
COM-202: Signal Processing

Chapter 5.b: The DTFT and its properties



Overview:

the DTFT as the limit of a DFT

DTFT properties

DTFT of power signals

relationships between transforms
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Fourier Analysis in general

time frequency

analysis: X = F{x}

synthesis: x = F−1{x}
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DFT

finite-length signals

time domain: CN , canonical basis

frequency domain: CN , Fourier basis

analysis: compute similarity with the N Fourier basis vectors:

Xk = 〈wk , x〉

synthesis: build a signal as a linear combination of Fourier basis vectors

x =
1

N

N−1
∑

k=0

Xkwk

the DFT is an algorithm: we can always compute it numerically since it requires a finite
number of arithmetic operations
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The DFT as an orthogonal change of basis

C
N

C
N

time frequency

Xk = 〈wk , x〉

x = 1
N

∑N−1
k=0 Xkwk

basis: wk [n] = e j
2π
N
nk
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All the Fourier Transforms in Signal Processing

discrete time continuous time

finite length DFT/DFS FS (math)

infinite length DTFT (this week) CTFT (later on in the course)
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DTFT

infinite-length signals with finite energy

time domain: ℓ2(Z), canonical basis

frequency domain: L2([−π, π]), Fourier basis

analysis: compute similarity with an infinite set of oscillations:

X (ω) =

∞
∑

n=−∞

x [n] e−jωn

synthesis: build a signal from an infinite set of oscillations:

x [n] =
1

2π

∫ π

−π
X (ω)e jωndω
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DTFT as a formal basis expansion

The DTFT formula looks like an inner product in ℓ2(Z):

X (ω) =
∞
∑

n=−∞

x [n] e−jωn = 〈e jωn, x [n]〉

However:

the set {e jωn}ω is not countable

the “basis vectors” e jωn don’t even belong to ℓ2(Z)
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DTFT

ℓ2(Z) L2([−π, π])

X (ω) =
∑

n x [n] e
−jωn

x [n] = 1
2π

∫

X (ω)e jωndω

“basis”: {e jωn}
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The mathematical truth (to clear my conscience)

DTFT is an (invertible) mapping from L2([−π, π]) to ℓ2(Z)

the countable set of 2π-periodic functions {e−jωn}n is an orthogonal basis for L2([−π, π]):

〈e−jωn, e−jωm〉 =

∫ π

−π
e jω(n−m)dω = 2πδ[n −m]

the inverse DTFT is a basis expansion; the analysis coefficients are the time-domain
values:

x [n] ∝ 〈e−jωn,X (e jωn)〉
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A more intuitive approach

Consider the DFT when N grows very large:

N basis vectors with frequencies
2π

N
k , k = 0, 1, . . . ,N − 1

{

2π

N
k

}

k

becomes denser in [0, 2π]...

In the limit
2π

N
k → ω:

X (ω) =
∑

n

x [n] e−jωn ω ∈ R
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Example: decaying exponential

x [n] = an u[n], |a| < 1

b b b b b

b

b

b

b
b

b
b

b
b

b
b

b
b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

−5 0 5 10 15 20 25 30 35 40
0

1

11



Example: decaying exponential

Compute the DFT of the length-N signal x [n] = an, n = 0, 1, . . . ,N − 1:

X [k] =
N−1
∑

n=0

an e−j 2π
N
nk =

N−1
∑

n=0

(a e−j 2π
N
k)n

=
1− (a e−j 2π

N
k)N

1− a e−j 2π
N
k

=
1− aN

1− a e−j 2π
N
k

As N → ∞, (2π/N)k → ω:

lim
N→∞

1− aN

1− a e−j 2π
N
k
=

1

1− a e−jω
= X (ω)
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Plotting the DTFT

0−π −π/2 0 π/2 π

|X
(ω

)|

positive frequencies (counterclockwise)
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Plotting the DTFT

0−π −π/2 0 π/2 π

|X
(ω

)|

negative frequencies (clockwise)
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Plotting the DTFT

0−π −π/2 0 π/2 π

|X
(ω

)|

low frequencies (slow)
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Plotting the DTFT

0−π −π/2 0 π/2 π

|X
(ω

)|

low frequencies (slow)

high frequencies (fast)high frequencies (fast)
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DTFT of x [n] = a
n
u[n], |a| < 1

−π −π/2 0 π/2 π
0

5

10

|X
(ω

)|

a = 0.9
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Example: rectangular sequence

x [n] =

{

1 0 ≤ n < M

0 otherwise

b b b b b

b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b b b b b b
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Example: rectangular sequence

Compute the DFT of a finite-length rectangular sequence:

X [k] =

N−1
∑

n=0

x [n], e−j 2π
N
nk =

M−1
∑

n=0

e−j 2π
N
nk

. . . (see lecture 6)

=
sin
(

π
N
k ·M

)

sin
(

π
N
k
) e−j π

N
k·(M−1)

As N → ∞, (2π/N)k → ω:

X (ω) =
sin
(

ω
2M
)

sin
(

ω
2

) e−j ω
2
(M−1)
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DFT vs DTFT

DFT of size-M rectangular signal in C
N :

X [k] =
sin
(

π
N
Mk
)

sin
(

π
N
k
) e−j π

N
(M−1)k

DTFT of size-M rectangular signal in ℓ2(Z):

X (ω) =
sin
(

ω
2M
)

sin
(

ω
2

) e−j ω
2
(M−1)
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DTFT of rectangular signal (real part)

M = 8

−π −3π/4 −π/2 −π/4 0 π/4 π/2 3π/4 π

ℜ
{
X
(ω

)}

note that X (ω) = 0 for ω = (2π/M)k , k ∈ Z/{0}
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DTFT of rectangular signal (real part)

M = 100

−π −π/2 0 π/2 π

ℜ
{
X
(ω

)}
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Never forget the 2π-periodicity!

M = 8

−5π −4π −3π −2π −π 0 π 2π 3π 4π 5π

ℜ
{
X
(ω

)}
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DTFT properties



The Discrete-Time Fourier Transform

Analysis formula:

X (ω) =

∞
∑

n=−∞

x [n] e−jωn, ω ∈ [−π, π]

Synthesis formula:

x [n] =
1

2π

∫ π

−π
X (ω)e jωndω, n ∈ Z
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DTFT properties

linearity
DTFT{αx [n] + βy [n]} = αX (ω) + βY (ω)

time shift
DTFT{x [n −M]} = e−jωMX (ω)

frequency shift (aka modulation)

DTFT{e jω0n x [n]} = X (e j(ω−ω0))
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DTFT properties

time reversal
DTFT{x [−n]} = X (−ω)

conjugation
DTFT{x∗[n]} = X ∗(−ω)
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Some particular cases:

if x [n] is symmetric, the DTFT is symmetric:

x [n] = x [−n] ⇐⇒ X (ω) = X (−ω)

if x [n] is real, the DTFT is Hermitian-symmetric:

x [n] = x∗[n] ⇐⇒ X (ω) = X ∗(−ω)

As a consequence:

if x [n] is real, the magnitude of the DTFT is symmetric:

x [n] ∈ R ⇐⇒ |X (ω)| = |X (−ω)|

if x [n] is real and symmetric, the DTFT is also real and symmetric
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the DTFT formalism for non ℓ2 sequences



The DTFT as the limit of the DFT

Some key results carry over from finite-length to infinite-length:

DFT {δ[n]} = 1

DTFT {δ[n]} =
∑

∞

n=−∞
δ[n] e−jωn = 1
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The DTFT as the limit of the DFT

... but other things do not:

DFT {1} = δ[n]

DTFT {1} =
∑

∞

n=−∞
e−jωn =?

problem: too many interesting sequences are not square summable!
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DTFT vs DFT

Remember the DFT of the constant signal x [n] = 1:

X [k] =

N−1
∑

n=0

e−j 2π
N
nk = Nδ[k]

b b b b b b b b b b b b b b b b

0 15
0

1

time

b

b b b b b b b b b b b b b b b

0 15
0

16

frequency
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DTFT of x [n] = 1

We would like something along the lines of

DTFT {1} = C (ω) =

{

0 for ω 6= 0

nonzero for ω = 0
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DTFT of x [n] = 1: partial DTFT sums

∑k
n=−k e

−jωn

k = 5

−π −π/2 0 π/2 π
0

20

40

60

80
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DTFT of x [n] = 1: partial DTFT sums

∑k
n=−k e

−jωn

k = 10

−π −π/2 0 π/2 π
0

20

40

60

80
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DTFT of x [n] = 1: partial DTFT sums

∑k
n=−k e

−jωn

k = 15

−π −π/2 0 π/2 π
0

20

40

60

80
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DTFT of x [n] = 1: partial DTFT sums

∑k
n=−k e

−jωn

k = 30

−π −π/2 0 π/2 π
0

20

40

60

80
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DTFT of x [n] = 1: partial DTFT sums

∑k
n=−k e

−jωn

k = 40

−π −π/2 0 π/2 π
0

20

40

60

80
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DTFT of x [n] = 1

it would appear that we need something like

C (ω) =

{

0 for ω 6= 0

∞ for ω = 0
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DTFT of x [n] = 1

but we also should have

1

2π

∫ π

−π
C (ω) e jωdω = 1

Clearly C (ω) is not a “normal” function...
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The Dirac delta



Theory of functionals in 2 slides

functional: linear operator that acts on functions

Examples:

average over [−A/2,A/2]: MA{f } = (1/A)
∫ A/2
−A/2 f (x)dx

n-th moment: Bn{f } =
∫

∞

−∞
xnf (x)dx

value in zero: D{f } = f (0)
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Python example (this slide doesn’t count)

def my_function(x):

return x * x + 1

def my_functional(f):

return f(2)

> print(my_function(0))

> print(my_functional(my_function))

> print(my_functional(sqrt))

Output:

1

5

1.4142135623730951
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Theory of functionals in 2 slides

The action of functionals can often be expressed as an inner product between the input
function and a function known as the functional’s kernel :

average over [−A/2,A/2]: MA{f } = (1/A)
∫ A/2
−A/2 f (x)dx

MA{f } =
∫

∞

−∞
mA(x)f (x)dx , mA(x) = (1/A) rect(Ax)

n-th moment: Bn{f } =
∫

∞

−∞
xnf (x)dx

Bn{f } =
∫

∞

−∞
bn(x)f (x)dx , bn(x) = xn

value in zero: D{f } = f (0)

D{f } =
∫

∞

−∞
d(x)f (x)dx , d(x) =??
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The Dirac delta functional

the Dirac delta δ(t) is defined as the “kernel” that implements D:

∫

∞

−∞

δ(t)f (t)dt = f (0)

for all continuous f : R → C.
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The Dirac delta functional

the Dirac delta can be shifted anywhere

∫

∞

−∞

δ(t − s)f (t)dt = f (s)
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About the integration limits

the integral limits only need to include the Dirac delta’s location:

∫

∞

−∞

δ(t − s)f (t)dt =

∫ s+ǫb

s−ǫa

δ(t − s)f (t)dt = f (s) ∀ǫa, ǫb > 0

conversely

∫

I

δ(t − s)f (t)dt = 0 if s 6∈ I
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The Dirac delta functional

s

b

∫

∞

−∞

δ(t − s)f (t)dt = f (s)
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The Dirac delta functional in physics

t0 t

v(t)

v0

F (t) = ma(t) = m
∂v(t)

∂t
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The Dirac delta functional in physics

t0 t

v(t)

v0

a(t0) = ∞?
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The Dirac delta functional in physics

t0 t

v(t)

v0

from the other side: v(t) =

∫ t

−∞

a(τ)dτ =

{

0 for t < t0

v0 for t > t0
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The Dirac delta functional in physics

t0 t

v(t)

v0

from the other side: v(t) =

∫ t

−∞

v0δ(τ − t0)dτ
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The Dirac delta functional in physics

t0 t

v(t)

v0

a(t) = v0δ(t − t0)
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The Dirac delta functional in physics

t0 t

v(t)

v0

F (t) ∝ δ(t − t0) ≈

{

∞ for t = t0

0 otherwise
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And here we go again...

again, it would appear that we need something like

δ(t) =

{

0 for t 6= 0

∞ for t = 0

40



Intuition

consider a family of localizing functions rk(t) with k ∈ N and t ∈ R where:

support inversely proportional to k

constant area
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Intuition

rect(t) =

{

1 for |t| < 1/2

0 otherwise

we can build a localizing family as rk(t) = k rect(kt):

nonzero over [−1/(2k), 1/(2k)], i.e. support is 1/k

area is 1
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The family rk(t) = k rect(kt)

k = 1

−1 0 1
0

20

40
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The family rk(t) = k rect(kt)

k = 5

−1 0 1
0

20

40
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The family rk(t) = k rect(kt)

k = 15

−1 0 1
0

20

40
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The family rk(t) = k rect(kt)

k = 40

−1 0 1
0

20

40
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Remember the Mean Value Theorem?

for any continuous function over the interval [a, b] there exists γ ∈ [a, b] s.t.

∫ b

a

f (t)dt = (b − a) f (γ)
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The Mean Value Theorem

a b
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The Mean Value Theorem

a b

f (γ)

γ
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Extracting a point value

for our family of localizing functions:

∫

∞

−∞

rk(t)f (t)dt = k

∫ 1/(2k)

−1/(2k)
f (t)dt

= f (γ)|γ∈[−1/(2k),1/(2k)]

and so:

lim
k→∞

∫

∞

−∞

rk(t)f (t)dt = f (0)
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The Dirac delta functional

The delta functional is a shorthand. Instead of writing

lim
k→∞

∫

∞

−∞

rk(t − s)f (t)dt

we write

∫

∞

−∞

δ(t − s)f (t)dt.

as if limk→∞ rk(t) = δ(t),

47



The “pulse train”

little technical detail: to bring the Dirac delta to the space where DTFTs live, we need to
periodize and scale:

δ̃(ω) = 2π
∞
∑

k=−∞

δ(ω − 2πk)
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Graphical representation

−4π −3π −2π −π 0 π 2π 3π 4π
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Now let the show begin!

IDTFT
{

δ̃(ω)
}

=
1

2π

∫ π

−π
δ̃(ω)e jωndω

=

∫ π

−π
δ(ω)e jωndω

= e jωn|ω=0

= 1
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In other words

DTFT {1} = δ̃(ω)
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Does it make sense?

Partial DTFT sum:

Sk(ω) =

k
∑

n=−k

e−jωn
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Plotting |Sk(ω)|

k = 5

−π −π/2 0 π/2 π
0

20

40

60

80
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Plotting |Sk(ω)|

k = 10
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Plotting |Sk(ω)|

k = 15
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Plotting |Sk(ω)|

k = 30
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Plotting |Sk(ω)|

k = 40

−π −π/2 0 π/2 π
0

20

40

60

80
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Does it make sense?

Partial DTFT sums look like a family of localizing functions:

Sk(ω) → δ̃(ω)
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Using the same technique

IDTFT
{

δ̃(ω − ω0)
}

= e jω0n

So:

DTFT {1} = δ̃(ω)

DTFT
{

e jω0n
}

= δ̃(ω − ω0)

DTFT {cosω0n} = [δ̃(ω − ω0) + δ̃(ω + ω0)]/2

DTFT {sinω0n} = −j[δ̃(ω − ω0)− δ̃(ω + ω0)]/2
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Warning: use with caution!

Dirac delta in the DTFT ⇒ signal is NOT finite-energy (eg. periodic, constant etc)

signal must still be a power signal (finite energy over finite sections)

Dirac deltas make sense only if integrals are involved
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relationships between transforms



Embedding finite-length signals into infinite sequences

Consider a length-N signal x [n], with DFT X [k].
We can turn this into an infinite sequence in two ways:

periodic extension: x̃ [n] = x [n mod N]

finite-support extension: x̄ [n] =

{

x [n] 0 ≤ n < N

0 otherwise

how does X [k] relate to the DTFTs of the embedded signals?
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DTFT of periodic signals

x̃ [n] = x [n mod N]

X̃ (ω) =
∞
∑

n=−∞

x̃ [n]e−jωn

=

∞
∑

n=−∞

(

1

N

N−1
∑

k=0

X̃ [k]e j
2π
N
nk

)

e−jωn

=
1

N

N−1
∑

k=0

X̃ [k]

(

∞
∑

n=−∞

e j
2π
N
nke−jωn

)
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We’ve seen this before

∞
∑

n=−∞

e j
2π
N
nke−jωn = DTFT

{

e j
2π
N
nk
}

= δ̃

(

ω −
2π

N
k

)
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DTFT of periodic signals

X̃ (ω) =
1

N

N−1
∑

k=0

X [k]δ̃

(

ω −
2π

N
k

)
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32-tap sawtooth

b
b

b
b

b
b
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b
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b
b
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b
b

b
b

b
b

b
b

b
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0 16 32
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0

1
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DFT of 32-tap sawtooth

b
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32-periodic sawtooth
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DTFT of periodic extension

ω = 2π
N

−π −π/2 0 π/2 π
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DTFT of finite-support signals

x̄ [n] =

{

x [n] 0 ≤ n < N

0 otherwise

X̄ (ω) =

∞
∑

n=−∞

x̄ [n]e−jωn =

N−1
∑

n=0

x [n]e−jωn

=
N−1
∑

n=0

(

1

N

N−1
∑

k=0

X [k]e j
2π
N
nk

)

e−jωn

=

N−1
∑

k=0

X [k]
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DTFT of finite-support signals

x̄ [n] =

{

x [n] 0 ≤ n < N

0 otherwise

X̄ (ω) =

∞
∑

n=−∞

x̄ [n]e−jωn =

N−1
∑

n=0

x [n]e−jωn

=
N−1
∑

n=0

(

1

N

N−1
∑

k=0

X [k]e j
2π
N
nk

)

e−jωn

=

N−1
∑

k=0

X [k]
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DTFT of finite-support signals

x̄ [n] =

{

x [n] 0 ≤ n < N

0 otherwise

X̄ (ω) =

∞
∑

n=−∞

x̄ [n]e−jωn =

N−1
∑

n=0

x [n]e−jωn

=
N−1
∑

n=0

(

1

N

N−1
∑

k=0

X [k]e j
2π
N
nk

)

e−jωn

=

N−1
∑

k=0

X [k]

N−1
∑

n=0

(

1

N
e j

2π
N
kn

)

e−jωn
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DTFT of finite-support signals

x̄ [n] =

{

x [n] 0 ≤ n < N

0 otherwise

X̄ (ω) =

∞
∑

n=−∞

x̄ [n]e−jωn =

N−1
∑

n=0

x [n]e−jωn

=
N−1
∑

n=0

(

1

N

N−1
∑

k=0

X [k]e j
2π
N
nk

)

e−jωn

=

N−1
∑

k=0

X [k]

N−1
∑

n=0

(

1

N
e j

2π
N
kn

)

e−jωn
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We’ve seen this before

DTFT of a rectangular sequence of length N (scaled by 1/N):

rN [n] =

{

1/N 0 ≤ n < N

0 otherwise

RN(ω) =

N−1
∑

n=0

1

N
e−jωn

=
1

N

sin
(

ω
2N
)

sin
(

ω
2

) e−j ω
2
(N−1)
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Frequency shift property

DTFT
{

e jω0nx [n]
}

= X (e j(ω−ω0))

N−1
∑

n=0

(

1

N
e j

2π
N
kn

)

e−jωn =

∞
∑

n=−∞

e j
2π
N
knrN [n]e

−jωn

= DTFT
{

e j
2π
N
knrN [n]

}

= RN(e
j(ω− 2π

N
k))

≡ ΛN

(

ω −
2π

N
k

)
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Interpolating function Λ16(ω)

−π/2 0 π/2

ℜ
{
Λ
1
6
(ω

)}

again, Λ(ω) = 0 for ω = (2π/N)k , k ∈ Z/{0}
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DTFT of finite-support signals

X̄ (ω) =

N−1
∑

k=0

X [k]

N−1
∑

n=0

(

1

N
e j

2π
N
kn

)

e−jωn

=

N−1
∑

k=0

X [k]ΛN

(

ω −
2π

N
k

)

the DTFT is the smooth interpolation of the original DFT values
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32-tap sawtooth
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DFT of 32-tap sawtooth
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Sawtooth: finite support extension
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DTFT of finite support extension (sketch)
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DTFT of finite support extension (sketch)
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DTFT of finite support extension (sketch)
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DTFT of finite support extension (sketch)
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DTFT of finite support extension (sketch)
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DTFT of finite support extension
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As a comparison...

−π −π/2 0 π/2 π
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About zero-padding

When computing the DFT numerically
one may “pad” the data vector with zeros to obtain “nicer” plots
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DFT of 32-tap sawtooth
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DFT of 32-tap sawtooth, zero-padded to 96 points
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About zero-padding

zero padding does not add information

a zero-padded DFT is simply a sampled DTFT of the finite-support extension
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All zero-padded versions come from the same DTFT

Consider the finite-support extension of the original signal:

x̄ [n] =

{

x [n] 0 ≤ n < N

0 otherwise

Any zero-padded version is simply a truncated finite-support extension:

xM [n] = x̄ [n], n = 0, 1, . . . ,M − 1 (M ≥ N)
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M-point DTFT with zero-padding

XM [h] =

M−1
∑

n=0

xM [n]e−j 2π
M

nh

=
∞
∑

n=−∞

x̄ [n]e−jωn

∣

∣

∣

∣

∣

ω= 2π
M

h

= X̄ (ω)|ω= 2π
M

h
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DFT of 32-tap sawtooth, zero-padded

32-point DFT
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DFT of 32-tap sawtooth, zero-padded

32-point DFT
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DFT of 32-tap sawtooth, zero-padded

96-point DFT
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DFT of 32-tap sawtooth, zero-padded

96-point DFT
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DFT of 32-tap sawtooth, zero-padded

200-point DFT
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DFT of 32-tap sawtooth, zero-padded

200-point DFT
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