
Chapter 6

Discrete-Time Filters

Linear and time-invariant systems represent the fundamental class of signal processing
devices. In this chapter we will study their many properties in detail, but we will always
make sure to support and complement each theoretical derivation with practical examples.
Our helpers in this journey are going to be two of the most useful and commonly used
discrete-time filters, the moving average and the leaky integrator; they will be introduced
informally at first, as intuitive solutions to a data processing toy problem, and they will
reappear throughout the chapter in many concrete demonstrations of the properties that
characterize all LTI systems.

The fundamental takeaway concept in this chapter is the convolution operation, which
emerges naturally as the answer to two apparently unrelated questions:

• what are the consequences of requiring linearity and time invariance in a signal
processing device? and

• how can we “reshape” the spectrum of a signal via multiplication by a desired
“mask”?

The fact that both problems are solved by the same mathematical device is arguably the
main reason behind the success of LTI systems. But of course the convolution appears
in many other contexts as well (deep learning being probably the most famous) and, in
general, we can expect it to be the answer whenever we want to use a signal to modify
another signal in a meaningful way.

6.1 Linear Time-Invariant Systems

In its most general form, a discrete-time system is a processing unit that accepts one or
more sequences as inputs and produces one or more sequences as outputs. This definition
is clearly very broad and it’s only by imposing additional constraints that we can arrive
at a precise mathematical characterization of a system’s properties. In this chapter we
will thus focus on synchronous, single-input single-output, linear time-invariant (LTI)

1

2 6 – Discrete-Time Filters

x H y

Figure 6.1: Representation of a discrete-time filter.

systems, commonly known as discrete-time filters, whose schematic representation is shown
in Figure 6.1. A synchronous system produces an output sample for every incoming input
sample and so a filter acts as an operator transforming an input sequence into an output
sequence:

y = Hx; (6.1)

the operation is said to be linear if, for any choice of x and w and for any scalar
, we
have

H(
x) =
(Hx) (6.2)

H(x +w) = Hx +Hw (6.3)

and it is time-invariant if

H(S :x) = S
:(Hx) ∀: ∈ Z (6.4)

where S is the time shift operator1.

Linearity and time invariance describe in idealized form the kind of “reasonable” prop-
erties that we expect of a system. Consider for instance the case of an electric guitar
connected to an amplifier: if we strum multiple strings at once we expect to hear a sound
that’s equal to the superposition of the sounds we would obtain by plucking each string
independently, that is, we expect the amplifier to behave linearly. Similarly, it’s reasonable
to assume that the amplifier will operate in exactly the same way no matter when we start
playing; that is, we expect it to be time-invariant. Nevertheless, even the best real-world
systems are always only approximately LTI; linearity, in particular, is guaranteed only if
the input amplitude is within the nominal operating range declared by the manufacturer.
Time invariance is usually less of a problem but, over time, all phsyical devices will start to
show signs of wear and ageing, and their characteristics may change significantly.

Finally, let’s also note that LTI systems are not always what we want or need: the sound of
a distorted electric guitar, for instance, is the result of carefully designed but deliberately
nonlinear audio processing devices. Adaptive systems, which are at the heart of all
modern telecommunication techniques, are inherently time-variant since their response
changes a function of external circumstances independent of the input signal. However,
as we are about to see, it’s only with linearity and time invariance that a rich set of
mathematical results can be developed to the analysis of discrete-time systems; and these
results remain foundational even when, in the final design, a processing device also
includes non-LTI components.

1See Section ?? for a recap on the notation used for signal operators.

6.1 – Linear Time-Invariant Systems 3

6.1.1 Denoising filters

The best way to discover and understand the properties of LTI systems is to observe them
“in action”; this is particularly easy to do in the case of discrete-time filters because they
are numerical algorithms whose software implementation can be achieved in just a few
lines of code.

A simple, intuitive, and yet realistic example is the problem of how to “clean up” a
signal affected by additive random noise; typically, any set of discrete-time experimental
measurements x can be modeled as the sum

x = x2 + (

where x2 is the clean signal that we are trying to capture and (is a sequence of ran-
dom noisy perturbations that affect each measured sample as a consequence of various
unpredictable factors in the experimental setup (thermal noise, interferences, vibrations,
etc.) With no additional information on the nature of the signals at play, it is obviously
impossible to recover x2 and (from their observed sum x; in general, however, the signal
and the noise possess very different characteristics, something we can exploit to design
a denoising strategy. For instance, we can almost always assume the clean signal to be
smooth and slow-varying compared to the quickly-changing sequence of random noise
samples; a typical example is shown in Figure 6.2, where the noise is visually apparent as
small wiggles distorting the shape of a much slower, smooth signal.

Experimentally, when faced with noisy measurements, a standard approach is to apply
some form of averaging to the data, which works as long as the noise is sufficiently random
and its mean value is close to zero. We will now describe two discrete-time filters that
implement such an averaging operation and that can be used to denoise a signal. In this
section we will focus on proving their linearity and time invariance starting from their
completely intuitive algorithmic design. In the rest of this chapter we will return to both
filters to illustrate most of the fundamental properties of general LTI systems.

The Moving Average. If averaging reduces the effects of random noise, a simple idea to
clean up a signal is to replace every sample with a local average of " neighboring samples;
intuitively, if the clean signal is slow-varying, the local average will not be very far from
the clean sample value but, if the noise is random, its local average will be close to zero.
We can formalize this approach as a system whose input-output relationship is

H[=] =
1

"

"−1∑

:=0

G[= − :]. (6.5)

This algorithmic expression is easily implemented on a computing device and so we can
already verify experimentally that it does smooth the input signal, and that the smoothing
power increases with ", as shown in Figure 6.3. Note that the algorithm in (6.5) uses
only current and past input samples, and thus it can work in real time (that is, it does not
rely on future, unknown data).

4 6 – Discrete-Time Filters

0 100 200 300 400 500

−6

−4

−2

0

2

4

6

Figure 6.2: A discrete-time noisy signal.

The LTI system described by Equation (6.5) is called a moving average (MA) filter. One
informal way to show its LTI nature is to rewrite Eq. (6.5) in operator notation as

Hx =
1

"

"−1∑

:=0

S
−:x; (6.6)

and to notice that it involves only linear operations (sums and scalar multiplications) and
time-invariant operators (discrete-time delays). Formally, as a useful exercise, we can
prove both properties explicitly as follows: to have linearity it must be

H(
x) =
Hx

H(x +w) = Hx +Hw

and, indeed,

1

"

"−1∑

:=0

G[= − :] =

1

"

"−1∑

:=0

G[= − :]

1

"

"−1∑

:=0

(G[= − :] + F[= − :]) =
1

"

"−1∑

:=0

G[= − :] +
1

"

"−1∑

:=0

F[= − :];

similarly, time invariance requires

H(S<x) = S
<(Hx)

and, indeed,

1

"

"−1∑

:=0

G[(= + <) − :] =
1

"

"−1∑

:=0

G[(= − :) + <]

6.1 – Linear Time-Invariant Systems 5

" = 2

0 100 200 300 400 500

−6

−4

−2

0

2

4

6

" = 4

0 100 200 300 400 500

−6

−4

−2

0

2

4

6

" = 12

0 100 200 300 400 500

−6

−4

−2

0

2

4

6

" = 100

0 100 200 300 400 500

−6

−4

−2

0

2

4

6

Figure 6.3: Effects of the moving average filter for different values of ".

6 6 – Discrete-Time Filters

The moving average algorithm requires " − 1 additions and one multiplication per
output sample, as well as a memory buffer of length " − 1 to keep track of past input
values; the computational requirements of the filter are thus proportional to " (see also
Exercise ??).

The Leaky Integrator. Many practical denoising applications require a significant
amount of data smoothing and, with a moving average filter, this can only be attained
with large values for ". Since the computational resources of a signal processing device
can often be quite limited, it would be useful to have an equivalent averaging filter whose
computational cost remained constant and independent of smoothing power.

Since the computational costs are proportional to " and since the available processing
resources are often limited, we would like to design an averaging filter with b

As an alternative, consider the following ideas: first of all, instead of computing the
average from scratch every time, which requires " additions, we could instead “update”
the previous result like so: if

H[=] =
1

"
(G[=] + G[= − 1] + . . . + G[= −" + 2] + G[= −" + 1])

and

H[= − 1] =
1

"
(G[= − 1] + G[= − 2] + . . . + G[= −" + 1] + G[= −"])

then the updated average can be obtained by “forgetting” the oldest sample and replacing
it with the new:

H[=] =
1

"
G[=] +

1

"
(G[= − 1] + . . . + G[= −" + 1] + G[= −"]) −

1

"
G[= −"]

= H[= − 1] −
1

"
G[= −"] +

1

"
G[=].

Although this requires only two additions and one multiplication per output sample,
the storage requirements remain the same since we need to remember the past " input
samples. But what if, instead of removing the oldest sample exactly, we simply discard
from the current mean a fraction 1/" of its own value? With the approximation

H[= − 1] −
1

"
G[= −"] ≈ H[= − 1] −

1

"
H[= − 1]

we can rewrite the recursive update as

H[=] = �H[= − 1] + (1 − �)G[=], � =
" − 1

"
(6.7)

which requires only two multiplications and one addition per sample and uses just one
memory cell to keep track of the previous output. Before analyzing the structure and

6.1 – Linear Time-Invariant Systems 7

� = 0.2

0 100 200 300 400 500

−6

−4

−2

0

2

4

6

� = 0.5

0 100 200 300 400 500

−6

−4

−2

0

2

4

6

� = 0.8

0 100 200 300 400 500

−6

−4

−2

0

2

4

6

� = 0.98

0 100 200 300 400 500

−6

−4

−2

0

2

4

6

Figure 6.4: Effects of the leaky integrator for different values of �.

8 6 – Discrete-Time Filters

the implications of this new approach, we can easily verify numerically that it works;
Figure 6.4 shows the effects of the algorithm on the input sequence in Figure 6.2 for
different values of� and we can notice that the smoothing power increases as� approaches
unity.

The system described by Equation (6.7) is called a leaky integrator and it’s one of the most
common filters used in signal processing. But before we can call it a filter, we need to
show that the system is linear and time invariant and this is a bit more complicated to do
than in the case of the moving average because the algorithm is recursive: if every output
value depends on its predecessor, there seems to be no starting point for a formal proof.
The way around this “chicken and egg” situation is assuming that the system is intially
off and that it is only switched on at a known time instant. This working hypothesis is
called zero initial conditions and, formally, it states that there exists a time index =0 such
that:

• the input to the system is identically zero for = < =0

• the output of the system is also identically zero for = < =0

• at = = =0 all memory elements in the systems are filled with zeros.

Assuming zero initial conditions, the response to an input sequence x is

H[=] =

{
0 = < =0

�H[= − 1] + (1 − �)G[=] = ≥ =0

and, very importantly, this response is guaranteed to be unique: namely, if Hx = y then
there cannot exist a sequence w ≠ y such that Hx = w. By contradiction, assume this
were not the case and let t = y −w:

C[=] =

{
0 = < =0

�H[= − 1] + (1 − �)G[=] − �F[= − 1] − (1 − �)G[=] = ≥ =0

=

{
0 = < =0

�C[= − 1] = ≥ =0

= 0

but, if t = 0 then necessarily w = y. Although this result may seem self-evident at first,
please note that, for = ≥ =0, we proved C[=] = 0 by induction, and this is only valid under
zero initial conditions. As a counterexample, consider a defective leaky integrator that
fails to reset its internal storage when switched on, so that at time = = =0 its memory cell
contains a random nonzero value 0; when applied repeatedly to the same input sequence,
this system will return a different output signal every time:

H[=] =





0 = < =0

0 + G[0] = = =0

�H[= − 1] + (1 − �)G[=] = > =0

6.1 – Linear Time-Invariant Systems 9

This uniqueness result is the key to showing that the leaky integrator is indeed LTI. The
starting point is the input-output relation y = Hx with zero initial conditions at = = =0.
To prove linearity, we begin by showing that the sequences
x and
y satisfy the leaky
integrator’s input-output relation for all
 ∈ C, which is obviously the case:

H[=] = �H[= − 1] + (1 − �)G[=] =⇒
H[=] = �
H[= − 1] + (1 − �)
G[=];

since the response is unique, then H(
x) =
y. The same argument can be used to show
that H(x +w) = Hx +Hw.

To prove time invariance, let s = S<x be a time-shifted version of the input; note that,
when shifting the input, the start time for zero initial conditions is also shifted by the
same amount: if G[=] = 0 for = < =0, then B[=] = G[= +<] = 0 for = < =0 −<. Let d = Hs;
we want to show that d = S<y. From the expression for the output

3[=] =

{
0 = < =0 − <

�3[= − 1] + (1 − �)B[=] = �3[= − 1] + (1 − �)G[= + <] = ≥ =0 − <

a first change of variable 8 = = + < yields

3[8 − <] =

{
0 8 < =0

�3[8 − < − 1] + (1 − �)G[8] 8 ≥ =0

and with a second change of variable 2[8] = 3[8 − <]we obtain

2[8] =

{
0 8 < =0

�2[8 − 1] + (1 − �)G[8] 8 ≥ =0

This shows that c = Hx which, because of uniqueness, also means that c = y. But, by
definition, c = S−<d or, equivalently,

d = S
<c = S

<y

which is what we wanted to prove. In the end,

H(S<x) = S
<(Hx).

To conclude our first encounter with the leaky integrator, a few words on the origins of
its name. Consider a system that computes the running sum of a sequence up to time
=:

B[=] =

=∑

:=−∞

G[:];

this operation is the discrete-time equivalent of computing the integral of a function. The
running sum can be clearly computed recursively as

B[=] = B[= − 1] + G[=]

and so a leaky integrator is a discrete-time integrator where the running sum “leaks” a
little bit at each step according to the value of � (which is usually close to one); as we will
see shortly, this leakage is what prevents the divergence of the filter’s output.

10 6 – Discrete-Time Filters

6.2 The Impulse Response

For the filters introduced in the previous section, in both cases we started from an intuitive
algorithmic procedure and then we checked if it indeed defined an LTI transformation. We
will now flip our approach and, assuming linearity and time invariance, we will derive
the general properties of an LTI system in the time domain. When designing or choosing
a filter for a specific application, the first step will always be choosing one of the different
filter “families” defined by these properties.

The impulse response is the output produced by a discrete-time system when the input is
the delta sequence:

h = H%. (6.8)

If linear and time-invariant, a system is fully described by its impulse response; in particu-
lar, given an arbitrary input signal x, the system’s output can be computed algorithmically
using only h. To see this, remember that we can always express a signal as the sum of
scaled atomic components (that is, as in Eq. (??), as a linear combination of the canonical
basis vectors for !2(Z)), namely:

x =

∞∑

:=−∞

G[:] %: ,

where %: is the shifted delta sequence S−:% or, explicitly,

�:[=] = �[= − :] =

{
1 = = :

0 = ≠ :.

Because of linearity and time invariance, the system’s response to x can be expressed
as:

Hx = H

(
∞∑

:=−∞

G[:]S−:%

)

=

∞∑

:=−∞

G[:]H
(
S
−:%

)

=

∞∑

:=−∞

G[:]S−:h. (6.9)

that is, as the linear combination of time-shifted copies of the impulse response, each
scaled by an input sample. This special linear combination is called the convolution of the
sequences x and h, and it is compactly notated as

x ∗ h

6.2 – The Impulse Response 11

Explicitly, if H% = h and Hx = y, the convolution can be expressed in algorithmic form
as

H[=] =

∞∑

:=−∞

G[:]ℎ[= − :]; (6.10)

and, with the change of variable < = = − :, commutativity is easily proven:

(x ∗ h)[=] =

∞∑

:=−∞

G[:]ℎ[= − :] =

∞∑

<=−∞

G[= − <]ℎ[<] = (h ∗ x)[=]. (6.11)

We will return to the meaning and the properties of Equations (6.9) and (6.10) in Sec-
tion 6.3.

6.2.1 Filter properties in the time domain

By analyzing its impulse response, a filter can be characterized in three fundamental
ways.

FIR vs IIR. A filter’s impulse response is always an infinite-length signal (since the delta
sequence is infinte-length) but it may have only a finite number of nonzero samples2.
Every discrete-time filter therefore belongs to one of two families:

• FIR filters, for which the impulse response is finite-support. For an FIR, the sum
in (6.11) only contains a finite number of terms, ensuring a fixed upper bound on
the amount of computation per output sample. Additionally, since the output of an
FIR is a linear combination of input values only, these filters have no feedback paths
and are always stable, as we will see momentarily.

• IIR filters, for which the impulse response has infinite support. The important
subclass of realizable filters comprises the IIRs that can be implemented with a finite
amount of computation per output sample; as we will show later, these filters have a
one-sided impulse response and, algorithmically, they contain one or more internal
feedback paths.

Causality. A system is called causal if its output at time = does not depend on future input
values; intuitively, if we want a filter to work in real-time, the filter must necessarily be
causal. An LTI system with impulse response h is causal if and only if ℎ[=] = 0 for = < =0

for some =0 ≥ 0; indeed, in this case, the sum in (6.10) becomes

H[=] =

=−=0∑

:=−∞

G[:]ℎ[= − :],

2In signal processing parlance, the nonzero values in the impulse response are often called taps.

12 6 – Discrete-Time Filters

which only involves past input values up to = − =0. By extension, we call any right-sided
sequence a strictly causal sequence.

When h is not strictly causal there are three possibilities:

1. the impulse response is nonzero only for a finite number of negative indexes, i.e.,
ℎ[=] = 0 for = < =0 with =0 a negative integer. In this case we call the system causal
up to a delay since it can be made causal via a finite time shift. Clearly, an FIR filter
is always causal up to a delay.

2. the impulse response is a left-handed sequence, i.e. ℎ[=] = 0 for = > 0, in which case
we call the system anticausal. Anticausal filtes appear mostly in textbook exercises
but can be of some practical interest in applications that work “offline” (that is, not
in real time).

3. the impulse response has infinite, two-sided support. Filters in this family cannot be
implemented in practice since each output sample depends on an infinite amount of
future input samples. We call these filters ideal because, with their abstract nature,
they provide the theoretical baseline against which the performance of all realizable
systems will be compared.

Stability. A natural requirement for a processing device is that the output shouldn’t
“blow up” if the input is reasonable, namely, if the input is a signal with a finite amplitude
range. In technical terms this is known as BIBO stability: a Bounded Input should produce
a Bounded Output.

In LTI systems, a necessary and sufficient condition for BIBO stability is the absolute
summabilty of the impulse response. To prove that the condition is sufficient, assume
that the input is bounded, that is, we have |G[=]| ≤ ! ∈ R+ for all values of =; with
this

��H[=]
�� =

�����

∞∑

:=−∞

ℎ[:]G[= − :]

�����

≤

∞∑

:=−∞

��ℎ[:]G[= − :]
��

≤ !

∞∑

:=−∞

��ℎ[:]
��

and the last term is indeed finite when h is absolutely summable. Conversely, if the
impulse response is not absolutely summable, we can find at least one bounded input that
makes the output diverge. Indeed, consider the sequence

G[=] =

{
1 if ℎ[−=] ≥ 0

−1 otherwise

6.2 – The Impulse Response 13

0

1/"

b b b b b b b b b b b b b

b b b b b b b b b b

b b b b

−10 −5 0 5 10

0

1/"

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

−10 −5 0 5 10

(a) (b)

Figure 6.5: Impulse response for a moving average filter of length " = 9; (a) causal and (b) noncausal,
zero-centered implementation.

which is clearly bounded since |G[=]| ≤ 1 and let’s compute the system’s response to x for
= = 0: x is clearly bounded since it takes values only over the set {−1, 0,+1}, and yet

H[0] =

∞∑

:=−∞

ℎ[:]G[−:] =

∞∑

:=−∞

��ℎ[:]
�� = ∞.

An important corollary is that FIR filters are always BIBO stable, since their impulse
response contains only a finite number of nonzero samples.

6.2.2 Examples revisited: impulse response

Moving Average. The impulse response of the moving average is

ℎ[=] =
1

"

"−1∑

:=0

�[= − :] =





1

"
0 ≤ = < "

0 otherwise.
(6.12)

Since this is a right-sided, finite-support sequence, the moving average is a causal FIR,
which is BIBO stable by definition.

The causal nature of the impulse response provides an explanation for the processing
delay introduced by the filter. Consider the problem of computing the local average of
a signal at a specific time =; the intuitive approach would be to select a set of samples
symmetrically centered around G[=], namely

H[=] =
1

2! + 1

!∑

:=−!

G[= − :].

This defines a noncausal moving average whose impulse response is centered in zero
and Figure 6.6 shows how this filter eliminates the lag between input and output that
was observed in Figure 6.3. From the practical point of view, the zero-centered moving

14 6 – Discrete-Time Filters

0 100 200 300 400 500

−6

−4

−2

0

2

4

6

Figure 6.6: Ouptuts of a causal (dashed line) and noncausal, zero-centered 101-tap moving average filter.
Input signal is shown in gray.

average is causal up to a delay, so it can be implemented using its causal version; in order
to re-align input and output, the output needs to be delayed by ! samples.

Leaky Integrator. In order to compute the impulse response of a leaky integrator we can
assume zero initial conditions at =0 = 0 since the delta sequence is zero for all negative
values of the index. With this, we can proceed iteratively until we detect a pattern:

ℎ[=] = 0 for = < 0

ℎ[0] = 1 − �

ℎ[1] = (1 − �)�

ℎ[2] = (1 − �)�2

...

ℎ[=] = (1 − �)�= .

The impulse response is therefore a causal, infinite-support exponential sequence, a
portion of which is shown in Figure 6.7-(a) for � = 0.8. The leaky integrator is thus
an IIR filter and therefore we must explicitly check if it is stable. One way to do so is
verifying that the impulse response is absolutely summable, as discussed in Section 6.2.1;
we obtain the geometric sum

∞∑

==−∞

��ℎ[=]
�� = |1 − �|

∞∑

==0

���=
�� (6.13)

which is finite if and only if |�| < 1. We have seen that the smoothing power of the
Leaky Integrator increases as � gets closer to one and now the condition for BIBO stability
explains why � should always remain smaller than one in magnitude.

6.3 – Convolution 15

Interestingly, although its impulse response has infinite length, the leaky integrator can
be implemented with a finite number of operations per output sample and it is thus a
realizable IIR filter. Like the moving average, the processing delay increases with the
smoothing power of the filter, but in order to quantify this delay we need to wait until we
can analyze filters in the frequency domain.

6.3 Convolution

Convolution is a mathematical operation that emerges naturally in the study of many
unrelated problems, from algebra to probability theory, from physics to data science.
This surprising diversity makes it difficult to choose a formal definition that’s both generic
and intuitive and perhaps the best approach is simply to say that “convolution is what
convolution does”. In the present context of discrete-time filters, what convolution does
is use a sequence (the impulse response) to modify another (the system’s input).

6.3.1 Mathematical Properties

The convolution of two sequences x and y is well-defined if and only if the sum

∞∑

:=−∞

G[:]H[= − :].

is finite for all values of =. This is always the case if both sequences are absolutely
summable but that’s not a necessary condition so that, for example, absolutely summable
sequences can be safely convolved with any sequence that’s simply bounded, as guaran-
teed by the BIBO stability theorem we saw in Section 6.2.1.

Convolution is linear and time-invariant, as expected from an operator that captures the
inner workings of an LTI system:

x ∗ (
y + �w) =
(x ∗ y) + �(x ∗w) (6.14)

x ∗ (S :y) = (S :x) ∗ y = S
:(x ∗ y). (6.15)

With a simple change of variable in (6.10) it is easy to prove commutativity

x ∗ y = y ∗ x (6.16)

as well as associativity

(x ∗ h) ∗w = x ∗ (h ∗w) (6.17)

but note that associativity only holds for absolutely summable sequences (see also Exer-
cise ??). If we think of h and w as the impulse responses of stable filters, Equation (6.17)
has two important corollaries:

16 6 – Discrete-Time Filters

b b b

b

b

b

b

b
b

b
b

b b b b b b b b

0 5 10 15

0

1

b b

b

b

b

b b b

−2 −1 0 1 2 3 4 5

0

1

2

3

4

(a) (b)

Figure 6.7: Impulse response and finite-support signal used in Figures 6.8 and 6.9.

1. a cascade of two (or more) stable filters is equivalent to a single filter whose impulse
response is the convolution of the individual impulse responses

2. by applying the commutative property, we have that

(x ∗ h) ∗w = x ∗ (h ∗w) = x ∗ (w ∗ h) = (x ∗w) ∗ h

meaning that in a cascade of two (or more) stable filters the order of the filters is
irrelevant.

6.3.2 Convolution and Impulse Response

Informally speaking, the relationship between a filter and its impulse response is quite
straightforward to visualize, in particular when the filter is causal3: starting from zero
initial conditions, we “kick” the filter on using an input signal whose energy is fully
concentrated in = = 0 and we record the resulting output. In discrete time, the maximally-
compact signal is the well-defined delta sequence and, since every possible signal can be
interpreted as a series of successive “kicks” with varying intensity, the output of an LTI
system will always be a sum of delayed replicas of the impulse response, scaled by the
intensity of each kick:

Hx =

∞∑

:=−∞

G[:]S−:h. (6.18)

In this formulation, illustrated in Figure 6.8, the output signal is built up globally, that
is, as the sum is evaluated incrementally, each successive term can affect the values of
potentially all output samples.

In practical implementations, by contrast, filters are expected to work synchronously, that
is, generate an output sample every time a new input sample arrives. If we restrict (6.18)

3In this section we will focus on how to interpret the impulse response and on the way it appears in the
algorithm for convolution. In order to proceed as intuitively as possible, all examples will use strictly causal
filters but, needless to say, the general ideas remain perfectly valid for noncausal systems as well.

6.3 – Convolution 17

b b b b b

b

b
b

b
b

b b

G[0] h

−5 0 5 10 15 20 25

0

1

2

3

4

5

b b b b b b

b

b

b
b

b
b

b b b b b b b b b b b b b b b b b b b

G[1] S−1h

−5 0 5 10 15 20 25

0

1

2

3

4

5

b b b b b b b

b
b

b b

G[2] S−2h

−5 0 5 10 15 20 25

0

1

2

3

4

5

b b b b b

b

b b

b

b

b

b
b

b
b

b b b b b b b b b b b b b b b b

y = x ∗ h

−5 0 5 10 15 20 25

0

1

2

3

4

5

Figure 6.8: Convolution as the sum of scaled and shifted copies of the impulse response.

18 6 – Discrete-Time Filters

b b b b b b b b b b

b

b

b

b b b b b b b b b b b b b b b b b b
b b b b

b
b

b b

H[−5] =
∑

: G[:]ℎ[−5 − :]

−10 −5 0 5 10 15 20

0

1

2

3

4

5

b b b b b b b b b b

b

b

b

b b b b b b b b b b b b b b b b b bb b b b b b b b b
b

b

b b b b b b b b b b b b b b b b b b b b

H[0] =
∑

: G[:]ℎ[0 − :]

−10 −5 0 5 10 15 20

0

1

2

3

4

5

b b b b b b b b b b

b

b

b

b b b b b b b b b b b b b b b b b bb b b b b b b b b b
b

b

b b b b b b b b b b b b b b b b b b b

H[1] =
∑

: G[:]ℎ[1 − :]

−10 −5 0 5 10 15 20

0

1

2

3

4

5

b b b b b b b b b b

b

b

b

b b b b b b b b b b b b b b b b b bb b b b b b b b b b b
b

b

b b b b b b b b b b b b b b b b b b

H[2] =
∑

: G[:]ℎ[2 − :]

−10 −5 0 5 10 15 20

0

1

2

3

4

5

b b b b b b b b b b

b

b

b

b b b b b b b b b b b b b b b b b bb b b b b b b b b b b b b b b b b b b
b

b

b b b b b b b b b b

H[10] =
∑

: G[:]ℎ[10 − :]

−10 −5 0 5 10 15 20

0

1

2

3

4

5

Figure 6.9: Convolution: algorithmic computation of individual samples.

6.3 – Convolution 19

to the computation of a single value, convolution reveals its algorithmic nature:

H[=] =

∞∑

:=−∞

G[:]ℎ[= − :].

This expression represents the classic “recipe” for filtering via convolution and, explicitly,
the steps to compute the filter’s output at time = are:

• time-reverse the impulse response: ℎ[:] → ℎ[−:]

• center it at index =: ℎ[−:] → ℎ[= − :]

• multiply it element-wise with the input and sum all the products.

The recipe, illustrated graphically in Figure 6.9, is simple and easy to remember but the
time reversal in the first step is often a bit puzzling and the source of some confusion.
To understand why the impulse response is initially flipped, let’s consider a simple filter
with CCDE

H[=] = F0G[=] + F1G[= − 1] + F2G[= − 2];

each output sample is the linear combination of three past4 input samples and therefore
the filter is a causal FIR with impulse response

ℎ[:] =

{
F: : = 0, 1, 2

0 otherwise.

The internal mechanics of this system can be illustrated as in Figure 6.10 where each
input term in the CCDE is linked to the output index via a connector labeled with the
corresponding coefficient. To compute the value of the output at time =, we first translate
this rigid arrangement of connectors so that the bottom arrow points to H[=]; then, for
each connector in turn, we compute the product between the label and the associated
input sample. As we do this, we can observe that, relative to the output index =,

• we move backwards over x in order to retrieve G[=], G[= − 1], G[= − 2]; but

• we simultaneously move forward over h in order to retrieve the associated coeffi-
cients: ℎ[0] for G[=], ℎ[1] for G[= − 1], ℎ[2] for G[= − 2].

And that’s the entire story: in the algorithm for convolution, we flip the impulse response
simply because the CCDE “scans” h and x in opposite directions. In fact, since convolution
is commutative, it makes no difference whether we flip one sequence or the other, and
things would be the same if we time-reversed the input instead:

(h ∗ x)[=] =

∞∑

:=−∞

G[:]ℎ[= − :] =

∞∑

:=−∞

ℎ[:]G[= − :] = (x ∗ h)[=].

4Here and in the following we use “past” as a shorthand for “current and past” samples, that is, nothing
from the future.

20 6 – Discrete-Time Filters

G[= − 4] G[= − 3] G[= − 2] G[= − 1] G[=] G[= + 1] G[= + 2]

H[= − 4] H[= − 3] H[= − 2] H[= − 1] H[=] H[= + 1] H[= + 2]

+

ℎ[0]ℎ[1]ℎ[2]

Figure 6.10: Graphical representation of the CCDE for a short causal FIR.

There is nevertheless a good reason behind the standard formulation: with causal systems,
a plot of the time-reversed impulse response provides an intuitive visual representation of
a filter’s “memory effects,” that is, of the way in which past input values affect each output
sample. With FIRs, for instance, such a plot would show that past inputs are relevant only
up to a finite delay; with IIRs, on the other hand, the plot will never be identically zero
no matter how far in the past we go, showing the long-range dependencies of recursive
filters.

Now that we have developed an intuitive interpretation for its time-reversed version, let’s
return to the impulse response in normal form and in particular to equation 6.18, where
it appears (with all its possible shifts) in the expression for a filter’s output. If we isolate
from the sum the term for : = 0 we can write:

y = G[0]h + r

where r is a sequence that does not depend on G[0]. Looking at the individual samples it
is

H[=] = ℎ[=]G[0] + A[=]

namely, ℎ[=] shows how the input at time 0 impacts the output at time =. Because of time
invariance, we can say in more general terms that the =-th sample of the impulse response
measures how an input value still affects the output = samples later. This makes a lot
of intuitive sense when paired with our earlier image of “kicking” an impulse response
out of a causal filter: for an arbitrary input signal, each sample is an individual kick
whose ripples propagate forward in time, leaving a trace in future values the output.
Compared to the time-reversed case, a plot of the normal impulse response provides the
complementary representation of a filter’s memory effects; in FIRs the range of influence
for each input sample is always finite, while in IIRs it extends to the end of time5.

5In practice, it extends until the value of G[=]ℎ[= + :] becomes too small for the finite numerical precision

6.3 – Convolution 21

6.3.3 Convolution and Inner Product.

In ℓ2(Z), convolution and inner product are both defined as a sum of products:

(h ∗ x)[=] =

∞∑

:=−∞

ℎ[= − :]G[:]

〈
h, x

〉
=

∞∑

:=−∞

ℎ∗[:]G[:];

because of this similarity, we can easily relate the two as

(h ∗ x)[=] =
〈
S
−=

Rh∗, x
〉

(6.19)

and see each value of the convolution as an inner product featuring a conjugated, time-
reversed, and appropriately time-shifted version of the first sequence.

The connection between inner product and convolution can be used to define how the
latter operates on other types of signals. In the space of #-periodic sequences, for instance,
convolution is computed by taking the sum of products over just one period, and this is
consistent with the definition of inner product in C̃# in (??):

(h̃ ∗ x̃)[=] =

#−1∑

:=0

G̃[:]H̃[= − :] (6.20)

=
〈
S
−=

R h̃∗, x̃
〉

(6.21)

The same definition can be applied to length-# sequences if all shifts are considered
circular; this provides a method to filter finite-length signals in which border effects are
implicitly handled by the circular convolution.

From the inner product definition in !2([−�,�]) we can also derive the convolution
formula for DTFTs, which will be useful later in the context of signal modulation. As
stated in (??)

〈X,Y〉 =
1

2�

∫ �

−�

-∗(�).(�)3�;

if we extend the reversal and shift operators to DTFTs like so

(RY)(�) = .(−�)

(S−$RY)(�) = .($ − �)

then by analogy we can write

(X ∗ Y)($) = 〈X∗, S−$RY〉

=
1

2�

∫ �

−�

-(�).($ − �)3�. (6.22)

of the underlying signal processing device — which always happen at some point if the filter is stable because,
to have stability, the impulse response must decay to zero.

22 6 – Discrete-Time Filters

6.4 The Frequency Response

The impulse response provides us with a time-domain view of a filter’s characteristics;
while essential, this perspective is only half of the story and we need to move to the
frequency domain to truly appreciate the processing power of LTI systems. To do so,
we will first prove the following fundamental result: complex exponential sequences are
eigensequences6 of linear time-invariant systems.

Consider a stable linear time-invariant system H whose input is a complex exponential
sequence F[=] = 4 9$0= ; a delay of : samples operates on w as

S
−:w = 4−9$0: w

and so we can use (6.9) to write

Hw = h ∗w

=

∞∑

:=−∞

ℎ[:]S−:w

= w

∞∑

:=−∞

ℎ[:]4−9$0:

= �($0)w. (6.23)

�($) is the DTFT of the impulse response and it is called the frequency response of the
filter. This result states that a complex exponential at frequency $0 will exit a filter as a
scaled version of itself and that the scaling factor is the frequency response of the filter
computed at $0. If we express the scaling factor in polar form as �($0) = �0 4

9�0 , we can
write

(Hw)[=] = �0 4
9($0=+�0) (6.24)

and we can see that the output oscillation is modified in amplitude by �0 =
���($0)

�� and
it is shifted in phase by �0 = ∡�($0); yet there is no change in frequency and so we can
state that LTI system cannot change the frequency of a sinusoidal input. Note that the stability
assumption for H can be relaxed to requiring simply that the impulse response is square
summable, in order to guarantee the existence of �($).

6.4.1 The Convolution Theorem

A straighforward extension of (6.23) is that the DTFT of the convolution of two sequences
is the product of their DTFTs. Indeed, consider two sequences x and h, both absolutely

6In continuous time, complex exponential functions are eigenfunctions of LTI systems. In discrete time
we use the slightly less standard term “eigensequences” to indicate an input signal whose shape is not
fundamentally changed by a filtering operation.

6.4 – The Frequency Response 23

summable, and their convolution y = x ∗ h; in the expression for the DTFT of y

.($) =

∞∑

==−∞

∞∑

:=−∞

G[:]ℎ[= − :] 4−9$=

we can safely interchange the order of summation because of absolute summability and,
by splitting the complex exponential, we obtain

.($) =

∞∑

:=−∞

G[:] 4−9$:
∞∑

==−∞

ℎ[= − :] 4−9$(=−:)

from which, after a change of variable, we obtain the so-called convolution theorem:

.($) = -($)�($) (6.25)

The theorem gives us the means to analyze the effect of a filter in the frequency domain,
since its effect is that of a multiplicative mask applied to the spectrum of the input
signal. Just as the impulse response is a complete description of a filter in the discrete-
time domain, the frequency response completely characterizes the filter in the frequency
domain and, indeed, the properties of LTI systems are almost always described primarily
in terms of the magnitude and phase of their frequency response.

6.4.2 The Magnitude Response

The most powerful intuition arising from the convolution theorem is obtained by con-
sidering the magnitudes of the spectra involved in a filtering operation. Recall that the
square magnitude of the DTFT represents a signal’s energy distribution in frequency; by
appropriately “shaping” the magnitude of a filter’s frequency response we can therefore
amplify or attenuate specific portions of the frequency content of the input. We can for
instance boost the lower frequencies in an audio signal to compensate for the acoustic
properties of a room; or limit the spectral support of a transmitted signal to match it to
a specific transmission channel. Since the magnitude response acts in a multiplicative
manner, if an input signal does not contain energy at a given frequency $0, a stable LTI
filter will not be able to create spectral content at that frequency; in other words, LTI
systems cannot create new frequency content (see also Exercise ??).

According to the way that it affects the input, a filter can be placed into one of four broad
categories7:

• Lowpass filters, for which the magnitude response is concentrated around $ = 0;
these filters preserve the low-frequency energy of the input signals and attenuate
or eliminate the high-frequency components.

7 Unless explicitly stated otherwise, we always assume that the impulse response of the filter is real-valued
and therefore the frequency response is symmetric in magnitude. Furthermore, although by definition all
frequency responses of discrete-time filters are 2�-periodic functions, in the interest of conciseness will
usually describe only the [−�,�] interval and tacitly assume 2�-periodicity.

24 6 – Discrete-Time Filters

• Highpass filters, for which the magnitude response is concentrated around $ = ±�;
these filters preserve the high-frequency energy of the input signals and attenuate
or eliminate the low-frequency components.

• Bandpass filters, for which the magnitude response is concentrated around$ = ±$2

with 0 < $2 < �; these filters preserve the energy of the input signals around the
frequency $2 and attenuate the signals everywhere else, notably around $ = 0 and
$ = ±�.

• Allpass filters, for which the magnitude response is a constant over the entire [−�,�]
interval. These filters only affect the phase of the input; a typical example is a filter
that only introduces a delay).

The frequency interval for which the magnitude response is close to zero is called the
stopband; conversely, the frequency interval for which the magnitude response is larger
than one is called the passband.

6.4.3 The Phase Response

The phase response of a filter affects the shape of the output signal. If we think of the input
as the sum of an infinite number of complex exponentials (as in the inverse DTFT formula)
we can see from (6.24) that the filter adds a different phase offset to each component as
a function of its phase response at the frequency of the component. A phase offset in
a complex exponential corresponds to a delay in the time domain and therefore, at the
output of the filter, the original frequency components of the input will each be delayed
by a varying amount. We have seen in Section ?? how phase alignment determines the
shape of a signal in the time domain; the phase response of a filter, therefore, can either
preserve the original shape or completely scramble it.

Linear Phase. In a linear-phase filter the phase response is proportional to the fre-
quency:

∡�($) = 4−9$3 3 ∈ R. (6.26)

An elementary example of a linear-phase system is a simple delay by < samples:

y = S
−<x;

the impulse response of this system is clearly h = %< and the frequency response is

�($) = 4−9$<

which coincides with the phase response. A delay obviously preserves the phase of its
input and this property applies to all strictly linear-phase systems, that is, systems for
which the frequency response can be expressed as

�($) =
���($)

�� 4−9$3.

6.4 – The Frequency Response 25

The expression describes the filter response as a cascade of two subsystems: a real-valued
zero-phase filter, which is necessarily noncausal and affects only the spectral magnitude
of the input, followed by a delay. We can distinguish two cases:

• when 3 ∈ N, the delay spans an integer number of samples;

• when 3 ∉ N, we are in the presence of a so-called fractional delay, which implies a
subsample shift between input and output. We will study the nature of fractional
delays more in detail in Section ??.

A filter is said to have generalized linear phase if its frequency response can be expressed
as

�($) = �($)4−9($3+)) , �($) ∈ R. (6.27)

In this case, besides the additional constant phase shift), possible changes of sign in
�($)will cause a jump of � in the phase response; nevertheless, generalized linear phase
systems possess many of the same properties as in the case of strictly linear phase.

Group Delay. As we will see in Chapter ??, in practice the only realizable filters with
linear phase must be FIR; in all other cases (and, in particular, for all realizable IIR filters)
the phase will be nonlinear. It is often important to study how much the response deviates
from linearity; for instance, if the phase is approximately linear in the passband, we can
safely ignore an otherwise highly nonlinear response in the stopband.

A filter’s group delay is defined as the negative of the first derivative of the phase re-
sponse:

grd
{
�($)

}
= −

3∡�($)

3$
. (6.28)

The idea is that we can use this quantity to approximate the phase response around any
given frequency using a first-order Taylor approximation. Define !($) = ∡�($) and
approximate !($) around $0 as !($0 + �) = !($0) + �!′($0); we can write

�($0 + �) = |�($0 + �)| 4 9!($0+�)

≈
[
|�($0 + �)| 4 9!($0)

]
4 9!

′($0)� (6.29)

so that the phase response of the filter is approximately linear for at a group of frequencies
around a given $0. The delay for this group of frequencies is the negative of the derivative
of the phase, hence the definition of group delay, whose unit of measures is samples. For
linear-phase systems, the group delay is obviously a constant.

6.4.4 Key Examples Revisited in the Frequency Domain

Let’s now examine the frequency-domain characteristics of the filters we introduced in
Section 6.1.1.

26 6 – Discrete-Time Filters

Moving Average. The frequency response of the moving average filter is

�($) =
1

#

sin($#/2)

sin($/2)
4−9

#−1
2 $

= �($) 4−9
#−1

2 $ (6.30)

as we already computed in (??). The expression shows the product of a real-valued term
�($) times a pure phase factor so that magnitude and phase responses are immediate to
determine. The former is plotted in Figure 6.11 for varying values of "; from its shape
we can deduce that the filter is a lowpass, with a passband that shrinks as the support of
the finite-length impulse response becomes larger. Note how the magnitude response of
a Moving Average of length " has " − 1 zero crossings that take place at all multiples of
2�/" except in 0.

Looking at the phase response, it is clear from (6.27) that the filter is generalized linear-
phase with an effective delay of (#−1)/2 samples, as informally discussed in Section 6.2.2.
Figure 6.11 shows both the magnitude response and the term �($) in the top panel, and
the corresponding phase response in the bottom panel for " = 8. Note how each change
in sign for �($) causes the phase to jump by �.

Leaky Integrator The impulse response of the Leaky Integrator is a one-sided expo-
nentially decreasing sequence and therefore its frequency response is, as we showed
in (??),

�($) =
1 − �

1 − �4−9$
(6.31)

After a little complex algebra, magnitude and phase turn out to be

���($)
��2 =

(1 − �)2

1 + �2 − 2� cos($)
(6.32)

(6.33)

∡�($) = arctan

[
−

� sin($)

1 − � cos($)

]
; (6.34)

the group delay, also plotted in Figure ??, is obtained by differentiating the phase re-
sponse:

grd
{
�($)

}
=

� cos($) − �2

1 + �2 − 2� cos($)
(6.35)

The magnitude response is plotted in Figure 6.13 for a couple of values of �; we can see
that the Leaky Integrator is also a lowpass filter and, as shown in the denoising examples
at the beginning of this chapter, its bandwidth decreases as � gets closer to unity. The
phase response and group delay are shown in Figure 6.14; we can see from the group
delay that the delay for the frequencies in the passband increases with the smoothing
power of the filter.

6.4 – The Frequency Response 27

" = 9

−� −�/2 0 �/2 �

0

1

|�
($
)|

" = 20

−� −�/2 0 �/2 �

0

1

|�
($
)|

" = 100

−� −�/2 0 �/2 �

0

1

|�
($
)|

Figure 6.11: Magnitude response of the Moving Average filter for different values of ".

28 6 – Discrete-Time Filters

" = 9

−�/2 0 �/2

0

1

−�

�

−� −�/2 0 �/2 �

Figure 6.12: Magnitude and phase response of the Moving Average.

Denoising in the frequency domain: the Signal-to-Noise Ratio. The Moving Average
and Leaky Integrator were introduced in Section 6.1.1 to solve a denoising problem: we
had a slow-varying signal to which a fast-varying noisy perturbation had been added,
and we performed some sort of averaging in the time domain to reduce the effect of the
additive noise. Now that we know that both filters are lowpass, how can we interpret this
denoising ability from a frequency-domain perspective?

A precise mathematical model for additive noise will be discussed in Chapter ??, within
the framework of stochastic signal processing; all details aside, however, the gist of the
model is that a fast-varying random signal has a spectrum that is also random-looking
and that contains energy at all frequencies, as shown in Figure 6.15. Since the clean slow-
varying signal contains most of its energy in the low-frequency region of the spectrum,
denoising via lowpass filters works by reducing the energy of the noise outside of the
frequency support of the clean data. While we won’t be able to eliminate the additive
noise within the baseband portion that contains most of the signal’s energy, by removing
all the out-of-band noise we can improve the overall signal to noise ratio (SNR). Assume
that the original signal s has a spectrum (($) that is zero outside of the [−$2 , $2] interval,

6.4 – The Frequency Response 29

� = 0.9

−� −�/2 0 �/2 �

0

1

|�
($
)|

� = 0.99

−� −�/2 0 �/2 �

0

1

|�
($
)|

Figure 6.13: Magnitude response of the Leaky Integrator for different values of �.

whereas the noise n has a spectrum #($)with full spectral support, as shown in the left
panel of Figure 6.16. Remembering (??), the expression for the energy of a signal in the
frequency domain, the original SNR is8

SNRorig = 10 log10

∫ $2

−$2
|(($)|2 3$

∫ �

−�
|#($)|2 3$

.

Assume now we filter s + n via a lowpass whose magnitude response is sketched with a
dashed line in the right panel of Figure 6.16; the filter will remove all frequency compo-
nents outside of the support [−$2 , $2] of the original signal and the resulting SNR will
be

SNRdenoised = 10 log10

∫ $2

−$2
|(($)|2 3$

∫ $2

−$2
|#($)|2 3$

≥ SNRorig

8The SNR is the ratio between the energy of the signal and the energy of the noise. In general this
dimensionless quantity is expressed in decibels (dB) on a logarithmic scale.

30 6 – Discrete-Time Filters

� = 0.9

−� −�/2 0 �/2 �

0

1

|�
($
)|

−�/2

�/2

−�/2 0 �/2ra
d

ia
n

s

−� −�/2 0 �/2 �

0

2

4

6

8

sa
m

p
le

s

Figure 6.14: Magnitude, phase response, and group delay of the Leaky Integrator.

6.5 – Ideal Filters 31

0 100

−1

0

1

−� −�/2 0 �/2 �

0

Figure 6.15: Random noise and its magnitude spectrum.

0 �� $2$2

0

1

0 �� $2$2

0

1

Figure 6.16: Spectra of baseband signal and of noise (left panel); spectrum of noisy signal and outline
(dashed line) of a denoising lowpass filter.

This simple type of denoising is suitable to the case in which the clean data is baseband
while the noise is wideband, and this is generally the case for audio and speech signals.
More sophisticated denoising techniques would try to incorporate as many assumptions
as possible on the spectral properties of the desired signal.

6.5 Ideal Filters

The characterization of filters in the frequency domain immediately leads to the question
of what would the “best” filter be for each category; for instance, what is the “best”
lowpass filter that we can think of? The answer leads to the world of ideal filters, which
owe their name to the fact that, while possessing highly desirable properties, they cannot
be exactly implemented in practice. Before tackling the problem of approximating ideal
filters in applications, let us review the most common examples.

Ideal Lowpass. The ideal lowpass is a zero-phase filter that completely eliminates all
frequency content outside of a passband −$? < $ < $? , while leaving all frequencies
within the passband untouched. Its frequency response over [−�,�] can therefore be

32 6 – Discrete-Time Filters

−$? $?−� 0 �

0

1

−$? $?−� 0 �

0

1

(a) (b)

−$2 $2 − $? $2 $2 + $?−� 0 �

0

1

(c)

Figure 6.17: Real-valued frequency responses for an ideal lowpass (a), ideal highpass (b), ideal bandpass
(c).

expressed as9

�!($) =

{
1 |$ | ≤ $?

0 $? < |$ | ≤ �
(6.36)

an example of which is shown in Figure 6.17-(a). The impulse response can be easily
determined via the inverse DTFT as

ℎ![=] =
1

2�

∫ $?

−$?

4 9$=3$ =
sin($?=)

�=
(6.37)

The impulse response is therefore an infinite-support, two-sided sequence and, as we
discussed in Section 6.2.1, this implies that the filter cannot be implemented in prac-
tice. Nevertheless, the ideal lowpass and its associated DTFT pair are so important as
a theoretical paradigm that two special function names are commonly used; from the
definitions

rect(G) =

{
1 |G | ≤ 1/2

0 |G | > 1/2
(6.38)

(6.39)

sinc(G) =





sin(�G)

�G
G ≠ 0

1 G = 0
(6.40)

9See also footnote on page 23 concerning the assumed 2� periodicity of the frequency response.

6.5 – Ideal Filters 33

we can write

�!($) = rect

(
$

2$?

)
(6.41)

(obviously 2�-periodized over all R) and

ℎ![=] =
$?

�
sinc

($?

�
=
)

(6.42)

The DTFT pair:

$?

�
sinc

($?

�
=
)

DTFT
←→ rect

(
$

2$?

)
(6.43)

constitutes one of the fundamental relationships of digital signal processing. Note that
as $? → �, we re-obtain the well-known DTFT pair %↔ 1, while as $? → 0 we can

re-normalize by (�/$?) to obtain 1↔ �̃($).

The frequency $? is also called the cutoff frequency of the lowpass filter; the impulse
response of an ideal lowpass with cutoff $? = �/3 is shown in Figure 6.18. From the
definition, the sinc function is zero for all integer values of its argument except zero so, in
this case, every third sample is equal to zero.

b
b b

b
b b

b
b b

b
b b

b
b b

b
b b

b

b b

b

b b

b

b
b

b

b

b

b

b

b

b

b
b

b

b b

b

b b

b
b b

b
b b

b
b b

b
b b

b
b b

b
b b

b

−30 −20 −10 0 10 20 30

0.00

0.10

0.20

0.30

Figure 6.18: Impulse response of an ideal lowpass with $? = �/3.

Ideal Highpass. An ideal highpass filter is the complementary filter to an ideal lowpass,
in the sense that it eliminates all frequency content below a cutoff frequency $? ; its
(positive) passband extends therefore from $? to �. Its frequency response is

��($) =

{
0 |$ | ≤ $?

1 $2 < |$ | ≤ �
(6.44)

34 6 – Discrete-Time Filters

an example of which is shown in Figure 6.17-(b). From the relation ��($) = 1 −
rect($/2$?) the impulse response is easily obtained as

ℎ�[=] = �[=] −
$?

�
sinc

($?

�
=
)

Ideal Bandpass. The frequency response of an ideal bandpass filter with center fre-
quency $2 and bandwidth 2$? , with $? < $2 , is

��($) =

{
1 |$ ± $2 | ≤ $?

0 elsewhere
(6.45)

an example of which is shown in Figure 6.17-(c). It is left as an exercise to prove that the
impulse response is

ℎ�[=] = 2 cos($2=)
$?

�
sinc

($?

�
=
)

(6.46)

Hilbert Filter. The frequency response of the Hilbert filter is

��($) =

{
−9 0 ≤ $ < �

+9 −� ≤ $ < 0.
(6.47)

Its impulse response can be computed via an inverse DTFT as

ℎ�[=] =




2

=�
= odd

0 = even
(6.48)

and it is shown in Figure 6.19. Since
����($)

�� = 1, the Hilbert filter is an allpass. Its
phase response, on the other hand, is designed to introduce a phase shift such that, if
B[=] = B8=($0=) and 2[=] = cos($0=),

hF ∗ c = −s

hF ∗ s = −c;

this can be quickly verified using the generalized DTFTs for sine and cosine, (??) and (??).
More generally, the Hilbert filter is a basic building block for data demodulation, as we
will see in Section ??.

6.6 – Realizable Filters 35

b b b b b b b
b

b
b

b
b

b
b

b
b

b
b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b b b b b b b

−30 −20 −10 0 10 20 30

−0.50

−0.25

0.00

0.25

0.50

Figure 6.19: Impulse response of the Hilbert filter.

6.6 Realizable Filters

A filter is said to be realizable if, given a causal input sequence, each output sample can be
computed in a finite amount of time using a finite amount of memory. An LTI system is
completely characterized by its impulse response h and, once h is known, the output of the
system for a given input x can be computed at least in theory via the convolution sum (??).
In the case of FIR filters, the summation in (??) always involves only a finite number of
terms: this means that each output sample can be computed performing a finite number of
multiplications and additions over a finite number of past samples; an FIR filter, therefore,
is always realizable. At the other extreme, the ideal filters we saw in the previous section
are all non-realizable since their infinite, two-sided impulse responses require knowledge
of an infinite number of future input samples. In between, we have IIR filters with a
one-sided impulse response, namely, causal IIRs. The convolution between a causal IIR
and a causal input also involves a finite number of operations but, in the general case,
the number of terms in the sum grows linearly with the output index =, and this does
not fulfill our definition of realizability. We have seen however that if an LTI processing
operation can be described algorithmically (such as in the case of the Leaky Integrator),
then we can have a realizable filter with an infinite-support impulse response; we are
therefore interested in a general description of realizable IIR discrete-time filters.

6.6.1 Constant-Coefficient Difference Equations

Consider the problem of defining a universal algorithmic framework for realizable LTI
systems, that is, finding a set of building blocks that can be interconnected to imple-
ment a machine that takes one input sample at a time and produces a corresponding
output sample. Because of our requirements, the resulting set turns out to be relatively
limited:

• linearity in the input-output relationship implies that we can only use linear opera-

36 6 – Discrete-Time Filters

tions, i.e. sums and multiplications by scalars;

• time invariance implies that the scalars must be constants;

• realizability requires that we only use a finite number of adders and multipliers and
a finite number of memory cells.

With these ingredients, the general mathematical relationship between input and output
is a so-called constant-coefficient difference equation (CCDE) of the form

#−1∑

:=0

0:H[= − :] =

"−1∑

:=0

1:G[= − :]. (6.49)

We can assume 00 = 1 (or, otherwise, renormalize by 00) and so we can rearrange the
CCDE in a more standard, causal algorithmic form:

H[=] =

"−1∑

:=0

1:G[= − :] −

#−1∑

:=1

0:H[= − :]; (6.50)

the expression describes the “recipe” to compute each output sample H[=] as a linear
combination of past and present input values and past output values. Clearly a CCDE
involves only a finite number of linear operations and a finite amount of memory and it is
therefore a realizable algorithm. In the case of FIR filters, all the 0: coefficients are zero for
: ≥ 1 and the CCDE coincides with the convolution sum. If any of the 0: coefficients are
nonzero for : ≥ 1, then the filter will have one or more feedback paths and the resulting
impulse response will have infinite support.

CCDEs provide a powerful operational view of filtering and we will devote the next two
chapters to studying their properties; in particular:

• the impulse and frequency responses of the filter implemented by a CCDE are
well-defined and easy to determine;

• the stability of the associated filter is easy to check;

• there are a wealth of established and robust numerical techniques that allow us
to determine the values of the coefficients a and b as a function of the desired
properties of the filter.

6.6.2 Algorithms and Block Diagrams

In stark contrast to the differential equations used in the characterization of continuous-time
systems, difference equations explicitly describe the algorithm that implements the sys-
tem. As a simple example, it is straightforward to code a generic CCDE in Python:

6.6 – Realizable Filters 37

x
x

x
+ x + y

y
x I−: S−:x

Figure 6.20: Block diagram elements: scalar multiplication, addition and delay by : samples.

G[=] + b H[=]

I−1

1 − �

�

Figure 6.21: Block diagram of the Leaky Integrator.

class Filter:

def __init__(self, b, a):

self.a = a[1:]

self.b = b

self.y = [0] * len(self.a)

self.x = [0] * len(self.b)

self.ix = 0

self.iy = -1

def compute(self, x):

N, M = len(self.a), len(self.b)

y = 0

self.x[self.ix] = x

for k, b_k in enumerate(self.b):

y += b_k * self.x[(self.ix - k) % M]

for k, a_k in enumerate(self.a):

y -= a_k * self.y[(self.iy - k) % N]

self.ix = (self.ix + 1) % M

self.iy = (self.iy + 1) % N

self.y[self.iy] = y

return y

The code uses simple circular buffers of size # − 1 and " to store values of y and x

respectively and sets them to zero upon instantiation of the class to ensure zero initial
conditions. A leaky integrator can be instantiated via the statement f = Filter([1,
lambda], [1-lambda]) and used on the incoming samples via y = f.compute(x).

Another common algorithmic representation of realizable filters relies on block diagrams
showing the interconnections between the basic units shown in Figure ??; the CCDE
describing a Leaky Integrator, for instance, is shown in Figure 6.21. This type of represen-
tation provides an abstraction from any given programming language while still offering
the ability to illustrate algorithmic implementation details, as we will see more in detail
in Section ??.

