/2 0 π/2 π
0

1

|H
(ω

)|

96

Leaky integrator: magnitude response

λ = 0.95

−π −π/2 0 π/2 π
0

1

|H
(ω

)|

96

Leaky integrator: magnitude response

λ = 0.98

−π −π/2 0 π/2 π
0

1

|H
(ω

)|

96

Leaky integrator: phase response

λ = 0.9

−π/2

π/2

−π −π/2 0 π/2 π

∠
H
(ω

)

97

Leaky integrator: phase response

λ = 0.95

−π/2

π/2

−π −π/2 0 π/2 π

∠
H
(ω

)

97

Leaky integrator: phase response

λ = 0.98

−π/2

π/2

−π −π/2 0 π/2 π

∠
H
(ω

)

97

Phase is sufficiently linear where it matters

−π −π/2 0 π/2 π
0

1
|H

(ω
)|

−π/2

π/2

−π −π/2 0 π/2 π

∠
H
(ω

)

98

Modulation and demodulation

Classifying signals in frequency

Three broad categories according to where most of the spectral energy resides:

lowpass signals (also known as “baseband” signals)

highpass signals

bandpass signals

99

Lowpass example

−π −π/2 0 π/2 π

|X
(ω

)|

100

Highpass example

−π −π/2 0 π/2 π

|X
(ω

)|

101

Bandpass example

−π −π/2 0 π/2 π

|X
(ω

)|

102

Sinusoidal modulation

DTFT {x [n] cos(ωcn)} = DTFT

{

1

2
e jωcnx [n] +

1

2
e−jωcnx [n]

}

=
1

2
[X (ω − ωc) + X (ω + ωc)]

usually x [n] baseband

ωc is the carrier frequency

103

Example

−π 0 π

104

Example

ωc−π 0 π

104

Example

ωc−ωc−π 0 π

104

Example

ωc−ωc−π 0 π

104

Again, explicitly showing the periodicity of the spectrum

ωc−ωc ωc−ωc−4π −3π −2π −π 0 π 2π 3π 4π

105

Careful when the modulation frequency is too large!

ωc−ωc ωc−ωc−4π −3π −2π −π 0 π 2π 3π 4π

106

Careful when the modulation frequency is too large!

ωc−ωc−π 0 π

107

Sinusoidal modulation: applications

voice and music are lowpass signals

radio channels are bandpass, in much higher frequencies

modulation brings the baseband signal in the transmission band

demodulation at the receiver brings it back

108

Demodulation

y [n] = x [n] cos(ωcn) Y (ω) =
1

2
[X (ω − ωc) + X (ω + ωc)]

x ′[n] = 2y [n] cos(ωcn) X ′(ω) = Y (ω − ωc) + Y (ω + ωc)

= X (ω) +
1

2
[X (ω − 2ωc) + X (ω + 2ωc)]

109

Demodulation

X (ω)

−π 0 π

110

Demodulation

Y (ω)

ω0−ω0−π 0 π

110

Demodulation

Y (ω)

ω0−ω0−4π −3π −2π −π 0 π 2π 3π 4π

111

Demodulation

X ′(ω)

ω0ω0

ω0ω0−ω0−4π −3π −2π −π 0 π 2π 3π 4π

111

Demodulation

X ′(ω)

ω0 ω0

ω0−ω0−4π −3π −2π −π 0 π 2π 3π 4π

111

Demodulation

X ′(ω)

ω0−ω0−4π −3π −2π −π 0 π 2π 3π 4π

111

Demodulation

we recovered the baseband signal exactly...

but we have some spurious high-frequency components

how do we get rid of those?

112

Demodulation with lowpass filtering

X ′(ω)

−π 0 π

113

Demodulation with lowpass filtering

X ′(ω)

−π 0 π

113

Demodulation with lowpass filtering

X (ω)

−π 0 π

113

The modulation theorem

The convolution and modulation theorems

another example of time-frequency duality:

x ∗ y
DTFT
←−−−→ XY

xy
DTFT
←−−−→ X ∗Y

114

What is the convolution of DTFTs?

in ℓ2(Z) in L2([−π, π])

〈x, y〉 =
∞
∑

k=−∞

x∗[k]y [k]

〈x∗,Ry〉 =

∞
∑

k=−∞

x [k]y [−k]

〈x∗,S−nRy〉 =

∞
∑

k=−∞

x [k]y [n − k]

(x ∗ y)[n] =

∞
∑

k=−∞

x [k]y [n − k]

〈X,Y〉 =
1

2π

∫ π

−π
X ∗(σ)Y (σ)dσ

(RY)(σ) = Y (−σ)

(S−ωRY)(σ) = Y (ω − σ)

(X ∗ Y)(ω) = 〈X∗,S−ωRY〉

=
1

2π

∫ π

−π
X (σ)Y (ω − σ)dσ

115

Modulation theorem

w = x y

W = X ∗ Y

W (ω) =
1

2π

∫ π

−π
X (σ)Y (ω − σ)dσ

116

Modulation theorem: proof

Let’s compute the inverse DTFT of W = X ∗ Y at index n:

1

2π

∫ π

−π
W (ω)e jωndω =

1

(2π)2

∫ π

−π

∫ π

−π
X (σ)Y (ω − σ)e jωndσdω

=
1

(2π)2

∫ π

−π

∫ π

−π
X (σ)Y (ω − σ)e jσne j(ω−σ)ndσdω

=
1

2π

∫ π

−π
X (σ)e jσndσ

1

2π

∫ π

−π
Y (ω − σ)e j(ω−σ)ndω

= x [n] y [n]

117

Sinusoidal modulation and Dirac deltas

X (ω)

−π 0 π

118

Sinusoidal modulation and Dirac deltas

Y (ω) = DTFT {x [n] cos(ω0n)}

ω0−ω0−π 0 π

118

Sinusoidal modulation and Dirac deltas

DTFT {x [n] cosω0n} = X (ω) ∗
1

2
[δ̃(ω − ω0) + δ̃(ω + ω0)]

=
1

4π

∫ π

−π
X (ω − σ)δ̃(σ − ω0)dσ +

1

4π

∫ π

−π
X (ω − σ)δ̃(σ + ω0)dσ

=
1

2
[X (ω − ω0) + X (ω + ω0)]

Dirac deltas must always be inside of an integral!

119

Modulation, frequency beatings, and tuning a guitar

Tuning a guitar

Problem (abstraction):

reference sinusoid at frequency ω0

tunable sinusoid of frequency ω

make ω = ω0 “by ear”

120

The procedure

1 bring ω close to ω0 (easy)

2 when ω ≈ ω0 play both sinusoids together

3 trigonometry comes to the rescue:

x [n] = cos(ω0n) + cos(ωn)

= 2 cos

(

ω0 + ω

2
n

)

cos

(

ω0 − ω

2
n

)

≈ 2 cos(∆ωn) cos(ω0n)

121

What we hear when we tune

x [n] ≈ 2 cos(∆ωn) cos(ω0n) 2 cos(∆ωn) · cos(ω0n)

“error” signal

modulation at ω0

when ω ≈ ω0, the frequency of the error signal is too low to be heard; modulation brings
it up to hearing range and we perceive it as amplitude oscillations of the carrier frequency

122

In the time domain...

0 100 200 300

−2

−1

0

1

2

ω0 = 2π · 0.2, ω = 2π · 0.22, ∆ω = 2π · 0.0100

123

In the time domain...

0 100 200 300

−2

−1

0

1

2

ω0 = 2π · 0.2, ω = 2π · 0.22, ∆ω = 2π · 0.0100

123

In the time domain...

0 100 200 300

−2

−1

0

1

2

ω0 = 2π · 0.2, ω = 2π · 0.21, ∆ω = 2π · 0.0050

123

In the time domain...

0 100 200 300

−2

−1

0

1

2

ω0 = 2π · 0.2, ω = 2π · 0.205, ∆ω = 2π · 0.0025

123

In the time domain...

0 100 200 300

−2

−1

0

1

2

ω0 = 2π · 0.2, ω = 2π · 0.201, ∆ω = 2π · 0.0005

123

Filter classification

Impulse response

x H y

h = Hδ

y = h ∗ x

124

Filter classification based on impulse response

Finite Impulse Response (FIR)

Infinite Impulse Response (IIR)

causal/noncausal

125

Frequency response

x H y

H = DTFT {Hδ}

Y = HX

126

Magnitude response

Filters act as a multiplicative “mask” in the frequency domain:

stopband: region where |H(ω)| ≈ 0

passband: region where |H(ω)| ≥ 1

filters are classified according to passband location

127

Filter classification based on frequency response

types of magnitude response:

Lowpass

Highpass

Bandpass

Allpass

types of phase response:

Linear phase

Nonlinear phase

128

Ideal filters

What is the best lowpass we can think of?

ωc−ωc

ωb = 2ωc

−π 0 π
0

1

H
(ω

)

129

Ideal lowpass filter

H(ω) =

{

1 for |ω| ≤ ωc

0 otherwise
(2π-periodicity implicit)

design parameter: cut-off frequency ωc

perfectly flat passband with unit amplitude

infinite attenuation in stopband

zero-phase (no delay)

130

Ideal lowpass filter: impulse response

h = IDTFT {H}

h[n] =
1

2π

∫ π

−π
H(ω)e jωndω

=
1

2π

∫ ωc

−ωc

e jωndω

=
1

πn

e jωcn − e−jωcn

2j

=
sinωcn

πn

131

Ideal lowpass filter: impulse response

ωc = π/5

b
b b b

b
b

b b
b

b

b
b b

b

b

b

b
b

b

b

b

b

b

b
b

b

b

b

b

b

b
b

b

b

b

b
b b

b

b
b

b b
b

b
b b b

b

0

ωc/π

−20 −10 0 10 20

132

Ideal lowpass filter: impulse response

0

ωc/π

−100 −50 0 50 100

133

Ideal lowpass filter: impulse response

0

ωc/π

−800 −600 −400 −200 0 200 400 600 800

134

The sinc and rect functions

The sinc-rect pair:

rect(x) =

{

1 |x | ≤ 1/2
0 |x | > 1/2

sinc(x) =







sin(πx)

πx
x 6= 0

1 x = 0

(note that sinc(m) = 0 for m ∈ Z \ 0)

135

The ideal lowpass in canonical form

rect

(

ω

2ωc

)

DTFT
←−−→

ωc

π

sinc

(

ωc

π

n

)

136

Example

Ideal lowpass filter with cutoff frequency ωc = π/3:

H(ω) = rect

(

ω

2π/3

)

h[n] =
1

3
sinc

(n

3

)

137

Example

ωc = π/3

−π −2π/3 −π/3 0 π/3 2π/3 π
0

1

H
(ω

)

b b b b b b b b b b b b b b b b
b b

b
b b

b
b b

b

b b

b

b

b

b

b

b

b

b b

b
b b

b
b b

b
b b

b b b b b b b b b b b b b b b b

1/3

−30 −20 −10 0 10 20 30

0

h
[n
]

138

Time-frequency duality

Always remember:

narrow in frequency ⇒ wide in time

wide in frequency ⇒ narrow in time

rect

(

ω

2ωc

)

DTFT
←−−→

ωc

π
sinc

(ωc

π
n
)

width in frequency: 2ωc

width in time: width of main lobe

first zero crossing: n = π/ωc (since sinc(1) = 0)

width in time: ∝ 1/ωc

139

Wide bandwidth

ωc = 2π/3

−π −2π/3 −π/3 0 π/3 2π/3 π
0

1

H
(ω

)

b b b b b b b b b b b b b b b b b
b b b

b b b
b

b
b

b
b

b

b

b

b

b

b
b

b
b

b
b b b

b b b
b b b b b b b b b b b b b b b b b0

ωc/π

−30 −20 −10 0 10 20 30

h
[n
]

140

Narrow bandwidth

ωc = π/10

−π −2π/3 −π/3 0 π/3 2π/3 π
0

1

H
(ω

)

b b b b b b b b b b b b b b b b b b b
b

b
b

b
b

b
b

b
b

b b b b b
b

b
b

b

b
b

b
b

b
b b b b b b b b b b b b b b b b b b b0

ωc/π

−30 −20 −10 0 10 20 30

h
[n
]

141

To help your memory

frequency domain is easy to remember: H(ω) = rect
(

ω
2ωc

)

time domain is a sinc of the form h[n] = a sinc(an)

to find a:

• remember sinc(0) = 1, so a = h[0]

• use the inverse DTFT formula for n = 0: h[0] = 1
2π

∫

π

−π
H(ω)dω

• in this case, h[0] = 1
2π

∫

π

−π
H(ω)dω = (2ωc)/(2π)

• a = ωc/π

142

From the ideal lowpass...

ωc−ωc−π 0 π
0

1

H
(ω

)

143

... to the ideal highpass

ωc−ωc−π 0 π
0

1

H
(ω

)

144

Ideal highpass filter

Hhp(ω) =

{

1 for π ≥ |ω| ≥ ωc

0 otherwise
(2π-periodicity implicit)

Hhp(ω) = 1− Hlp(ω)

hhp[n] = δ[n]−
ωc

π
sinc

(ωc

π
n
)

145

Ideal bandpass filter

ω0 − ωc ω0 ω0 + ωc−ω0−π 0 π
0

1

H
(ω

)

146

Ideal bandpass filter

ωc−ωc−π 0 π
0

1

147

Ideal bandpass filter

ω0−π 0 π
0

1

147

Ideal bandpass filter

ω0−ω0−π 0 π
0

1

147

Ideal bandpass filter

Hbp(ω) =

{

1 for |ω ± ω0| ≤ ωc

0 otherwise
(2π-periodicity implicit)

hbp[n] = 2 cos(ω0n)
ωc

π
sinc

(ωc

π
n
)

148

The bad news

the ideal lowpass is... ideal : it cannot be implemented in practice

149

Why we can’t implement an ideal filter (I)

The impulse response h[n] = ωc

π sinc
(

ωc

π n
)

:

has two-sided infinte support

cannot be made causal

computing a single output value requires knowing the entire input (i.e. knowing the future)

by contrast, note that the impulse response of computable IIR filters
(such as the Leaky Integrator) can always be made causal

150

Why we can’t implement an ideal filter (II)

If x has infinite support

y [n] = (h ∗ x)[n] =
ωc

π

∞
∑

k=−∞

x [k] sinc

(

n − k

π/ωc

)

involves an infinite number of terms, i.e. it’s not computable in finite time.

151

Why we can’t implement an ideal filter (III)

What if x has finite support (say from 0 to N − 1)?

y [n] = (h ∗ x)[n] =
ωc

π

N−1
∑

k=0

x [k] sinc

(

n − k

π/ωc

)

can be computed but y [n] will be nonzero for all n starting at −∞;
again, we can’t compute this in finite time

152

Why we can’t implement an ideal filter (IV)

But can’t we come up with an algorithm like we did for the Leaky Integrator?
After all, the LI has an infinite impulse response!

Unfortunately no computable algorithm will yield a rect-shaped filter.
We will see why in the upcoming lectures about rational transfer functions.

153

FIR approximations of ideal filters

Overview:

Impulse truncation

Window method

Frequency sampling

154

How can we approximate an ideal lowpass?

Idea #1:

pick ωc

compute ideal impulse response h

truncate h to a finite-support h̄

h̄ defines an FIR filter, which we can always implement

155

Approximation by truncation

FIR approximation of length M = 2N + 1:

h̄[n] =















ωc

π
sinc

(ωc

π
n
)

|n| ≤ N

0 otherwise

156

Why this looks like a good idea

minimization of MSE (norm in L2([−π, π])) between ideal filter and its approximation:

MSE = ‖H− H̄‖2 =
1

2π

∫ π

−π
|H(ω) − H̄(ω)|2dω

using Parseval’s theorem

MSE = ‖H− H̄‖2

= ‖h− h̄‖2 (norm in ℓ2(Z))

=

∞
∑

n=−∞

|h[n]− h̄[n]|2

157

Remember the conservation of energy

norm in ℓ2(Z) norm in L2([−π, π])

‖x‖2 = ‖X‖2

∞
∑

n=−∞

|x [n]|2 =
1

2π

∫ π

−π
|X (ω)|2dω

∥

∥

∥

ωc

π
sinc

(ωc

π
n
)∥

∥

∥

2
=

1

2π

∫ π

−π

∣

∣

∣

∣

rect

(

ω

2ωc

)∣

∣

∣

∣

2

dω =
ωc

π

158

Keep the coefficients around n = 0

let I = {n0, n1, . . . , nM} the set of indices of the coefficients we keep:

MSE =

∞
∑

n=−∞

|h[n]− h̄[n]|2 =

∞
∑

n=−∞

[

|h[n]|2 + |h̄[n]|2 − 2|h[n]||h̄[n]|
]

=

∞
∑

n=−∞

|h[n]|2 −
∑

n∈I

|h̄[n]|2

= ωc/π −
∑

n∈I

|h̄[n]|2

MSE is minimized by keeping the largest coefficients

| sinc(αn)| ∝ 1/n

MSE is minimized by symmetric impulse truncation around zero
159

Why it’s not such a good idea, actually

0 π/2 π

0

1

H̄
(ω

)

160

Why it’s not such a good idea, actually

M = 9

0 π/2 π

0

1

H̄
(ω

)

160

Why it’s not such a good idea, actually

M = 21

0 π/2 π

0

1

H̄
(ω

)

160

Why it’s not such a good idea, actually

M = 101

0 π/2 π

0

1

H̄
(ω

)

160

Why it’s not such a good idea, actually

M = 301

0 π/2 π

0

1

H̄
(ω

)

160

The Gibbs phenomenon

The maximum error around the cutoff frequency
is around 9% of the height of the jump

regardless of M

161

Understanding the Gibbs phenomenon

h̄ = hw

w [n] =

{

1 |n| ≤ N

0 otherwise

H̄ = H ∗W

162

Understanding the Gibbs phenomenon

h̄ = hw

b b b b b b b b b b b
b

b
b

b
b

b

b

b

b

b

b

b

b

b
b

b
b

b
b

b b b b b b b b b b b

−20 −10 0 10 20
0

1

h
[n
]

b b b b b b b b b b b b b b b b

b b b b b b b b b

b b b b b b b b b b b b b b b b

−20 −10 0 10 20
0

1

w
[n
]

163

Understanding the Gibbs phenomenon

H̄ = H ∗W, W (ω) = sin(ωM/2)/ sin(ω/2)

0

1

H
(ω

)

−π −π/2 0 π/2 π

0

10

20

W
(ω

)

164

Remember the modulation theorem

(X ∗ Y)(ω) =
1

2π

∫ π

−π
X (σ)Y (ω − σ)dσ

165

Implicit frequency-domain convolution

N = 9,M = 2N + 1

0

1

H
(ω

)

0

10

20

W
(ω

)

−π −π/2 0 π/2 π

0

1

H̄
(ω

)

166

Implicit frequency-domain convolution

N = 9,M = 2N + 1

0

1

H
(ω

)

0

10

20

W
(ω

)

−π −π/2 0 π/2 π

0

1

H̄
(ω

)

166

Implicit frequency-domain convolution

N = 9,M = 2N + 1

0

1

H
(ω

)

0

10

20

W
(ω

)

−π −π/2 0 π/2 π

0

1

H̄
(ω

)

166

Implicit frequency-domain convolution

N = 9,M = 2N + 1

0

1

H
(ω

)

0

10

20

W
(ω

)

−π −π/2 0 π/2 π

0

1

H̄
(ω

)

166

Implicit frequency-domain convolution

N = 9,M = 2N + 1

0

1

H
(ω

)

0

10

20

W
(ω

)

−π −π/2 0 π/2 π

0

1

H̄
(ω

)

166

Implicit frequency-domain convolution

N = 9,M = 2N + 1

0

1

H
(ω

)

0

10

20

W
(ω

)

−π −π/2 0 π/2 π

0

1

H̄
(ω

)

166

Implicit frequency-domain convolution

N = 9,M = 2N + 1

0

1

H
(ω

)

0

10

20

W
(ω

)

−π −π/2 0 π/2 π

0

1

H̄
(ω

)

166

Implicit frequency-domain convolution

N = 9,M = 2N + 1

0

1

H
(ω

)

0

10

20

W
(ω

)

−π −π/2 0 π/2 π

0

1

H̄
(ω

)

166

Implicit frequency-domain convolution

N = 9,M = 2N + 1

0

1

H
(ω

)

0

10

20

W
(ω

)

−π −π/2 0 π/2 π

0

1

H̄
(ω

)

166

Implicit frequency-domain convolution

N = 9,M = 2N + 1

0

1

H
(ω

)

0

10

20

W
(ω

)

−π −π/2 0 π/2 π

0

1

H̄
(ω

)

166

Implicit frequency-domain convolution

N = 9,M = 2N + 1

0

1

H
(ω

)

0

10

20

W
(ω

)

−π −π/2 0 π/2 π

0

1

H̄
(ω

)

166

Implicit frequency-domain convolution

N = 9,M = 2N + 1

0

1

H
(ω

)

0

10

20

W
(ω

)

−π −π/2 0 π/2 π

0

1

H̄
(ω

)

166

Implicit frequency-domain convolution

N = 9,M = 2N + 1

0

1

H
(ω

)

0

10

20

W
(ω

)

−π −π/2 0 π/2 π

0

1

H̄
(ω

)

166

Implicit frequency-domain convolution

N = 9,M = 2N + 1

0

1

H
(ω

)

0

10

20

W
(ω

)

−π −π/2 0 π/2 π

0

1

H̄
(ω

)

166

Implicit frequency-domain convolution

N = 9,M = 2N + 1

0

1

H
(ω

)

0

10

20

W
(ω

)

−π −π/2 0 π/2 π

0

1

H̄
(ω

)

166

Implicit frequency-domain convolution

N = 9,M = 2N + 1

0

1

H
(ω

)

0

10

20

W
(ω

)

−π −π/2 0 π/2 π

0

1

H̄
(ω

)

166

Implicit frequency-domain convolution

N = 9,M = 2N + 1

0

1

H
(ω

)

0

10

20

W
(ω

)

−π −π/2 0 π/2 π

0

1

H̄
(ω

)

166

Mainlobe and sidelobes

0
−5

0

5

10

15

20

W
(ω

)

167

What if we change the window?

We want:

narrow mainlobe so that transition is sharp

small sidelobe so Gibbs error is small

short window so FIR is efficient

very conflicting requirements!

168

Triangular window

b b b b b b b b b b b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b b b b b b b b b b b

−20 −10 0 10 20
0

1

w
[n
]

169

Rectangular vs Triangular Window

19-tap rectangular
19-tap triangular

π/2

170

Window method: pros and cons

Pros:

extremely simple

minimizes MSE

Cons:

can’t control max error (Gibbs)

must know the impulse response (not easy for arbitrary frequency responses)

171

Frequency sampling

Idea #2:

draw desired frequency response H(ω)

take M equally-spaced values of the frequency response over the [0, 2π] interval:

HM [k] = H(ωk), ωk = (2π/M)k , k = 0, 1, . . . ,M − 1

compute the inverse DFT: hM = IDFT {HM}

use the impulse response

h̄[n] =

{

hM [n] 0 ≤ n < M

0 otherwise

172

Frequency sampling: desired response

−π −π/2 0 π/2 π
0

1

173

Frequency sampling: from DTFT to DFT

get M samples over the [0, 2π] interval, so they are ready for the IDFT

bc bc bc

bc bc bc bc bc bc

bc bc

M = 11

−2π −3π/2 −π −π/2 0 π/2 π 3π/2 2π
0

1

174

Frequency sampling: DFT samples

HM [k]

b b b

b b b b b b b

b b

0 1 2 3 4 5 6 7 8 9 10 11
0

1

175

Frequency sampling: impulse response from IDFT

hM [n] h̄[n]

b

b

b

b

b

b

b

b

b

b

b

b b0

176

Frequency sampling: what happens in the time domain

hM = IDFT {HM}

HM [k] = H

(

2π

M
k

)

, k = 0, 1, . . . ,M − 1

177

Frequency sampling: what happens in the time domain

hM [n] =
1

M

M−1
∑

k=0

HM [k] e j
2π
M

nk

=
1

M

M−1
∑

k=0

H

(

2π

M
k

)

e j
2π
M

nk

=
1

M

M−1
∑

k=0

(

∞
∑

m=−∞

h[m]e−j 2π
M

k

)

e j
2π
M

nk

=

∞
∑

m=−∞

h[m]
1

M

M−1
∑

k=0

e−j 2π
M

(m−n)k

178

a familiar result

M−1
∑

k=0

e−j 2π
M

(m−n)k =

{

M if m − n multiple of M

0 otherwise

179

Frequency sampling: what happens in the time domain

hM [n] =

∞
∑

m=−∞

h[m] δ[(m − n) mod M]

=

∞
∑

m=−∞

h[n+mM]

sampling in the frequency domain results in periodization in the time domain

180

Frequency sampling: impulse response from IDFT

h[n]

b b b b b b b b b b b b
b
b
b
b
b
b
b
b
b
b
b
b
b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b
b
b
b
b
b
b
b
b
b
b
b
b
b b b b b b b b b b b b

−33 −22 −11 0 11 22 33

0

181

Frequency sampling: impulse response from IDFT

h[n], h[n −M]

b b b b b b b b b b b b
b
b
b
b
b
b
b
b
b
b
b
b
b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b
b
b
b
b
b
b
b
b
b
b
b
b
b b b b b b b b b b b bb b

b
b
b
b
b
b
b
b
b
b
b
b
b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b
b
b
b
b
b
b
b
b
b
b
b
b
b

−33 −22 −11 0 11 22 33

0

181

Frequency sampling: impulse response from IDFT

. . . , h[n + 2M], h[n +M], h[n], h[n −M], h[n − 2M], . . .

b b b b b b b b b b b b
b
b
b
b
b
b
b
b
b
b
b
b
b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b
b
b
b
b
b
b
b
b
b
b
b
b
b b b b b b b b b b b bb b

b
b
b
b
b
b
b
b
b
b
b
b
b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b
b
b
b
b
b
b
b
b
b
b
b
b
bb b

b
b
b
b
b
b
b
b
b
b
b
b
b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b
b
b

b b
b
b
b
b
b
b
b
b
b
b
b
b
b
b

b

b

b

b

b

b

b

b

b

b

b

bb
b
b
b
b
b
b
b
b
b
b
b
b
b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b
b
b
b
b
b
b
b
b
b
b
b
b
b b

b
b
b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b
b
b
b
b
b
b
b
b
b
b
b
b
b bb

b

b

b

b

b

b

b

b

b

b

b

b
b
b
b
b
b
b
b
b
b
b
b
b
b
b b

−33 −22 −11 0 11 22 33

0

181

Frequency sampling: impulse response from IDFT

hM [n] =
∑

∞

m=−∞
h[n +mM]

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

−33 −22 −11 0 11 22 33

0

181

Frequency sampling: impulse response from IDFT

h̄[n]

b b b b b b b b b b b b
b
b
b
b
b
b
b
b
b
b
b
b
b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b
b
b
b
b
b
b
b
b
b
b
b
b
b b b b b b b b b b b bb b

b

b

b

b

b

b

b

b

b

b

b

b b

−33 −22 −11 0 11 22 33

0

181

Frequency sampling: what happens in the frequency domain

what is the frequency response H̄?

hM : M-point inverse DFT of frequency samples HM with HM [k] = H
(

2π
M
k
)

h̄: finite-support extension of hM

DFT coefficients HM are known

use the DFT to DTFT result for finite-support sequences: Lagrangian interpolation

182

DTFT of finite-support signals

smooth interpolation of DFT values:

H̄(ω) =
M−1
∑

k=0

HM [k]ΛM

(

ω −
2π

M
k

)

ΛM(ω) =
1

M

sin
(

ω
2M
)

sin
(

ω
2

) e−j ω
2
(M−1)

183

Frequency sampling: frequency response

H̄

bb bb bb

bb bb bb bb bb

bb bb bb

−π −π/2 0 π/2 π

184

Frequency sampling: pros and cons

Pros:

simple

works with arbitrary frequency responses

Cons:

can’t control max error

185

