

COM-202: Signal Processing

Chapter 5.a: DFT, DFS, and DTFT

Overview

- DFT: recap and intuition
- the inverse DFT as a synthesis tool
- the DFT and the DFS
- the DTFT

The DFT: recap

The DFT algorithm

Analysis formula:

$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j \frac{2\pi}{N} nk}, \quad k = 0, 1, \dots, N-1$$

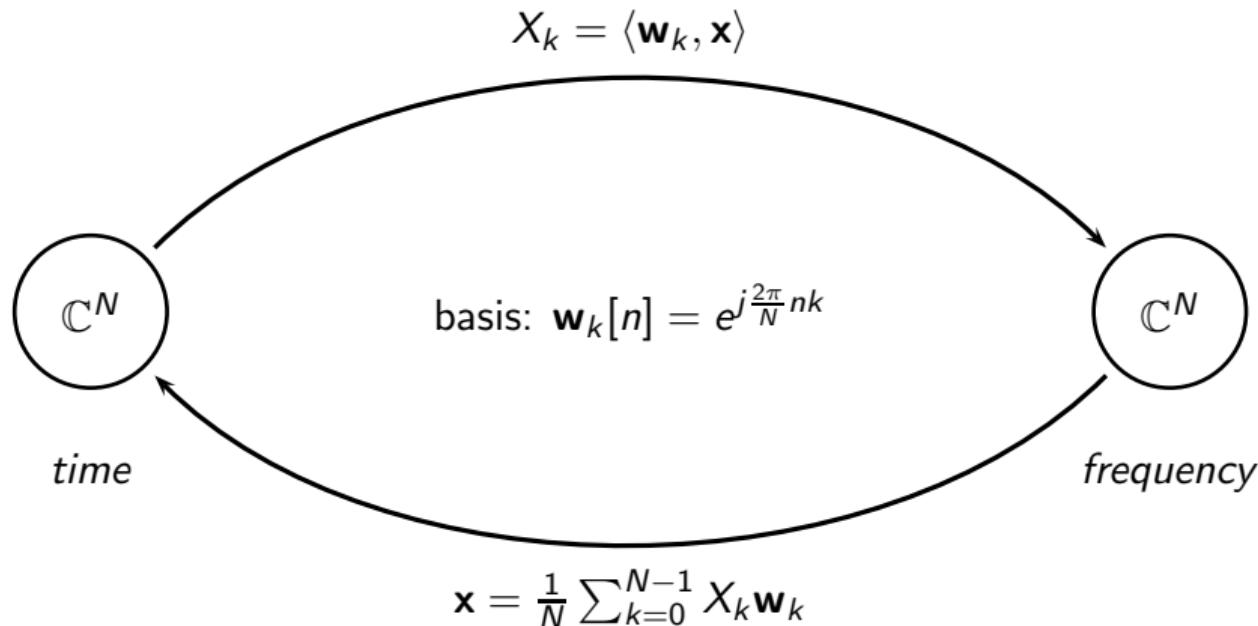
N-point signal in the *frequency domain*

Synthesis formula:

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j \frac{2\pi}{N} nk}, \quad n = 0, 1, \dots, N-1$$

N-point signal in the *time domain*

The DFT as an orthogonal change of basis



Why is vector space useful

- change of basis as a change of perspective
- orthogonal basis guarantees separation of information
- inner product is a measure of similarity:

$$X_k = \langle \mathbf{w}_k, \mathbf{x} \rangle = C_k e^{j\phi_k}$$

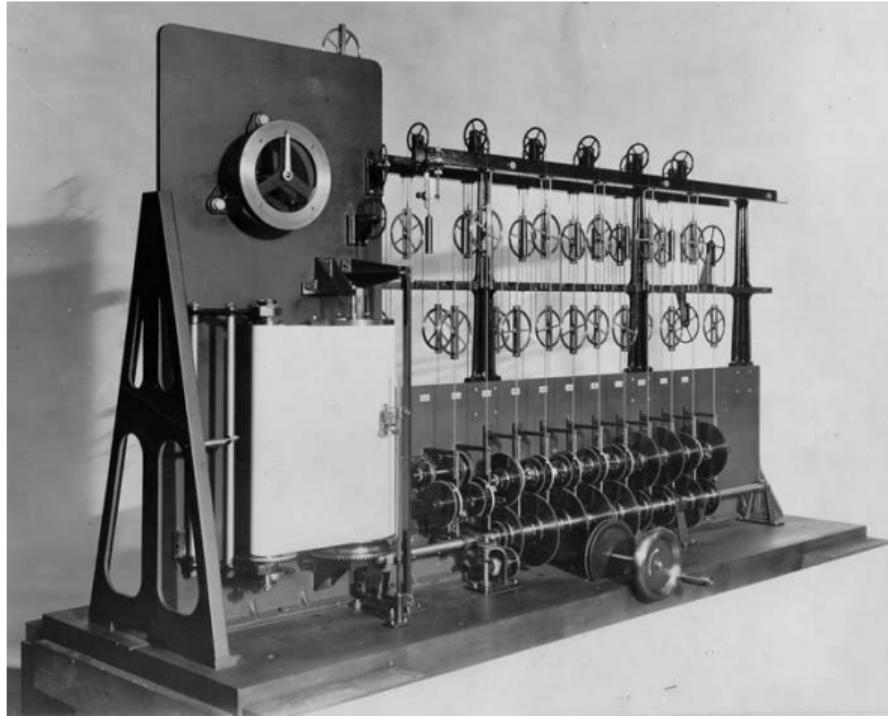
- $C_k = |X_k|$: how “similar” the signal $x[n]$ is to an oscillation of frequency $\omega_k = \frac{2\pi}{N}k$
- $\phi_k = \angle X_k$: phase shift that best “aligns” $x[n]$ to the oscillation at frequency ω_k

the inverse DFT as a synthesis tool

Wonderful website

<http://jackschaedler.github.io/circles-sines-signals>

The machine before DSP



tide-predicting machine (originally invented by Lord Kelvin)

Running the machine too long...

$$x[n + N] = x[n]$$

output signal is N -periodic!

Inherent periodicities in the DFT

the synthesis formula:

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j \frac{2\pi}{N} nk}, \quad n = 0, 1, \dots, N-1$$

produces an N -point signal in the time domain

the analysis formula:

$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j \frac{2\pi}{N} nk}, \quad k = 0, 1, \dots, N-1$$

produces an N -point signal in the frequency domain

Inherent periodicities in the DFT

the synthesis formula:

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j \frac{2\pi}{N} nk}, \quad n \in \mathbb{Z}$$

produces an N -periodic signal in the time domain

the analysis formula:

$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j \frac{2\pi}{N} nk}, \quad k = 0, 1, \dots, N-1$$

produces an N -point signal in the frequency domain

Inherent periodicities in the DFT

the synthesis formula:

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j \frac{2\pi}{N} nk}, \quad n \in \mathbb{Z}$$

produces an N -periodic signal in the time domain

the analysis formula:

$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j \frac{2\pi}{N} nk}, \quad k \in \mathbb{Z}$$

produces an N -periodic signal in the frequency domain

Discrete Fourier Series (DFS)

DFS = DFT with periodicity explicit

- the DFS maps an N -periodic signal onto an N -periodic sequence of Fourier coefficients
- the inverse DFS maps an N -periodic sequence of Fourier coefficients a set onto an N -periodic signal
- the DFS of an N -periodic signal is mathematically equivalent to the DFT of one period

Finite-length time shifts revisited

The DFS helps us understand how to define time shifts for finite-length signals.

For an N -periodic sequence $\tilde{x}[n]$ with DFS $\tilde{X}[k]$:

- $\tilde{x}_M[n] = \tilde{x}[n - M]$ is well-defined for all $M \in \mathbb{N}$

- DFS $\{\tilde{x}_M[n]\}[k] = e^{-j\frac{2\pi}{N}Mk} \tilde{X}[k]$ (easy derivation)

a shift in time becomes a *linear phase* factor in frequency

Finite-length time shifts revisited

From the other side: for an N -periodic sequence $\tilde{x}[n]$ with DFS $\tilde{X}[k]$

- define $\tilde{X}_M[k] = e^{-j\frac{2\pi}{N}Mk} \tilde{X}[k]$
- IDFS $\left\{ \tilde{X}_M[n] \right\} [n] = \tilde{x}[n - M]$

Finite-length time shifts revisited

For an N -point signal $x[n]$ with DFT $X[k]$:

- $x[n - M]$ is *not* well-defined
- $X_M[k] = e^{-j\frac{2\pi}{N}Mk} X[k]$ is well-defined
- what is the IDFT of $X_M[k]$?

Finite-length time shifts revisited

$$\begin{aligned}\hat{x}[n] &= \text{IDFT} \left\{ e^{-j\frac{2\pi}{N}Mk} X[k] \right\} [n] \\ &= \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{-j\frac{2\pi}{N}Mk} e^{j\frac{2\pi}{N}nk} \\ &= \frac{1}{N} \sum_{k=0}^{N-1} \left(\sum_{m=0}^{N-1} x[m] e^{-j\frac{2\pi}{N}mk} \right) e^{-j\frac{2\pi}{N}Mk} e^{j\frac{2\pi}{N}nk} \\ &= \frac{1}{N} \sum_{m=0}^{N-1} x[m] \sum_{k=0}^{N-1} e^{j\frac{2\pi}{N}(n-M-m)k}\end{aligned}$$

Always remember the orthogonality of the roots of unity!

$$\sum_{k=0}^{N-1} e^{j\frac{2\pi}{N}pk} = \begin{cases} N & \text{if } p \text{ multiple of } N \\ 0 & \text{otherwise} \end{cases}$$

Finite-length time shifts revisited

$$\hat{x}[n] = \frac{1}{N} \sum_{m=0}^{N-1} x[m] \sum_{k=0}^{N-1} e^{j \frac{2\pi}{N} (n - M - m)k}$$

For what values of $0 \leq m < N$ is $(n - M - m)$ a multiple of N ?

Finite-length time shifts revisited

$$\sum_{k=0}^{N-1} e^{j\frac{2\pi}{N}(n-M-m)k} = \begin{cases} N & \text{for } m = (n - M) \pmod{N} \\ 0 & \text{otherwise} \end{cases}$$

$$\begin{aligned}\hat{x}[n] &= \frac{1}{N} \sum_{m=0}^{N-1} x[m] \sum_{k=0}^{N-1} e^{j\frac{2\pi}{N}(n-M-m)k} \\ &= x[(n - M) \pmod{N}]\end{aligned}$$

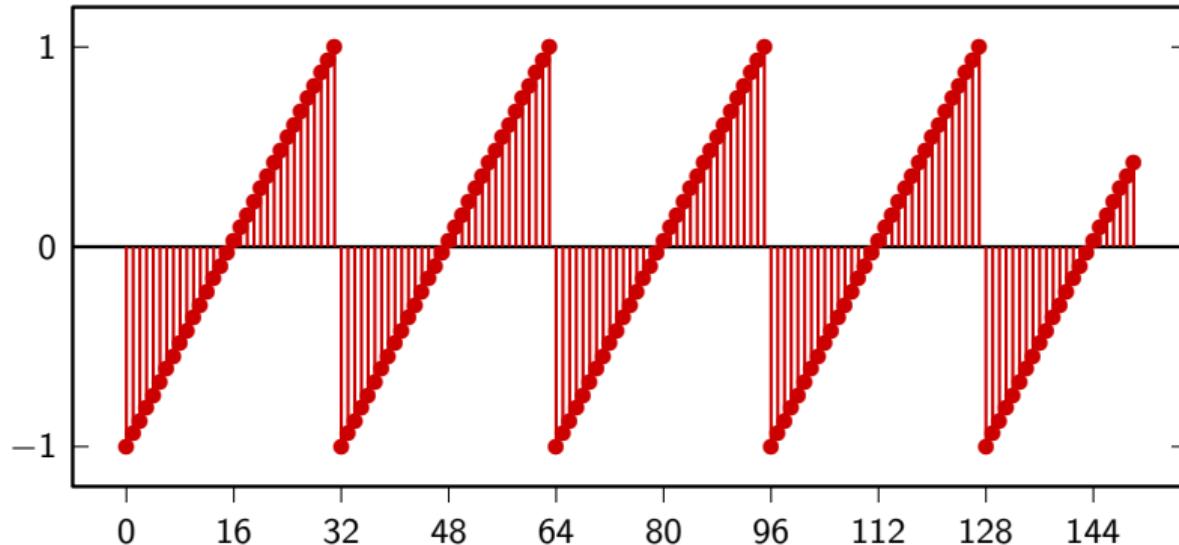
shifts for finite-length signals are “naturally” circular

the Fourier transform for periodic signals

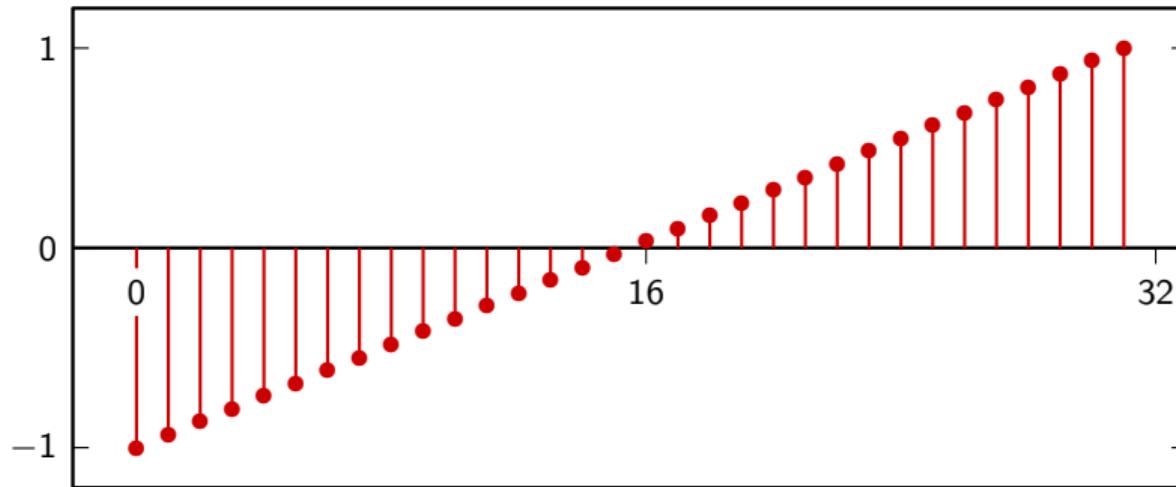
Periodic sequences: a bridge to infinite-length signals

- N -periodic sequence: N degrees of freedom
- DFS: only N Fourier coefficients capture all the information

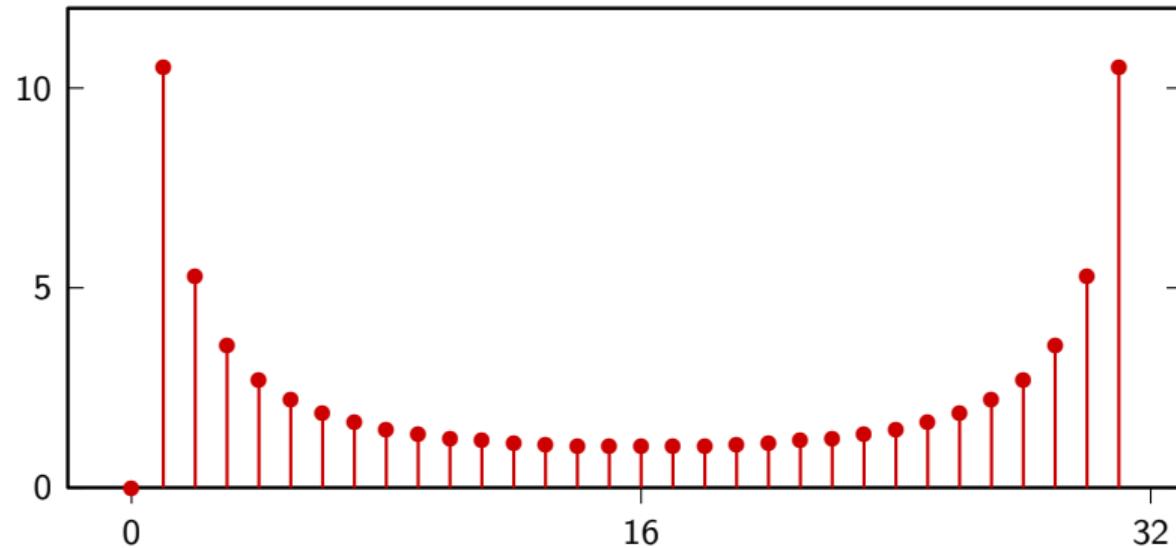
Example: sawtooth signal of period 32



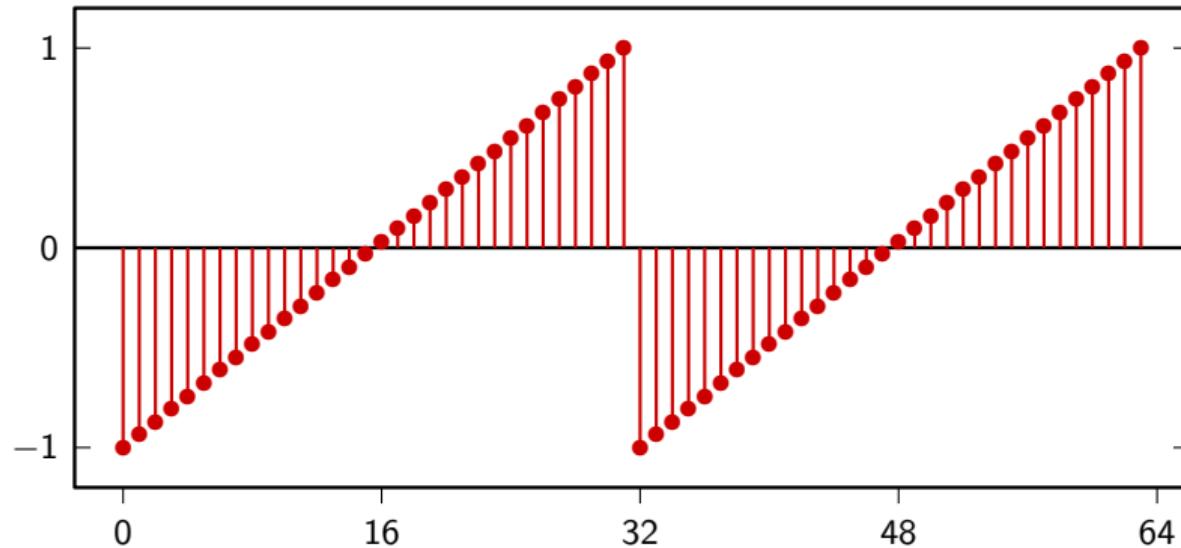
Let's compute the DFT of one period (32 points)



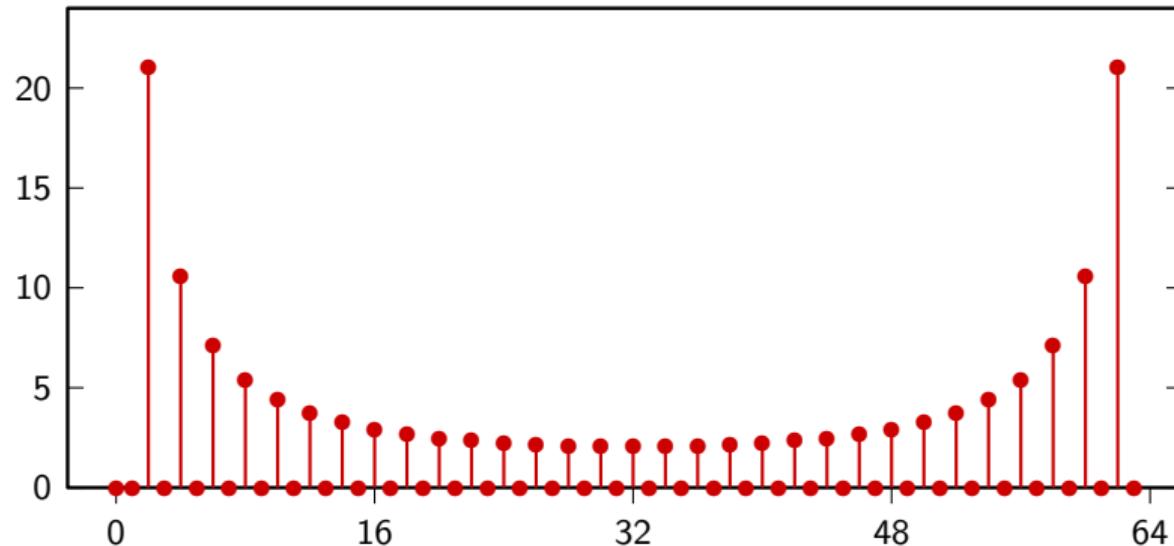
DFT of one period



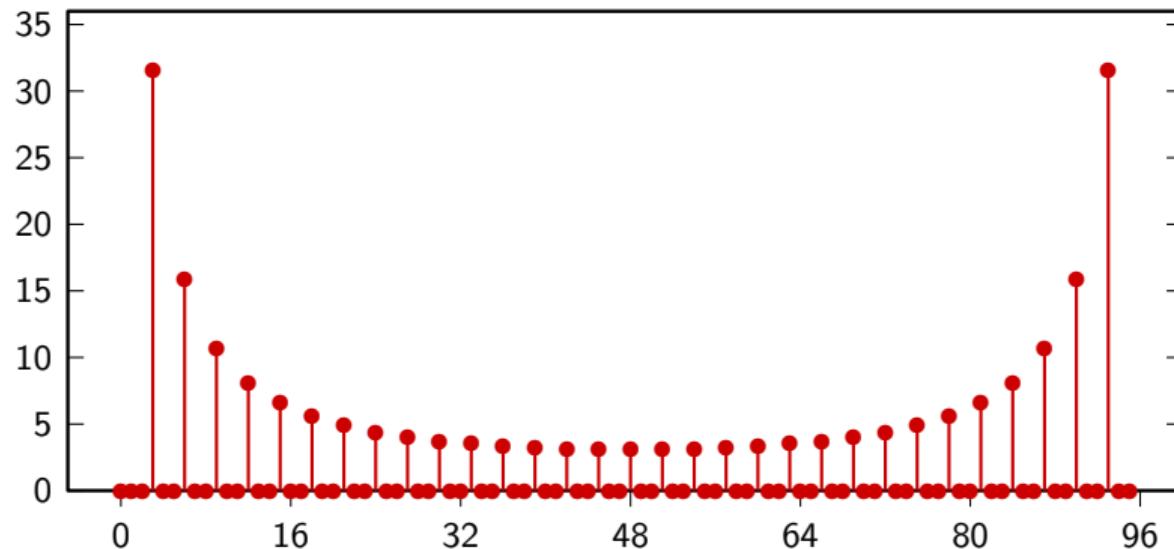
What if we take the DFT of two periods?



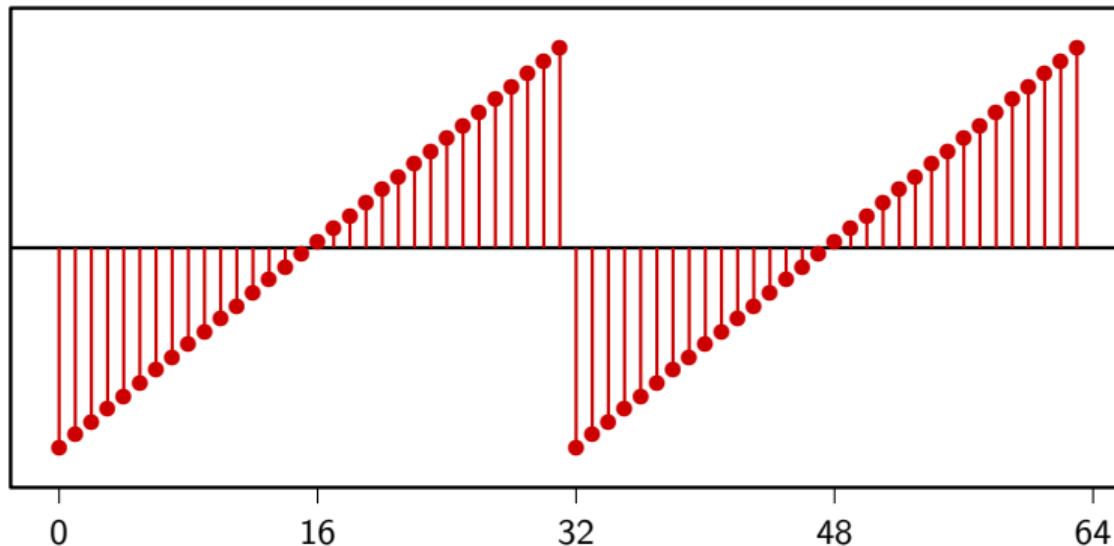
64-point DFT of two periods



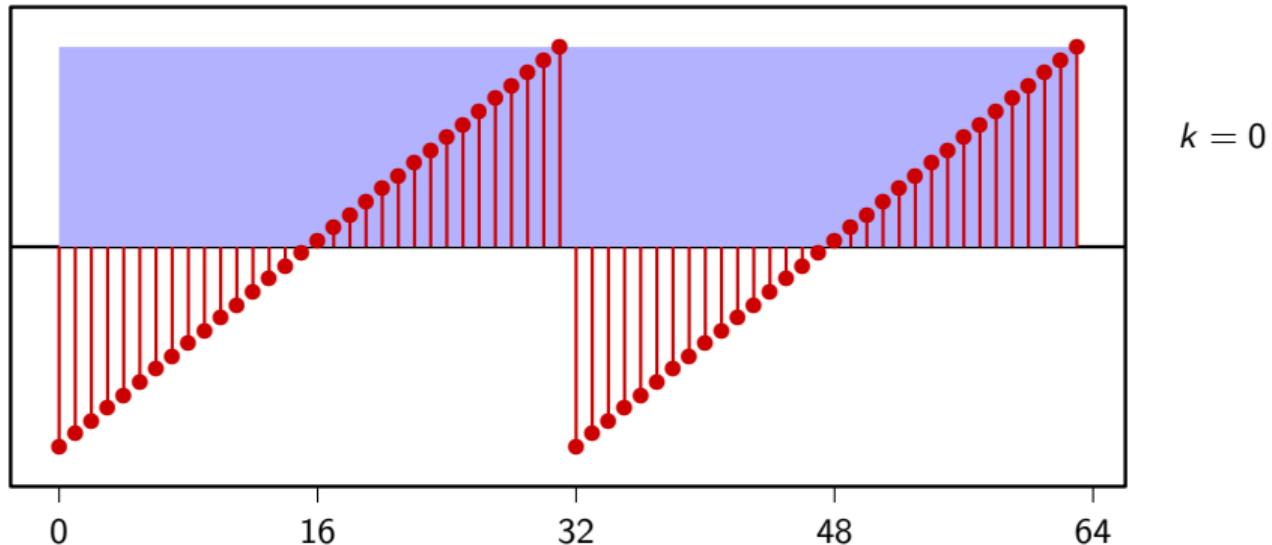
96-point DFT of three periods



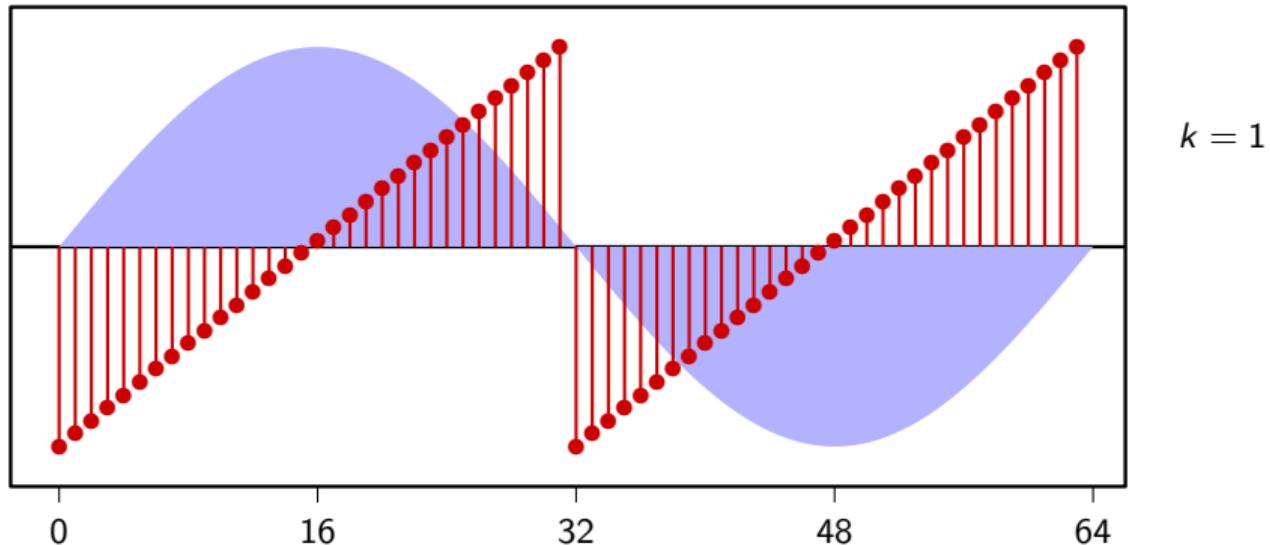
DFT of two periods: intuition



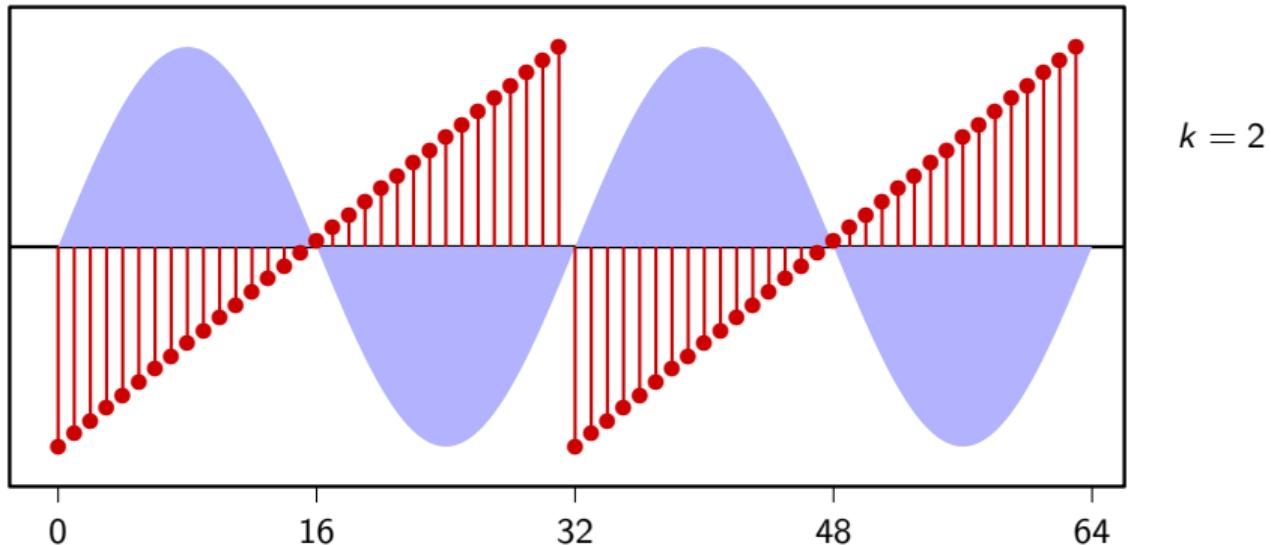
DFT of two periods: intuition



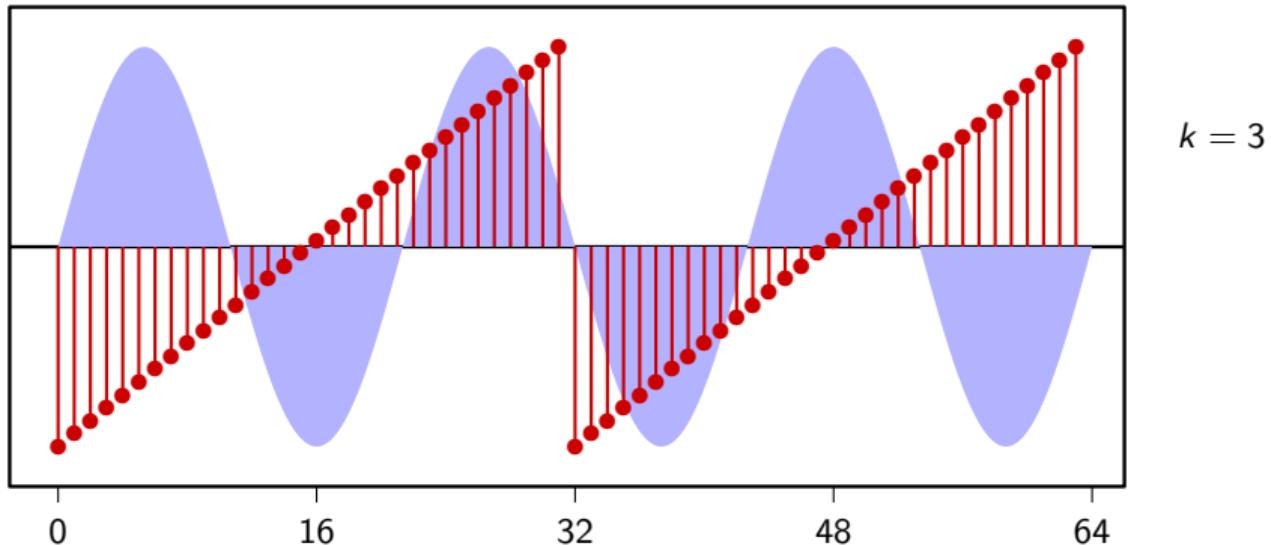
DFT of two periods: intuition



DFT of two periods: intuition



DFT of two periods: intuition



DFT of L periods

ingredients:

- finite-length signal $x[n]$, $n = 0, 1, \dots, N - 1$
- N -periodic signal: $\tilde{x}[n] = x[n \bmod N]$
- obviously $\tilde{x}[n] = \tilde{x}[n + pN]$ for all $p \in \mathbb{Z}$

DFT of L periods

$$\begin{aligned} X_L[k] &= \sum_{n=0}^{LN-1} \tilde{x}[n] e^{-j \frac{2\pi}{LN} nk} \quad k = 0, 1, 2, \dots, LN-1 \\ &= \sum_{p=0}^{L-1} \sum_{n=0}^{N-1} \tilde{x}[n + pN] e^{-j \frac{2\pi}{LN} (n+pN)k} \\ &= \sum_{p=0}^{L-1} \sum_{n=0}^{N-1} \tilde{x}[n] e^{-j \frac{2\pi}{LN} nk} e^{-j \frac{2\pi}{L} pk} \\ &= \left(\sum_{p=0}^{L-1} e^{-j \frac{2\pi}{L} pk} \right) \sum_{n=0}^{N-1} x[n] e^{-j \frac{2\pi}{LN} nk} \end{aligned}$$

We've seen this before

$$\sum_{p=0}^{L-1} e^{-j\frac{2\pi}{L}pk} = \begin{cases} L & \text{if } k \text{ multiple of } L \\ 0 & \text{otherwise} \end{cases}$$

(remember the orthogonality proof for the DFT basis)

DFT of L periods

if k is a multiple of L then k/L is an integer, so:

$$\sum_{n=0}^{N-1} x[n] e^{-j \frac{2\pi}{N} n \frac{k}{L}} = X[k/L]$$

DFT of L periods

$$X_L[k] = \begin{cases} L X[k/L] & \text{if } k = 0, L, 2L, 3L, \dots \\ 0 & \text{otherwise} \end{cases}$$

DFT and DFS

- again, all the spectral information for a periodic signal is contained in the DFT coefficients of a single period
- to stress the periodicity of the underlying signal, we use the term DFS

The situation so far

Fourier representation for signal classes:

- N -point finite-length: DFT
- N -point periodic: DFS
- infinite length: ?

the Fourier transform for infinite-length signals

DFT of increasingly long signals

- Start with the DFT. What happens when $N \rightarrow \infty$?

- $\frac{2\pi}{N}k$ becomes denser in $[0, 2\pi] \dots$

- In the limit $\frac{2\pi}{N}k \rightarrow \omega$:

$$\sum_n x[n] e^{-j\omega n} \quad \omega \in \mathbb{R}$$

- and it still looks like an inner product in \mathbb{C}^∞ : $\langle e^{j\omega n}, x[n] \rangle$

Discrete-Time Fourier Transform (DTFT)

Formal definition:

- $x[n] \in \ell_2(\mathbb{Z})$
- define the *function* of $\omega \in \mathbb{R}$

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$$

- inversion (when $X(\omega)$ exists):

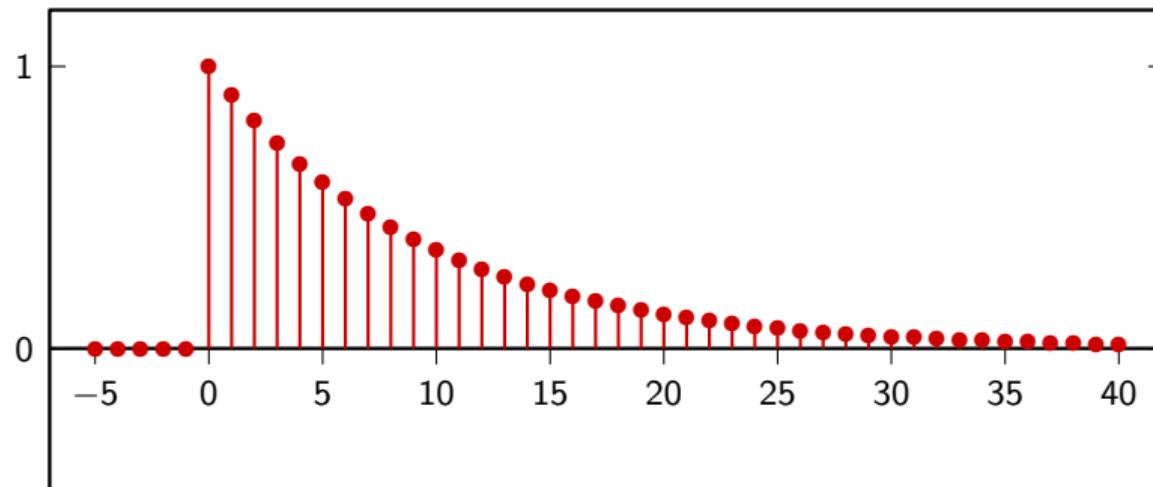
$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{j\omega n} d\omega, \quad n \in \mathbb{Z}$$

DTFT periodicity and notation

- $e^{j\omega n} = e^{j(\omega+2k\pi)n} \quad \forall k \in \mathbb{N}$
- $X(\omega)$ is 2π -periodic
- by convention, $X(\omega)$ is represented over $[-\pi, \pi]$
- to stress periodicity (and for other reasons) another common notation is to write
(See exercise 5 on the homework)

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$$

$$x[n] = \alpha^n u[n], \quad |\alpha| < 1$$



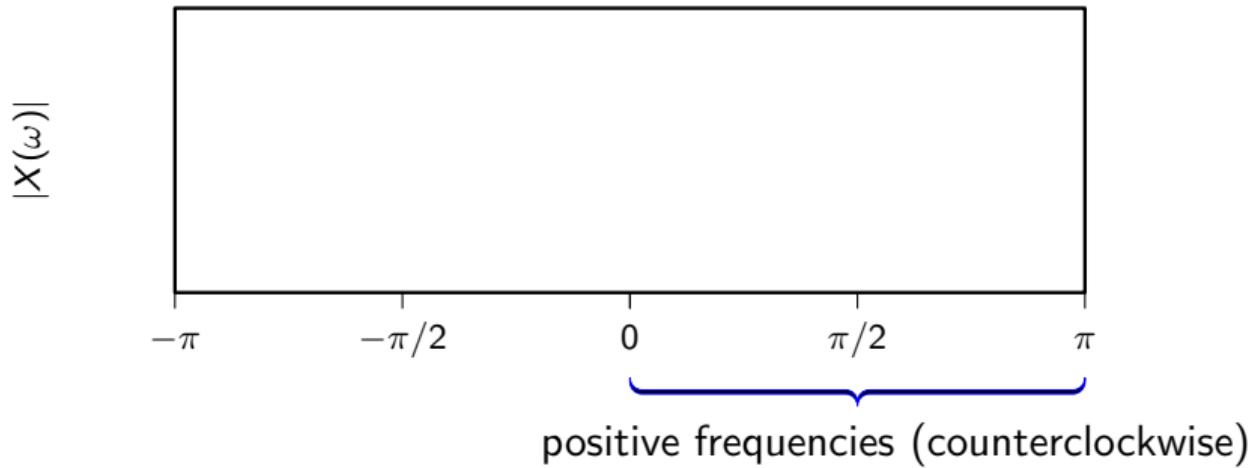
DTFT of $x[n] = \alpha^n u[n]$, $|\alpha| < 1$

$$\begin{aligned} X(\omega) &= \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n} \\ &= \sum_{n=0}^{\infty} \alpha^n e^{-j\omega n} \\ &= \sum_{n=0}^{\infty} (\alpha e^{-j\omega})^n \\ &= \frac{1}{1 - \alpha e^{-j\omega}} \end{aligned}$$

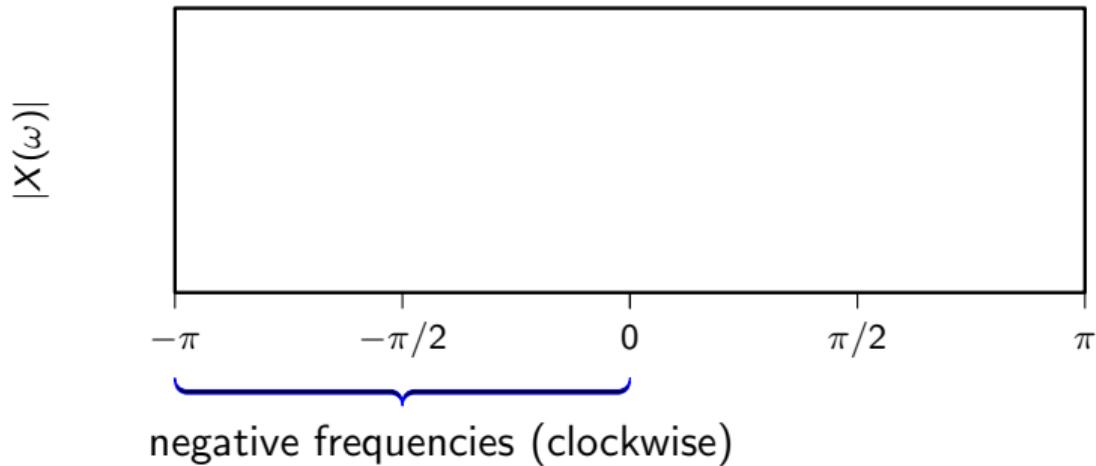
DTFT of $x[n] = \alpha^n u[n]$, $|\alpha| < 1$

$$|X(\omega)|^2 = \frac{1}{1 + \alpha^2 - 2\alpha \cos \omega}$$

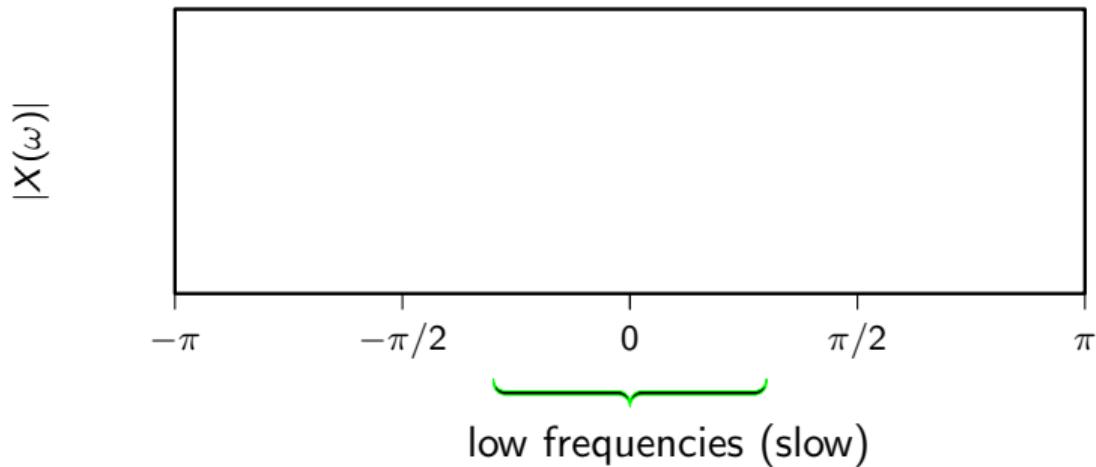
Plotting the DTFT



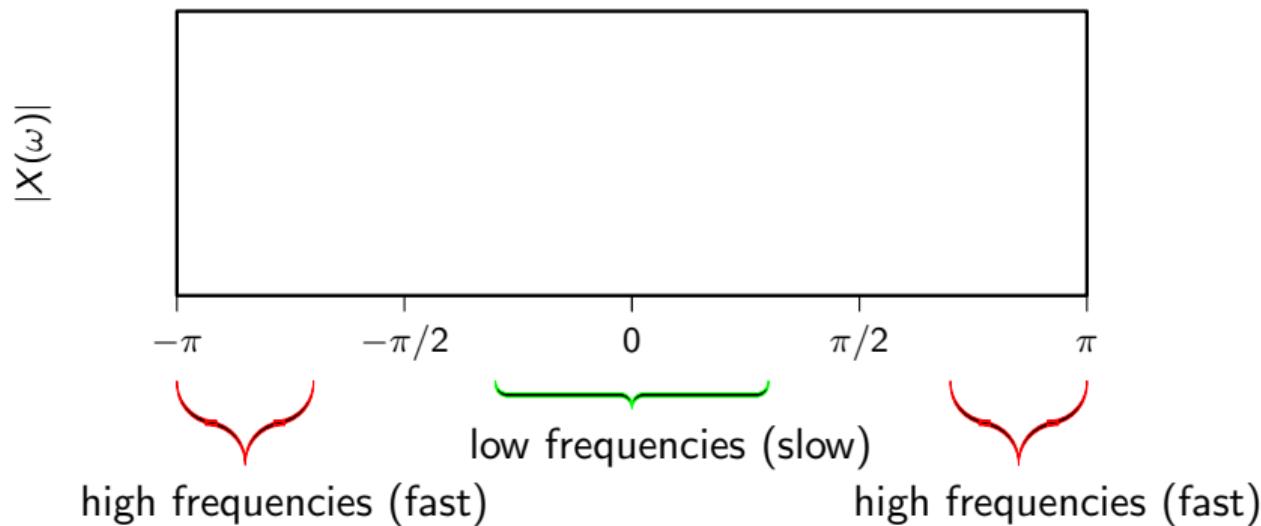
Plotting the DTFT



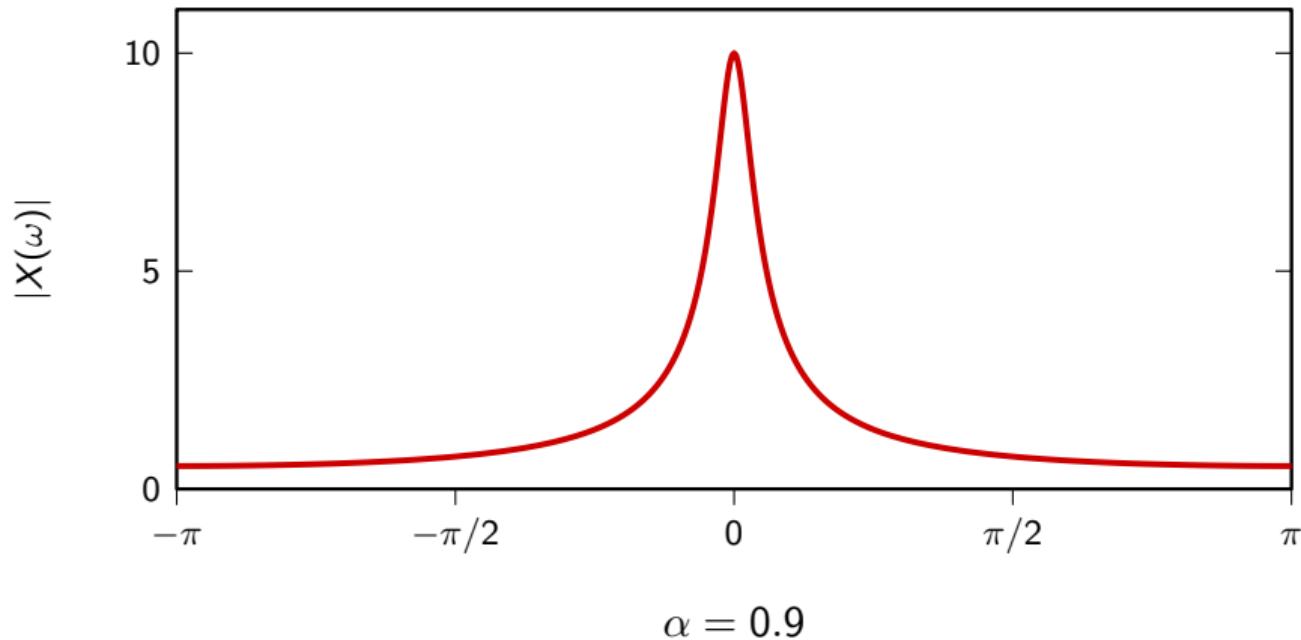
Plotting the DTFT



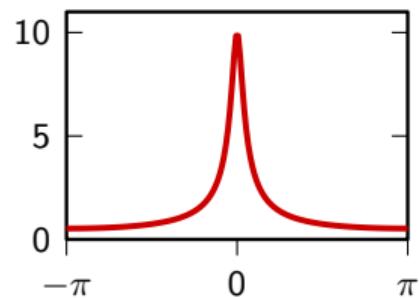
Plotting the DTFT



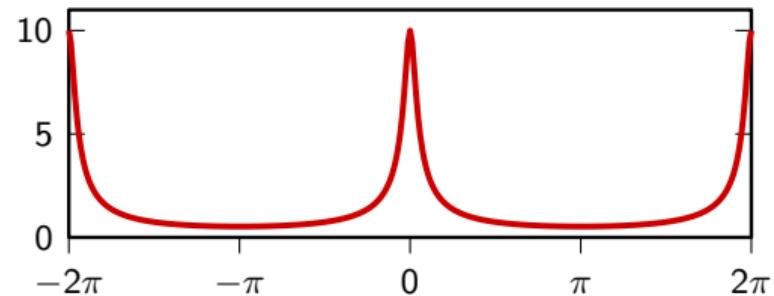
DTFT of $x[n] = \alpha^n u[n], \quad |\alpha| < 1$



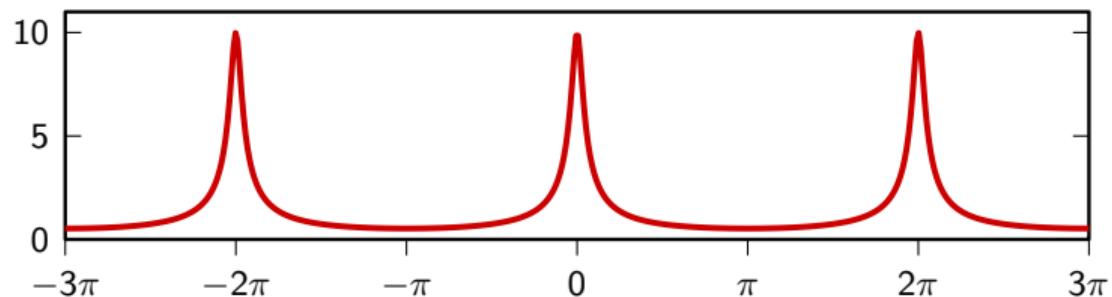
Remember the periodicity!



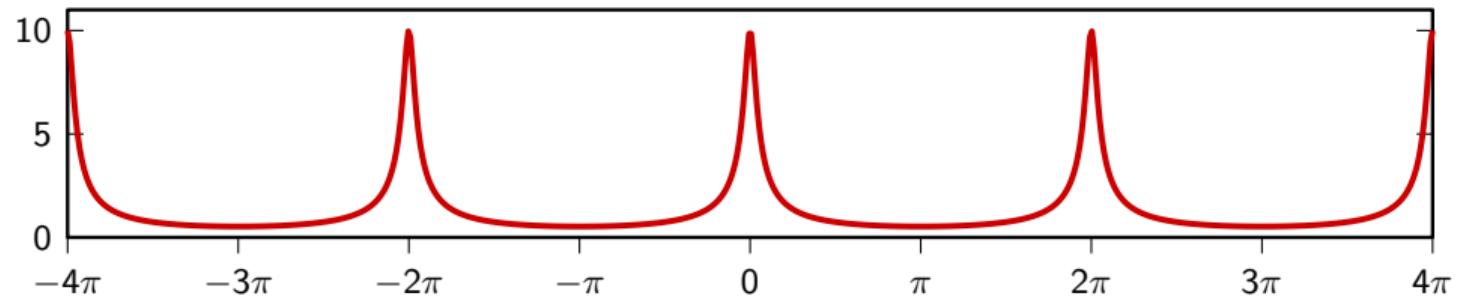
Remember the periodicity!



Remember the periodicity!



Remember the periodicity!



DTFT intuition and properties

Overview:

- DTFT Existence
- Properties
- DTFT as basis expansion

Discrete-Time Fourier Transform

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$$

- when does it exist?
- is it a change of basis?

Existence easy for absolutely summable sequences

$$\begin{aligned}|X(\omega)| &= \left| \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n} \right| \\ &\leq \sum_{n=-\infty}^{\infty} |x[n] e^{-j\omega n}| \\ &= \sum_{n=-\infty}^{\infty} |x[n]| \\ &< \infty\end{aligned}$$

Inversion easy for absolutely summable sequences

$$\begin{aligned}\frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{j\omega n} d\omega &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\sum_{k=-\infty}^{\infty} x[k] e^{-j\omega k} \right) e^{j\omega n} d\omega \\ &= \sum_{k=-\infty}^{\infty} x[k] \int_{-\pi}^{\pi} \frac{e^{j\omega(n-k)}}{2\pi} d\omega \\ &= x[n]\end{aligned}$$

Inversion easy for absolutely summable sequences

$$\int_{-\pi}^{\pi} \frac{e^{j\omega m}}{2\pi} d\omega = \frac{1}{2\pi} \int_{-\pi}^{\pi} d\omega = 1 \quad \text{for } m = 0$$

$$= \frac{1}{2\pi} \frac{1}{jm} e^{j\omega m} \Big|_{-\pi}^{\pi}$$

$$= \frac{1}{2\pi} \frac{1}{jm} (e^{j\pi m} - e^{-j\pi m}) = 0 \quad \text{otherwise}$$

DTFT as a change of basis

Non-rigorous analogies:

- formally the DTFT looks just like an inner product in \mathbb{C}^∞ :

$$\sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n} = \langle e^{j\omega n}, x[n] \rangle$$

- the “basis” is an infinite, uncountable set: $\{e^{j\omega n}\}_{\omega \in \mathbb{R}}$
- something “breaks down”: we start with sequences but the transform is a function
- we used absolutely summable sequences but DTFT exists for all square-summable sequences (proof is rather technical)

The actual deal

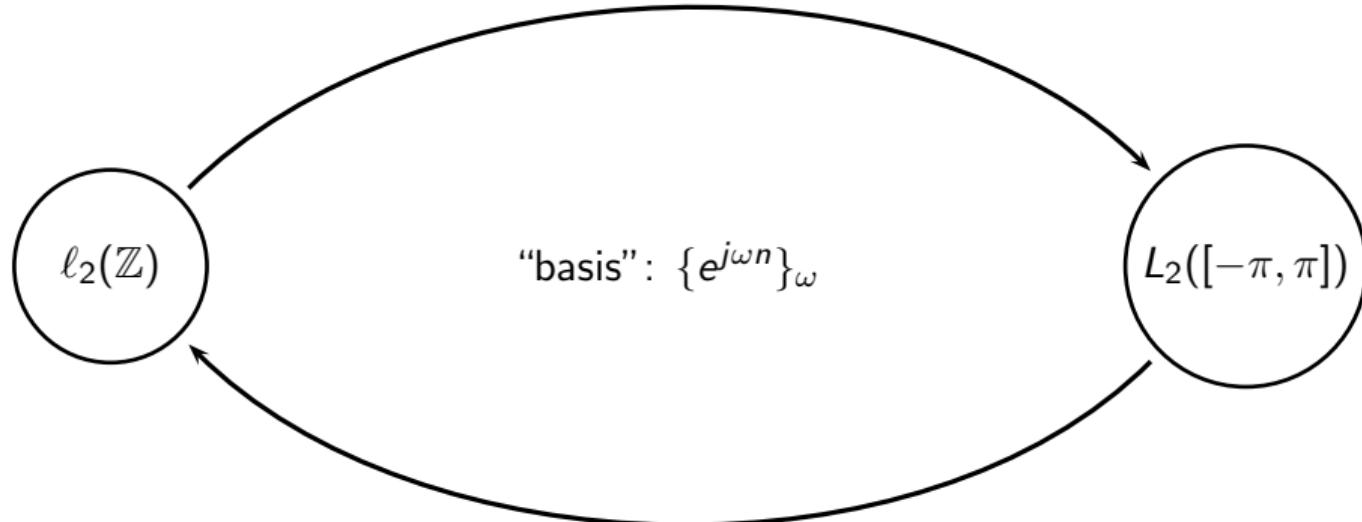
A mathematically precise interpretation

- we *start* in $L_2([-\pi, \pi])$
- the countable set $\{e^{-j\omega n}\}_{n \in \mathbb{Z}}$ is an orthogonal basis for $L_2([-\pi, \pi])$
- basis expansion coefficients are the inner products

$$\langle e^{-j\omega n}, X(\omega) \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{j\omega n} d\omega = x[n]$$

- any element of $L_2([-\pi, \pi])$ is equivalent to a square summable sequence $x[n] \in \ell_2(\mathbb{Z})$

$$X(\omega) = \langle e^{j\omega n}, x[n] \rangle$$



$$x[n] = (1/2\pi) \int X(\omega) e^{j\omega n} d\omega$$

DTFT properties

- linearity

$$\text{DTFT}\{\alpha x[n] + \beta y[n]\} = \alpha X(\omega) + \beta Y(\omega)$$

- time shift

$$\text{DTFT}\{x[n - M]\} = e^{-j\omega M} X(\omega)$$

- modulation (dual)

$$\text{DTFT}\{e^{j\omega_0 n} x[n]\} = X(\omega - \omega_0)$$

DTFT properties

- time reversal

$$\text{DTFT}\{x[-n]\} = X(-\omega)$$

- conjugation

$$\text{DTFT}\{x^*[n]\} = X^*(-\omega)$$

Some particular cases:

- if $x[n]$ is symmetric, the DTFT is symmetric:

$$x[n] = x[-n] \iff X(\omega) = X(-\omega)$$

- if $x[n]$ is real, the DTFT is Hermitian-symmetric:

$$x[n] = x^*[n] \iff X(\omega) = X^*(-\omega)$$

- in other words: if $x[n]$ is real, the magnitude of the DTFT is symmetric:

$$x[n] \in \mathbb{R} \iff |X(\omega)| = |X(-\omega)|$$

- finally, if $x[n]$ is real and symmetric, the DTFT is also real and symmetric!