
COM-202: Signal Processing

Chapter 5.a: DFT, DFS, and DTFT



Overview

DFT: recap and intuition

the inverse DFT as a synthesis tool

the DFT and the DFS

the DTFT
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The DFT: recap



The DFT algorithm

Analysis formula:

X [k] =

N−1
∑

n=0

x [n] e−j 2π
N
nk , k = 0, 1, . . . ,N − 1

N-point signal in the frequency domain

Synthesis formula:

x [n] =
1

N

N−1
∑

k=0

X [k] e j
2π
N
nk , n = 0, 1, . . . ,N − 1

N-point signal in the time domain
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The DFT as an orthogonal change of basis

C
N

C
N

time frequency

Xk = 〈wk , x〉

x = 1
N

∑N−1
k=0 Xkwk

basis: wk [n] = e j
2π
N
nk
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Why is vector space useful

change of basis as a change of perspective

orthogonal basis guarantees separation of information

inner product is a measure of similarity:

Xk = 〈wk , x〉 = Cke
jφk

• Ck = |Xk |: how “similar” the signal x [n] is to an oscillation of frequency ωk = 2π
N
k

• φk = ∠Xk : phase shift that best “aligns” x [n] to the oscillation at frequency ωk
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the inverse DFT as a synthesis tool



Wonderful website

http://jackschaedler.github.io/circles-sines-signals
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The machine before DSP

tide-predicting machine (originally invented by Lord Kelvin)
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Running the machine too long...

x [n + N] = x [n]

output signal is N-periodic!
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Inherent periodicities in the DFT

the synthesis formula:

x [n] =
1

N

N−1
∑

k=0

X [k] e j
2π
N
nk , n = 0, 1, . . . ,N − 1

produces an N-point signal in the time domain

the analysis formula:

X [k] =

N−1
∑

n=0

x [n] e−j 2π
N
nk , k = 0, 1, . . . ,N − 1

produces an N-point signal in the frequency domain
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Inherent periodicities in the DFT

the synthesis formula:

x [n] =
1

N

N−1
∑

k=0

X [k] e j
2π
N
nk , n ∈ Z

produces an N-periodic signal in the time domain

the analysis formula:

X [k] =

N−1
∑

n=0

x [n] e−j 2π
N
nk , k = 0, 1, . . . ,N − 1

produces an N-point signal in the frequency domain
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Inherent periodicities in the DFT

the synthesis formula:

x [n] =
1

N

N−1
∑

k=0

X [k] e j
2π
N
nk , n ∈ Z

produces an N-periodic signal in the time domain

the analysis formula:

X [k] =

N−1
∑

n=0

x [n] e−j 2π
N
nk , k ∈ Z

produces an N-periodic signal in the frequency domain
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Discrete Fourier Series (DFS)

DFS = DFT with periodicity explicit

the DFS maps an N-periodic signal onto an N-periodic sequence of Fourier coefficients

the inverse DFS maps an N-periodic sequence of Fourier coefficients a set onto an
N-periodic signal

the DFS of an N-periodic signal is mathematically equivalent to the DFT of one period
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Finite-length time shifts revisited

The DFS helps us understand how to define time shifts for finite-length signals.

For an N-periodic sequence x̃ [n] with DFS X̃ [k]:

x̃M [n] = x̃ [n −M] is well-defined for all M ∈ N

DFS {x̃M [n]} [k] = e−j 2π
N
Mk X̃ [k] (easy derivation)

a shift in time becomes a linear phase factor in frequency
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Finite-length time shifts revisited

From the other side: for an N-periodic sequence x̃ [n] with DFS X̃ [k]

define X̃M [k] = e−j 2π
N
MkX̃ [k]

IDFS
{

X̃M [n]
}

[n] = x̃ [n −M]
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Finite-length time shifts revisited

For an N-point signal x [n] with DFT X [k]:

x [n −M] is not well-defined

XM [k] = e−j 2π
N
MkX [k] is well-defined

what is the IDFT of XM [k] ?
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Finite-length time shifts revisited

x̂ [n] = IDFT
{

e−j 2π
N
Mk X [k]

}

[n]

=
1

N

N−1
∑

k=0

X [k]e−j 2π
N
Mk e j

2π
N
nk

=
1

N

N−1
∑

k=0

(

N−1
∑

m=0

x [m] e−j 2π
N
mk

)

e−j 2π
N
Mk e j

2π
N
nk

=
1

N

N−1
∑

m=0

x [m]

N−1
∑

k=0

e j
2π
N
(n−M−m)k

13



Always remember the orthogonality of the roots of unity!

N−1
∑

k=0

e j
2π
N
pk =

{

N if p multiple of N

0 otherwise
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Finite-length time shifts revisited

x̂ [n] =
1

N

N−1
∑

m=0

x [m]

N−1
∑

k=0

e j
2π
N
(n−M−m)k

For what values of 0 ≤ m < N is (n −M −m) a multiple of N?
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Finite-length time shifts revisited

N−1
∑

k=0

e j
2π
N
(n−M−m)k =

{

N for m = (n −M) mod N

0 otherwise

x̂ [n] =
1

N

N−1
∑

m=0

x [m]
N−1
∑

k=0

e j
2π
N
(n−M−m)k

= x [(n −M) mod N]

shifts for finite-length signals are “naturally” circular
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the Fourier transform for periodic signals



Periodic sequences: a bridge to infinite-length signals

N-periodic sequence: N degrees of freedom

DFS: only N Fourier coefficients capture all the information
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Example: sawtooth signal of period 32
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Let’s compute the DFT of one period (32 points)
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DFT of one period
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What if we take the DFT of two periods?
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64-point DFT of two periods
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96-point DFT of three periods
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DFT of two periods: intuition
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DFT of two periods: intuition

k = 0
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DFT of two periods: intuition

k = 1
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DFT of two periods: intuition

k = 2
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DFT of two periods: intuition

k = 3

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

0 16 32 48 64

24



DFT of L periods

ingredients:

finite-length signal x [n], n = 0, 1, . . . ,N − 1

N-periodic signal: x̃ [n] = x [n mod N]

obviously x̃ [n] = x̃ [n + pN] for all p ∈ Z
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DFT of L periods

XL[k] =
LN−1
∑

n=0

x̃ [n]e−j 2π
LN

nk k = 0, 1, 2 . . . , LN − 1

=

L−1
∑

p=0

N−1
∑

n=0

x̃ [n + pN]e−j 2π
LN

(n+pN)k

=

L−1
∑

p=0

N−1
∑

n=0

x̃ [n]e−j 2π
LN

nke−j 2π
L
pk

=





L−1
∑

p=0

e−j 2π
L
pk





N−1
∑

n=0

x [n] e−j 2π
LN

nk
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We’ve seen this before

L−1
∑

p=0

e−j 2π
L
pk =

{

L if k multiple of L

0 otherwise

(remember the orthogonality proof for the DFT basis)
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DFT of L periods

if k is a multiple of L then k/L is an integer, so:

N−1
∑

n=0

x [n] e−j 2π
N
n k
L = X [k/L]
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DFT of L periods

XL[k] =

{

LX [k/L] if k = 0, L, 2L, 3L, . . .

0 otherwise
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DFT and DFS

again, all the spectral information for a periodic signal is contained in the DFT
coefficients of a single period

to stress the periodicity of the underlying signal, we use the term DFS
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The situation so far

Fourier representation for signal classes:

N-point finite-length: DFT

N-point periodic: DFS

infinite length: ?
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the Fourier transform for infinite-length signals



DFT of increasingly long signals

Start with the DFT. What happens when N → ∞ ?

2π

N
k becomes denser in [0, 2π]...

In the limit
2π

N
k → ω:

∑

n

x [n] e−jωn ω ∈ R

and it still looks like an inner product in C
∞: 〈e jωn, x [n]〉

32



Discrete-Time Fourier Transform (DTFT)

Formal definition:

x [n] ∈ ℓ2(Z)

define the function of ω ∈ R

X (ω) =

∞
∑

n=−∞

x [n] e−jωn

inversion (when X (ω) exists):

x [n] =
1

2π

∫ π

−π

X (ω)e jωndω, n ∈ Z
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DTFT periodicity and notation

e jωn = e j(ω+2kπ)n ∀k ∈ N

X (ω) is 2π-periodic

by convention, X (ω) is represented over [−π, π]

to stress periodicity (and for other reasons) another common notation is to write
(See exercise 5 on the homework)

X (e jω) =

∞
∑

n=−∞

x [n] e−jωn
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x [n] = α
n
u[n], |α| < 1

b b b b b
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DTFT of x [n] = α
n
u[n], |α| < 1

X (ω) =
∞
∑

n=−∞

x [n] e−jωn

=
∞
∑

n=0

αn e−jωn

=

∞
∑

n=0

(α e−jω)n

=
1

1− αe−jω
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DTFT of x [n] = α
n
u[n], |α| < 1

|X (ω)|2 =
1

1 + α2 − 2α cosω
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Plotting the DTFT

0−π −π/2 0 π/2 π

|X
(ω

)|

positive frequencies (counterclockwise)
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Plotting the DTFT

0−π −π/2 0 π/2 π

|X
(ω

)|

negative frequencies (clockwise)
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Plotting the DTFT

0−π −π/2 0 π/2 π

|X
(ω

)|

low frequencies (slow)
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Plotting the DTFT

0−π −π/2 0 π/2 π

|X
(ω

)|

low frequencies (slow)

high frequencies (fast)high frequencies (fast)
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DTFT of x [n] = α
n
u[n], |α| < 1

−π −π/2 0 π/2 π
0

5

10

|X
(ω

)|

α = 0.9

39



Remember the periodicity!

−π 0 π
0

5

10
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Remember the periodicity!

−2π −π 0 π 2π
0

5

10
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Remember the periodicity!

−3π −2π −π 0 π 2π 3π
0

5

10
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Remember the periodicity!

−4π −3π −2π −π 0 π 2π 3π 4π
0

5

10
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DTFT intuition and properties



Overview:

DTFT Existence

Properties

DTFT as basis expansion
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Discrete-Time Fourier Transform

X (ω) =
∞
∑

n=−∞

x [n] e−jωn

when does it exist?

is it a change of basis?
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Existence easy for absolutely summable sequences

|X (ω)| = |

∞
∑

n=−∞

x [n] e−jωn|

≤

∞
∑

n=−∞

|x [n] e−jωn|

=

∞
∑

n=−∞

|x [n]|

< ∞
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Inversion easy for absolutely summable sequences

1

2π

∫ π

−π

X (ω) e jωndω =
1

2π

∫ π

−π

(

∞
∑

k=−∞

x [k] e−jωk

)

e jωndω

=
∞
∑

k=−∞

x [k]

∫ π

−π

e jω(n−k)

2π
dω

= x [n]
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Inversion easy for absolutely summable sequences

∫ π

−π

e jωm

2π
dω =

1

2π

∫ π

−π

dω = 1 for m = 0

=
1

2π

1

jm
e jωm

∣

∣

π

−π

=
1

2π

1

jm

(

e jπm − e−jπm
)

= 0 otherwise
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DTFT as a change of basis

Non-rigorous analogies:

formally the DTFT looks just like an inner product in C
∞:

∞
∑

n=−∞

x [n] e−jωn = 〈e jωn, x [n]〉

the “basis” is an infinite, uncountable set: {e jωn}ω∈R

something “breaks down”: we start with sequences but the transform is a function

we used absolutely summable sequences but DTFT exists for all square-summable
sequences (proof is rather technical)
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The actual deal

A mathematically precise interpretation

we start in L2([−π, π])

the countable set {e−jωn}n∈Z is an orthogonal basis for L2([−π, π])

basis expansion coefficients are the inner products

〈e−jωn,X (ω)〉 =
1

2π

∫ π

−π

X (ω) e jωndω = x [n]

any element of L2([−π, π]) is equivalent to a square summable sequence x [n] ∈ ℓ2(Z)
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DTFT

ℓ2(Z) L2([−π, π])

X (ω) = 〈e jωn, x [n]〉

x [n] = (1/2π)
∫

X (ω)e jωndω

“basis”: {e jωn}ω
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DTFT properties

linearity
DTFT{αx [n] + βy [n]} = αX (ω) + βY (ω)

time shift
DTFT{x [n −M]} = e−jωMX (ω)

modulation (dual)
DTFT{e jω0n x [n]} = X (ω − ω0)
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DTFT properties

time reversal
DTFT{x [−n]} = X (−ω)

conjugation
DTFT{x∗[n]} = X ∗(−ω)
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Some particular cases:

if x [n] is symmetric, the DTFT is symmetric:

x [n] = x [−n] ⇐⇒ X (ω) = X (−ω)

if x [n] is real, the DTFT is Hermitian-symmetric:

x [n] = x∗[n] ⇐⇒ X (ω) = X ∗(−ω)

in other words: if x [n] is real, the magnitude of the DTFT is symmetric:

x [n] ∈ R ⇐⇒ |X (ω)| = |X (−ω)|

finally, if x [n] is real and symmetric, the DTFT is also real and symmetric!
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