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COM-202: Signal Processing

Chapter 5.b: The DTFT and its properties



Overview:

m the DTFT as the limit of a DFT
m DTFT properties
m DTFT of power signals

m relationships between transforms



Fourier Analysis in general

analysis: X = F{x}

synthesis: x = F~1{x}



DFT

finite-length signals
m time domain: CV, canonical basis

frequency domain: CN, Fourier basis

analysis: compute similarity with the N Fourier basis vectors:

Xk = (Wk, X>

synthesis: build a signal as a linear combination of Fourier basis vectors

1 N-1
X = Z kak
k=0

the DFT is an algorithm: we can always compute it numerically since it requires a finite
number of arithmetic operations

=



The DFT as an orthogonal change of basis

Xk = <Wk7 X>

time frequency

1 «N-1
X =7 2 k-0 XkWk



All the Fourier Transforms in Signal Processing

discrete time

continuous time

finite length

DFT/DFS

FS (math)

infinite length

DTFT (this week)

CTFT (later on in the course)



DTFT

m infinite-length signals with finite energy
m time domain: ¢3(Z), canonical basis
m frequency domain: Ly([—m,7]), Fourier basis

m analysis: compute similarity with an infinite set of oscillations:

o0

X(w)= > x[n]e

n=—oo

m synthesis: build a signal from an infinite set of oscillations:

x[n] = % /7r X(w)e“"dw

—T



DTFT as a formal basis expansion

The DTFT formula looks like an inner product in ¢5(Z):

oo

Xw)= Y xlnle*" = (" x[n))

n=—oo

However:

m the set {&/“"}, is not countable

m the “basis vectors’ e/“" don't even belong to /(%)



DTFT

X(w) = Y, xln] e+

TN

0a(2) “basis”: {e/n}

~_

x[n] = & [ X(w)e"dw



The mathematical truth (to clear my conscience)

m DTFT is an (invertible) mapping from Ly([—m,7]) to ¢2(Z)
m the countable set of 27-periodic functions {e 7"}, is an orthogonal basis for Ly([—,7]):
(eIwn eJwm) — =m) doy = 278[n — ml

m the inverse DTFT is a basis expansion; the analysis coefficients are the time-domain

values: ' _
x[n] oc (e7*7, X (€47))



A more intuitive approach

Consider the DFT when N grows very large:

2
m N basis vectors with frequencies Wﬂk, k=0,1,...,N—1

(] {2—7Tk} becomes denser in [0, 27]...
N T

2
m In the limit Wﬂk — wW:

X(w) = Zx[n] e weR

n

10



Example: decaying exponential

x[n] =a"uln], |a] <1

oL reens m{HNHTmmn,,,,,,.,....,....?
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Example: decaying exponential

Compute the DFT of the length-N signal x[n] = a", n=10,1,...,N — 1:

N—1 . N—1
X[k] = Z " e Wk = Z(ae - Nk)"
n=0 n=0
B 1—(ae‘sz7rk)N B l—aN
1—ae ik 1—ae ik
As N — oo, 27/N)k — w:
_ aN 1
lim 2 = X(w)

Nooo ] — nedak 1—aedw



Plotting the DTFT

X (w)]

T

0 w/2 ™

J

~

positive frequencies (counterclockwise)
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Plotting the DTFT

X (w)]

T
-7 —7/2 0 w/2

\
g

negative frequencies (clockwise)
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Plotting the DTFT

X (w)]

T T

T
—7/2 0 w/2
[ ——
low frequencies (slow)



Plotting the DTFT

X (w)]

T

T

—7/2

—T

high frequencies (fast)

0
—_—

w/2 ™

\/ low frequencies (slow) \/

high frequencies (fast)

13



DTFT of x[n] = a" u[n],

10

la] <1

T

—7/2
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Example: rectangular sequence

1 0<n< M
x[n] = .
0 otherwise

1F 9000000000000 000
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Example: rectangular sequence

Compute the DFT of a finite-length rectangular sequence:

N-1

M—-1
X[k] = Zx[n],e_j%r”k = Z eIk
n=0

n=0
(see lecture 6)

B sin (ﬁk-l\/l) .

sin (ﬁk)

—j T k-(M—1)

As N — oo, (2m/N)k — w:
X(w) = S GEM) sy

sin (%)
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DFT vs DTFT

DFT of size-M rectangular signal in CV:
X[k] = sin (M) —jz (-1
sin (%k)
DTFT of size-M rectangular signal in ¢2(Z):

X(w) — sin (%M) e—j%(l\/l—l)
sin (%)
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DTFT of rectangular signal (real part)

R{X(w)}

M=38

N\ NN

D

T

T T T T T T
—3n/4 —7/2 —w/4 0 w/4 /2 3w /4 ™

note that X(w) =0 for w = (2n/M)k, k € Z/{0}
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DTFT of rectangular signal (real part)

M = 100

R{X(w)}
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Never forget the 27-periodicity!

M=38

R{X(w)}

NV

I I I I I I I
57 —4nr 37 27 -7 0 T 2w
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DTFT properties



The Discrete-Time Fourier Transform

Analysis formula:

oo

X(w) = Z x[n] e+,

n=—oo

Synthesis formula:

x[n] = % /7T X(w)e“"dw,

—T

w € [—m, 7]

nez

21



DTFT properties

m linearity
DTFT{ax[n] + By[n]} = aX(w) + BY (w)

m time shift .
DTFT{x[n — M]} = e M X(w)

m frequency shift (aka modulation)

DTFT{e“0" x[n]} = X (e/“~0))



DTFT properties

m time reversal

m conjugation

DTFT{x[—n]} = X(—w)

DTFT{x*[n]} = X*(~w)

23



Some particular cases:

m if x[n] is symmetric, the DTFT is symmetric:

x[n] = x[—n] <= X(w) = X(—w)
m if x[n] is real, the DTFT is Hermitian-symmetric:

x[n] = x*[n] <= X(w) = X*(—w)

As a consequence:

m if x[n] is real, the magnitude of the DTFT is symmetric:
x[n] € R <= |X(w)| = [X(-w)|

m if x[n] is real and symmetric, the DTFT is also real and symmetric



the DTFT formalism for non /, sequences



The DTFT as the limit of the DFT

Some key results carry over from finite-length to infinite-length:

m DFT {4[n]} =1
m DTFT {§[n]} =>_°°__d[nje " =1

n=—0o0

25



The DTFT as the limit of the DFT

... but other things do not:
m DFT {1} = d[n]

m DTFT{1} =350 e don =2

n=—oo

m problem: too many interesting sequences are not square summable!

26



DTFT vs DFT

Remember the DFT of the constant signal x[n] = 1:

N—-1
X[kl =Y e %™ = No[k]
n=0

time frequency



DTFT of x[n] = 1

We would like something along the lines of

0 for w#0

nonzero forw =20

DTFT {1} = C(w) = {



DTFT of x[n] = 1:

partial DTFT sums

Zﬁ:—k eJen

k=5
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DTFT of x[n] = 1:

partial DTFT sums

Zﬁ:—k eJen

k=10
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DTFT of x[n] = 1:

partial DTFT sums

Zﬁ:—k eJen

k=15
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DTFT of x[n] = 1:

partial DTFT sums
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DTFT of x[n] = 1:

partial DTFT sums

Zﬁ:—k eJen

k=40
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DTFT of x[n] = 1

it would appear that we need something like

oo forw=0

Clw) = {0 for w# 0

30



DTFT of x[n] = 1

but we also should have

1 (7 i

—T

Clearly C(w) is not a “normal” function...

31



The Dirac delta



Theory of functionals in 2 slides

functional: linear operator that acts on functions

Examples:
m average over [-A/2,A/2]: Ma{f} = (1/A) fA;/\iz x)dx
m n-th moment: B,{f} = [* x"f(x)dx

m value in zero: D{f} = f(0)



Python example (this slide doesn’t count)

def my_function(x):
return x * x + 1

def my_functional(f):
return f(2)

> print(my_function(0))
> print (my_functional (my_function))
> print(my_functional(sqrt))

Output:

1
5
1.4142135623730951

33



Theory of functionals in 2 slides

The action of functionals can often be expressed as an inner product between the input

function and a function known as the functional’s kernel:

m average over [—A/2, A/2]: Ma{f} = (1/A) fAjjz (x)dx
Ma{f} = [Z2, ma()f(x)dx,  ma(x) = (1/A) rect(Ax)
m n-th moment: B,{f} = [ x"f(x)dx
Ba{f} = |25 ba(x)f(x)dx,  by(x) = x"
m value in zero: D{f} = £(0)
d(x) =77

D{f} = [*_ d(x)f(x)dx,
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The Dirac delta functional

the Dirac delta §(t) is defined as the “kernel” that implements D:

/  S(0)f(t)de = £(0)

for all continuous f : R — C.

35



The Dirac delta functional

the Dirac delta can be shifted anywhere

/OO 5(t — $)F(£)dt = £(s)

36



About the integration limits

the integral limits only need to include the Dirac delta’s location:

o0 s+ep
/ (5(t—s)f(t)dt:/ 5(t — s)F(t)dt = F(s) Ve ep > 0

—€a

conversely

/5(15 _S)F(t)dt =0 ifs¢l

/

37



The Dirac delta functional

e

/OO 5(t — s)F(t)dt = £(s)

38



The Dirac delta functional in physics

v(t)

Yo

to

F(t) =ma(t)=m

ov(t)
ot

39



The Dirac delta functional in physics

v(t)

Yo

to

a(to) = 0?

39



The Dirac delta functional in physics

v(t)

Yo

t 0 fort<t
from the other side: v(t) = / a(t)dr = { or 0
v fort >ty

—00
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The Dirac delta functional in physics
v(t)

Vo

to

t
from the other side: v(t) = / vod (T — to)dT

—00



The Dirac delta functional in physics

v(t)

Yo

to

a(t) = vod(t — tp)
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The Dirac delta functional in physics
v(t)

Yo

(0.9]

F(t) o< d(t —tp) = {0

for t = tg

otherwise
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And here we go again...

again, it would appear that we need something like

oo fort=0

5(t) = {O for t £#0
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Intuition

consider a family of localizing functions r(t) with k € N and t € R where:

m support inversely proportional to k

m constant area

41



Intuition

rect(t) 1 for|t| <1/2
10 otherwise

we can build a localizing family as ri(t) = k rect(kt):
m nonzero over [—1/(2k),1/(2k)], i.e. support is 1/k

mareais 1



The family r(t) = k rect(kt)

40 F
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The family r(t) = k rect(kt)

40 F

43



The family r(t) = k rect(kt)

40 F

43



The family r(t) = k rect(kt)

40 F
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Remember the Mean Value Theorem?

for any continuous function over the interval [a, b] there exists v € [a, b] s.t.

b
/ F(t)dt = (b— a) (%)
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The Mean Value Theorem

45



The Mean Value Theorem

_______ X 1 e




Extracting a point value

for our family of localizing functions:
00 1/(2k)
/ re(t)f(t)dt = k/ f(t)dt
- —1/(2k)
= F(V)lyel-1/(26),1/(2k)]

and so:

im /OO r(£)F(t)dt = £(0)

k—o0 J _ 5o

46



The Dirac delta functional

The delta functional is a shorthand. Instead of writing

Im(/mmﬁ—sﬂﬁﬂt

k—oo J_oo

we write

/wau—gﬂnm.

as if limy_oo ri(t) = 0(2),

47



The “pulse train”

little technical detail: to bring the Dirac delta to the space where DTFTs live, we need to
periodize and scale:

d(w) =27 i d(w — 27k)

k=—o0

48



Graphical representation

—47 —37 —27

2w

3

4
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Now let the show begin!

IDTFT {5(w)

/_ Bw)einde

= (5(w)ejw”dw

—
— ejwn‘wzo

=1

50



In other words

DTFT {1} = §(w)

51



Does it make sense?

Partial DTFT sum:

k
Sk(w) = Z e Jwn

n=—k

52



Plotting |Sx(w)|

80 |-

60 |-

40 -
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Plotting |Sx(w)|

80 |-

60 |-

40 -
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Plotting |Sx(w)|

80 |-

60 |-

40 -

—7/2

/2
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Plotting |Sx(w)|
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Plotting |Sx(w)|
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60 |-

40 -
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Does it make sense?

Partial DTFT sums look like a family of localizing functions:

Sk(w) — S(w)
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Using the same technique

IDTFT {S(w - wo)} — efwon

So:
= DTFT {1} = §(w)

m DTFT {&“0"} = §(w — wo)
m DTFT {coswon} = [§(w — wo) + 8(w + wp)] /2
m DTFT {sinwon} = —j[6(w — wp) — &(w + wp)] /2
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Warning: use with caution!

m Dirac delta in the DTFT = signal is NOT finite-energy (eg. periodic, constant etc)
m signal must still be a power signal (finite energy over finite sections)

m Dirac deltas make sense only if integrals are involved
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relationships between transforms



Embedding finite-length signals into infinite sequences

Consider a length-N signal x[n], with DFT X[k].
We can turn this into an infinite sequence in two ways:

m periodic extension: X[n] = x[n mod N]

x[n] 0<n<N

m finite-support extension: X[n] = {0 _—
otherwise

how does X[k] relate to the DTFTs of the embedded signals?

57



DTFT of periodic signals

X[n] = x[n  mod N]

58



We’ve seen this before

2
i2m —j
§ : eanke jwn

n=—oo

DTFT{ef%”"k}

(%)
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DTFT of periodic signals

60



32-tap sawtooth




DFT of 32-tap sawtooth

15

10 [

{ITTTTTTTTTTTTITTTTTTTTTTTT[‘

(=R ]

16

T
32




32-periodic sawtooth
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DTFT of per

iodic extension

A44444111111I‘

|1111111f44444

-

—7/2

/2
o

N

s
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DTFT of finite-support signals

_ x[n] 0<n<N
x[n] = .
0 otherwise

00 N—-1
X(w) = Z R[n]e ¥ = Z x[n]e=/*m
n=—00 n=0
N-1 1 N-1 . )
-3 (55 i)
n=0 k=0
N—-1

= 3" X[K]
k=0
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DTFT of finite-support signals

_ x[n] 0<n<N
x[n] = .
0 otherwise

00 N—-1
X(w) = Z R[n]e ¥ = Z x[n]e=/*m
n=—00 n=0
N-1 1 N-1 . )
-3 (55 i)
n=0 k=0
N—-1

= 3" X[K]
k=0
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DTFT of finite-support signals

2] = x[n] 0<n<N
Xlnl =
otherwise

00 N—-1
X(w) = Z R[n]e ¥ = Z x[n]e=/*m
n=—00 n=0
N-1 1 N-1
= <N > XIKeTW "k>
n=0 k=0
N—-1

N—-1 -
20 (5)

3
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DTFT of finite-support signals

_ x[n] 0<n<N
X[n] = .
0 otherwise

[e's) N—-1
X(w)=Y_ X[nle " =" x[n]e "
n=—o00 n=0

1

1= 2 .
(N > X [k]edw"k> e

k=0

N-1 N—-1

=3 XK S (%ef'zﬁk") eI

k=0 n=0
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We’ve seen this before

DTFT of a rectangular sequence of length N (scaled by 1/N):

1/N 0<n<N
rv[n] = _
0 otherwise
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Frequency shift property

DTFT {0 x[n]} = X (e/70))

=
-

(%ejzx;kn) e—Jjwn | _ Z e,'%fknrN[n]e—jwn

n=-—oo

3
Il
=}

- DTFT{ef%”k"rN[n]}

= Ryy(/= 1)

2
= - —k
AN <w N >
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Interpolating function As6(w)

R{Aws(w)}

o —7r72l \/ \/ \”/2 o

again, A(w) =0 for w = (2n/N)k, k € Z/{0}
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DTFT of finite-support signals

the DTFT is the smooth interpolation of the original DFT values



32-tap sawtooth




DFT of 32-tap sawtooth

15

10 [

{ITTTTTTTTTTTTITTTTTTTTTTTT[‘

(=R ]

16

T
32
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Sawtooth: finite support extension

T T T T T T T

—96 —64 -32 0 32 64 96
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DTFT of finite support extension (sketch)

/2
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DTFT of finite support extension (sketch)
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DTFT of finite support extension (sketch)
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DTFT of finite support extension (sketch)
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DTFT of finite support extension (sketch)
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DTFT of finite support extension (sketch)
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DTFT of finite support extension

4



As a comparison...

—7/2

/2
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About zero-padding

When computing the DFT numerically
one may “pad” the data vector with zeros to obtain “nicer” plots
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DFT of 32-tap sawtooth

15

T
1

10

T
1

{ITTTTTTTTTTTTITTTTTTTTTTTT[‘

16 32

(=R ]

X = [XOX1 X31]
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DFT of 32-tap sawtooth, zero-padded to 96 points

T
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About zero-padding

m zero padding does not add information

m a zero-padded DFT is simply a sampled DTFT of the finite-support extension
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All zero-padded versions come from the same DTFT

Consider the finite-support extension of the original signal:

_ x[n] 0<n<N
X[n] = .
0 otherwise

Any zero-padded version is simply a truncated finite-support extension:

xm[n] = X[n], n=0,1,....M—1 (M>N)
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M-point DTFT with

zero-padding

M—-1

Xulh] = Y xulnje S5
n=0

= Z i[n]e‘jw”

n=—oo

= X(w)|w:%h

2m
,Vh
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DFT of 32-tap sawtooth, zero-padded

32-point DFT

15 -

10 -

. {ITTTTTTTTTTTT

16
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DFT of 32-tap sawtooth, zero-padded

32-point DFT

15 -

10 -
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DFT of 32-tap sawtooth, zero-padded

15

10

96-point DFT
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48
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DFT of 32-tap sawtooth, zero-padded

96-point DFT
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DFT of 32-tap sawtooth, zero-padded

200-point DFT

15 - b

®
10 |9 i
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DFT of 32-tap sawtooth, zero-padded

200-point DFT
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