Chapter 4

The Discrete-Time Fourier Transform

The DFT provides us with a frequency-domain representation of signals that contain
a finite amount of data; periodic signals, which are also uniquely described by a finite
number of data samples, use a formally identical frequency representation that, for clarity,
we call the DFS. In both cases, the transform is a straightforward change of basis in CN and,
as such, it can be described algorithmically as a matrix-vector multiplication involving a
finite number of operations.

We now consider the problem of obtaining a frequency-domain representation for ape-
riodic, infinite-length sequences. Such signals are an idealized mathematical concept,
of course, but they are indispensable if we want to prove theoretical results that hold
independently of the size of the data set and, most importantly, that are still true in the
limit case of an infinite number of samples. Obviously we would very much like for this
new transform to be a simple extension of the DFT, that is, we would like it to retain its
intuitive interpretation as a measure of similarity (that is, an inner product) between an
input signal and a set of oscillatory components. While this is ultimately the case, from
the mathematical point of view unfortunately something “breaks down” and, as we move
from finite to infinite lengths, we won't be able to obtain a Fourier transform that acts as
an endomorphism on the space of discrete-time sequences; namely, while the frequency
representation of a time-domain signal in CV is itself a vector in CV, the Fourier transform
of a sequence will not be a sequence but a function of a real variable. Although the exact
reasons for this are quite technical and beyond the scope of this book, we will try to
provide some intuition in the next pages.

4.1 Definition

The frequency-domain representation of an infinite-length, discrete-time signal x is called
the Discrete-Time Fourier Transform (DTFT) and it is defined as

[o¢]

X(w) = Z x[n]ejen. (4.1)

n=—00
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Formally, the DTFT can be seen as an operator that maps discrete-time sequences to
complex-valued functions of the frequency variable w € R; since the argument @ only
appears in the phase of the complex exponentials in the sum, a DTFT is always 2n-
periodic. To stress out this property! many authors use the notation X(e/%) to indicate a
DTFT, and we may do so as well if the context calls for it. Finally, when no confusion can
arise, we will also use the compact vector notation

DTFT
X ¢&—

Existence. The DTFT is guaranteed to exist if the sum in (4.1) converges, that is, if the
partial sum

N

Xn(w) = Z x[n]ejon (4.2)

n=-—N

is finite for all values of w as N grows to infinity. Convergence is very easy to prove for
absolutely summable sequences, that is for sequences satisfying

N
Iim = Z |x[n]| < o0 (4.3)

N—oo
n=—N

since, according to the triangle inequality,

N N
|XN(a))| < Z |x[n]e_7“’”| = Z |x[n]|. (4.4)
n=-N n=-N

For this class of sequences it can also be proved that the convergence of Xy (w) to X(w)
is uniform and that X(w) is continuous. While absolute summability is a sufficient
condition for the existence of the DTFT, it can be shown that the sum in (4.2) exists also
for all sequences in ¢»(Z), the space of square-summable (i.e., finite-energy) sequences. For
square-summable signals that are not absolutely summable, however, the convergence
of (4.2) is no longer uniform but takes place only in the mean-square sense, i.e.

lim [ :|XN(a)) ~ X(w)[ dw = 0. (4.5)

This type of convergence implies that, while the total energy of the difference between
functions goes to zero, the functions may differ in value over a countable set of points.2
This also implies that, in this case, X(w) is no longer guaranteed to be continuous.

1And also to provide a convenient notational framework which unifies the DTFT and the z-transform, as
we will see in Chapter ??.

2A particular manifestation of this behavior is called the Gibbs phenomenon, which has important conse-
quences in the problem of filter design, as we will study in Chapter ??2.
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Inversion. The DTFT, when it exists, can be inverted via the integration

x[n] = i/nX(a)) el dw; (4.6)

2n J_,

this can be easily verified by substituting (4.1) into (4.6) and recalling that

Ve
/ IR = 27 5[n — k.
-

In fact, due to the 2m-periodicity of the DTFT, the integral in (4.6) can be computed
over any 2nt-wide interval on the real line; by convention, though, the DTFT is generally
represented over the [—7, 7] interval.

4.2 Intuitive interpretations

As we said, we would like the DTFT to emerge as a natural extension of the DFT, whose
simplicity and whose properties we are now familiar and happy with. There are at least
three rather intuitive paths that lead from the DFT to the DTFT, although (be forewarned)
all of them will rely at some point on a certain amount of willful carelessness with
mathematical precision.

4.2.1 The DTFT as the limit of a DFT.

The simplest approach to the DTFT considers an infinite sequence as the limit of a finite-
length signal whose length grows larger and larger. In the analysis formula for an N-point
DFT,

N-1
X[kl = > x[n]e IR, k=0,...,N-1,
n=0

the fundamental frequency for the space is wny = 2n/N. As N grows large, wn becomes
infinitesimally small and so its multiples kwy will become infinitely dense in the [0, 27]
interval, much like a real-valued variable would. By replacing 2kn/N by w and by
shifting the reference interval to [-m, 7], the metamorphosis is complete. The same
limiting argument can be carried out for the synthesis formula, as in Exercise ??.

4.2.2 The DTFT as the limit of a DFS.

An aperiodic sequence can also be interpreted as the limit of a periodic signal whose
period grows to infinity. Pick an absolutely summable sequence x and build the N-
periodic signal

[o¢]

Inln] = Z x[n + pN] 4.7)

p:—OO



4 4 — The Discrete-Time Fourier Transform

with N > 0; since x is absolutely summable, the above expression will be finite for all n
(see Example ??). As N grows larger, the copies that make up the periodic signal will be
spaced further and further apart and, in the limit,

lim Xy = x.

N —>o0

For all finite values of N, the natural frequency representation for Xy is its DFS:

N-1 00 N-1
Xnlk] = Z F[n]e iNmk = Z Z x[n + pN]e i X PNk | . (4.8)
n=0 p=—00 \n=0

in ’Fhe derivation, we have used the definition of Xy and exploited the fact that e~j@n/N)nk —
e~ 1@n/N)n+pN)k Now, for every value of p in the outer sum, the value (1 +pN) in the inner
sum ranges from pN to pN + N — 1 so that the double sum can be simplified to

[ee]

Xnlk] = Z x[n]e 1 kn, (4.9)
n=—oo
By defining the following function of a real-valued variable w

[o¢]

X(w) = Z x[n]ejon (4.10)

n=—oo

we can express the DFS of Xy as the set of N regularly spaced samples?
> 2n
Xn[k] =X (Wk) ;

this is shown in Figure 4.1 for different values of N. As N grows large, the set of samples
will grow denser in the [0, 27] interval; since, in the limit, Xy tends to x, it appears that the
frequency-domain representation for x is indeed the 2n-periodic function X(w).

4.2.3 The DTFT as a formal change of basis.

The analysis formula in (4.1) has the same formal structure as the inner product between
the infinite sequence x and a complex exponential at frequency w; according to our usual
interpretation, every DFT value thus measures the similarity between the input sequence
x and an infinitely long oscillation at frequency w. It’s tempting at this point to simply
interpret the DTFT as another change of basis, this time in ¢>(Z), where the new “basis
vectors,” indexed by w € R, are the set {ej “’”}w and where the expansion coefficients are
given by

X(w) = (eJ¥", x). (4.11)

30Once again, it is instructive to notice the time-frequency duality pattern: in Section ?? we showed how a
maximally compact time-domain signal possesses a maximally wide spectrum, and vice-versa; here we see
that increasing the period spacing in time decreases the spacing of samples in frequency.
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Figure 4.1: top row: original infinite-length, absolutely summable signal (left) and the function X(w)
defined in (4.10); rows 2-5: periodized signal xn and its DFS for increasing values of N; all
DFS values are samples of X(w) at multiples of 21t/ N.
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While appealing, unfortunately this interpretation is not mathematically correct because
those “basis vectors” are not even elements of ¢,(Z) (their energy is infinite); additionally,
while a basis can indeed contain an infinite number of elements, they should form at least
a countable set, that is, they should be indexable by an integer variable. And yet, the DTFT
is in fact a change of basis — the only trick is that we have to look it backwards, from the
frequency domain to the time domain, as we will show in the next section.

4.3 The DTFT as a basis expansion

In Section ?? we showed how the elements of a vector space can be standard functions
(rather than Euclidean tuples) and the set of square-integrable functions over the [-7, 7]
interval is a Hilbert space known as Ly([-m, t]). A vector F € Ly([-m, ]) is thus a
complex-valued function for which the integral

‘/7T |F(w)*dw < .

T

The usual definition for the inner product in this space is

(F,G) = % [ " F(@)Gl)dw 4.12)

and with this it can be shown that the set

{77}z (4.13)

forms an orthogonal basis*. Note that the set of basis functions is countable (it is indexed
by an integer) and that each element is obviously square-integrable over the finite interval
[-m, ).

Now, since the DTFT is 2nt-periodic, it is completely defined by its values over any 2r-wide
interval and we can certainly choose this interval to be [-7, ]. And so, a DTFT that is
square-integrable over [, ] can be considered a bona-fide element of Ly([—7, ]). With
this in mind, the DTFT inversion formula in (4.6) reads as the inner product between an
element of L,([—m, 7]) and the n-th basis vector for the space. In other words, any square-
integrable DTFT can be decomposed into a linear combination of vectors from (4.13) and
the coefficients of the expansion form the discrete-time sequence

x[n] = (779", X(w)). (4.14)

While this inverted viewpoint may seem just a bit of mathematical sophistry, it actually
allows us to legitimately invoke the properties of Hilbert space for the DTFT and, in
particular, the conservation of energy guaranteed by Parseval’s theorem:

Z Ix[n]]? = %[:lX(a)dea). (4.15)

n=—0oo

*While orthogonality is elementary to show, the really tricky part is proving completeness. Please refer
to [?] for details.
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Figure 4.2: Reading a DTFT plot.
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Figure 4.3: Every DTFT is a 2m-periodic function.

This means that the square magnitude of the DTFT encodes the signal’s distribution of
energy in the frequency domain, just as in the case of the DFT; and this also guarantees
that, given a DTFT in Ly([-t, 7t]), the associated time-domain sequence will necessarily
be in 6(Z).

4.4 Examples

The DTFT of a discrete-time signal is a complex-valued 2m-periodic function of a real-
valued frequency variable. Just as we discussed in Section ??, DTFT plots display sepa-
rately the magnitude and the phase whose physical significance remains unchanged with
respect to the DFT. In this case however the range of choice for the frequency variable
is the zero-centered interval [-m, 7], which clearly shows the contribution of positive
(counterclockwise) and negative (clockwise) frequencies as shown in Figure 4.2.

It is important to remember that the DTFT is always 27mt-periodic and therefore, if the plot
encompasses a larger range of frequencies, both magnitude and phase repeat ad infinitum,
as shown in Figure 4.3.

We will now look at the DTFT of some elementary signals.
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Impulse. The DTFT of a discrete-time delta is a complex exponential:

DTFT{6,} = Z 5[n — mle~ion = e~jom,

n=—00

the magnitude of the transform is constant and equal to one, whereas the phase is linear
and proportional to m. Again, as we saw for the DFT, the Fourier transform the most
“concentrated” signal in time is nonzero over its entire freqency support.

Rectangular signal. An infinite-length rectangular sequence is a signal that is nonzero
only over a finite number of contiguous time indexes:

1 0<sn<M
x[n] = .

0 otherwise

Its DTFT is:

M-1
X(w)= ) eor

n=0

1= g joM

P

e JwM/2 (eja)M/Z) _ e—jwM/Z)

ejw/2 (eja)/Z _ e—jw/Z)

_ Sin(@M/2) -1y
sin(w/2) '

Again, we have manipulated the expression for the transform into a product of a real-
valued term and a pure phase term; this allows us to easily plot the DFT as in Figure 4.4;
note how the magnitude is zero at all nonzero multiples of 2rt/M and how the sign
changes in the magnitude at those points determine an additional shift of +m in the
phase.

Exponential decay. Consider the exponential decay defined in section ??,

for |a| < 1 the sequence is absolutely summable and its DTFT is easily computed as

1

X = e

(4.16)
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Figure 4.4: DTFT of an 8.0 -point rectangular signal.

Magnitude and phase are, respectively,

2 1
|X(a))| 1+ al]2-2acos(w) (417)

(4.18)

(X(w) = arctan[ —asin(w) ]

1 —acos(w)

and they are plotted in Figure 4.5.

4.5 Properties of the DTFT

In this section we will list, without formal proof, a series of elementary properties for the
DTFT, which you are encouraged to verify using the definition of the transform.

Linearity. The DTFT is a linear operator:

ax[n] + by[n] == aX(w) + bY(w) (4.19)
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Figure 4.5: DTFT of the exponential decay for a = 0.9.

Time shift. The shift of a signal in time correspond to multiplication by a linear phase
factor in frequency:

x[n — ng] JLELLIEN eJom X (w). (4.20)

Frequency shift. Multiplication in the time domain by a linear phase term corresponds
to a shift in frequency:
x[nl e EEL X (@ - wp) (4.21)

and, by linearity,

DTFT 1

x[n] cos(won) «—— 5 [X(w — wo) + X(w + wp)] -

Time and frequency reversal. Reversing a signal in time reverses its transform:

t[-n] 2L X () (4.22)
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Conjugating the time-domain signal results in both conjugation and reversal of the
DTFT:

2[n] <25 X () (4.23)

Symmetries. In the case of infinite-length sequences and periodic functions, symmetries
(and antisymmetries) are intended around zero and have a straightforward definition.
With this,

o the DTFT of a symmetric signal is symmetric

the DTFT of a real-valued signal is Hermitian-symmetric

the magnitude DTFT of a real-valued signal is symmetric.

the DTFT of a real-valued symmetric signal is real-valued and symmetric.

4.6 The DTFT of power signals

The DTFT is mathematically well-defined for all finite-energy sequences and so every
signal in #,(Z) is uniquely associated to a square-integrable function in Ly([-7, 7t]). As we
mentioned in Section ??, we are also interested in power signals such as a the unit sequence,
the unit step, and sinusoidal oscillations; these signals are not square summable but their
energy per unit of time remains finite. In this section we will describe how the DTFT
formalism can be extended to power signals as well; this is achieved by means of the Dirac
delta, a generalized function that, with adequate care, can be manipulated almost like a
standard function. The resulting generalized spectrum of a power signal, which always
contains one or more Dirac deltas, will have the same properties of a standard DTFT and
will behave as expected with respect to frequency-domain operations such as filtering
and modulation.

4.6.1 The Dirac delta

The Dirac delta is a quirky mathematical object that has gained widespread use in applied
sciences as the model for idealized impulsive phenomena. While not a regular function,
it is often used as one via the notation 6(¢); it can be formally defined in terms of its sifting
property, valid for any sufficiently well-behaved function f:

‘[+°° o(t —1)f(r)dt = f(t). (4.24)

[o¢]

While no standard function possesses this property, we can interpret the Dirac delta as a
shorthand for a limiting operation in which the integral is computed using increasingly
“peaked” and increasingly “narrow” regular functions; informally, as we will see in the
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following examples, 6(t) can be described as a sort of function with unit area and that is
zero everywhere except in the origin t = 0 where the amplitude grows to infinity?®.

Physical impulses. In physics textbooks, quite a few exercises in classical mechanics
involve “a particle with mass m, initially at rest, that begins to move at time to = 0 with velocity
vg...” If the particle starts to move, it means that a force F(t) acted upon it, producing
an acceleration a(t) = F(t)/m; the particle’s velocity over time is the antiderivative of its
acceleration and so

v(t):[a(t)dt: 0 t<to

00 U() tZt()

(assuming velocity remains constant after ¢p). The accelerating force, therefore, seems to be
a function with infinitesimally small support but with finite area; if such a function existed,
what would it look like? If we write out the expression for the particle’s acceleration we
have

0 t <ty

a(t) = lirr(1) o) —v(t —€) z(t —¢) _Jo . t>to
€E— —

lim % 2 0o =t
e—0 €

which we can interpret as a “function” that is zero everywhere except for a point of infinite
amplitude in f(: not a standard function for sure.

Mathematical impulses. Many scalar functional descriptors are defined as the integral
of the product between the function and a given kernel®. For instance, the n-th moment
of a function is defined as

m, = o t)dt;
[ e

(e}

if n = 0 the kernel is t° = 1 and we obtain the function’s total area, whereas for n = 1 the
kernel is t and we obtain the function’s center of mass. As another example, consider a
family of real-valued kernels, parametrized by a positive number «, and defined as

()= {1/a It < a/2 @25)

0 otherwise

Each kernel is nonzero only over the symmetric interval [-a//2, /2] and all kernels have
unit area independently of a; some examples are plotted in Figure 4.6. By integrating the

5As a passing but obligatory remark, please be mindful of the profound difference between the Dirac delta
and the by now familiar discrete-time delta sequence 6[n], also known as the Kronecker delta. The latter is a
perfectly normal, finite-energy sequence indexed by an integer variable, whereas the former is a generalized
function of a real variable. In discrete-time signal processing, the Dirac delta only appears in the frequency
domain and its argument is always a real-valued frequency variable w.

¢That is to say, the inner product between kernel and fucntion in the vector space where both objects live.
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Figure 4.6: Family of constant-area indicator functions r,(t).

product of r,(t) with any well-behaved function we obtain the average value of f over
[—a/2,a/2]:

(o] 1 a/2
[ o= [ o

—a/2

At the same time, the mean value theorem” guarantees that there always exists a value
|y < a/2 such that

a/2
/ fOd=afi) (4.2

If we now use smaller and smaller values for «, in the limit the range of possible values
for y gets “squeezed” to the single value zero so that in the end

lim / ®f ) = FO)

With much mathematical daring we could move the limit inside the integral and pretend
that there exists a “function” 6(t) such that

lirr}) ro(t) = 0(t);

this would lead to the expression

[ " s(f (1) dt = £(0)

7In particular, we refer here to the mean value theorem for definite integrals: if f is a continuous function
over the interval [a, b], then there exists ¢ € [a, b] such that

b
[ rvar=e-wr.
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namely, we’d have defined a kernel that, via integration, can extract the value of a function
int = 0. Again, 0(f) doesn’t appear to be a standard function and, quite interestingly, it
seems to possess the same properties as our earlier model for an instantaneous accelera-
tion:

e 5(t)=0fort #0and 6(t) » cofort =0

e the integral of 6(¢) is equal to one if the integration interval includes t = 0, and zero
otherwise

4.6.2 The generalized DTFT of the unit sequence

Consider a family of double-sided decaying exponentials d,, with d,[n] = al"land 0 <
a < 1. Each sequence belongs to £»(Z) since

0 2
Z a2 = 1+a”

1—a?

n=—0oo

and its DTFT is (see Exercise 2?)

1-a2

1-2acosw + a?’

D,(w) = (4.27)

note that the area under D,(w) is independent of a and equal to 27t since

Vs
/ D,(w)dw = 2nd,[0] = 27.
—T
Figure 4.7 shows a few DTFT pairs d, <> D, for different values of a and it is obvious that,
as a approaches one, the finite-energy sequences d, tend to the infinite energy, constant
sequence 1:

limd, =1,

a—1
at the same time, the corresponding Fourier transforms D, see their their maximum

value D,(0) grows towards infinity while their constant area becomes incresingly and
more concentrated around w = 0:

lim 1+a w=0
a—>11—a

lim D,(w) =

a—1
0 w # 0.

By analogy with the family of finite-support kernels r,(t) defined in the previous example,
we could already posit that D, will be some form of Dirac delta; but we can make this
argument much stronger since, for any value of 4, d, € £>(Z) and D, € Ly([-7, t]). If we
pick any other finite-energy sequence x and compute its inner product in ¢,(Z) with d,,
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Figure 4.7: Double-sided complex exponential sequences dq[n] = al"l and their DTFTs for increasing
values of a.
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Parseval’s theorem guarantees that the result will be preserved across the change of basis
operated by the DTFT and will be equal to the inner product of the respective Fourier
transforms in Ly([—7, ]):

(dur a> = <Darx>

This can be written out explicitly as®

> dufnlxin] = % /_ Dy (@)X (@)daw

T

and if we now take the limit for 4 — 1 the left-hand side becomes

[Se]

lim(d,, x) = D x[n]=X(0)

n=—00

which implies
1 T

lim — / D;(w)X(w)dw = X(0).
21 J_,

With the same mathematical daring that we deployed earlier, we satisfy this equation by
setting

lirr} D,(w) =2n6(w)
a—

which formally defines the DTFT of the unit signal as a scaled Dirac delta. To be precise,
since DTFTs~ are by definition 27-periodic, let’s build a frequency-domain, 27-periodic
Dirac delta 6 as

5(w) = 21 Z 8(@ — 2km); (4.28)

k=—0c0
with this we can finally write

DTFT -~
11— 6.

And, to make this result a bit more intuitive, let’s look at it from another angle, namely, as
the limit of the DTFT of a truncated unit sequence. For any positive integer M, consider a
sequence that is equal to one for n € [-M, M] and zero otherwise; the sequence has finite
energy and its DTFT is

M

M
Cu(w) = Z eI =1 4 ZZcos(na));
n=1

n=-—M

8No need to conjugate the first operand since d, is real and symmetric and therefore so is D,.
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this function, also known as the Dirichlet kernel, has constant area 27t independently of
M and maximum amplitude 2M + 1 in w = 0; some examples are plotted in magnitude in
Figure 4.8. It’s clear that, as M increases, the area under each curve concentrates more and
more around the origin while the maximum value grows linearly with M; the set {Cas}m
is thus another family of increasingly narrow and increasingly peaked functions with
constant area and, by analogy, we can deduce that the truncated DTFTs will to converge
in the limit to a Dirac delta.

4.6.3 DTFTs of sinusoidal power signals

By accepting b as a bona fide Fourier transform, we can easily derive the generalized DTFT
of sinusoidal signals by working backwards from the frequency domain; using the Dirac
delta’s sifting property (4.24), we can easily compute the IDTFT of a frequency-shifted
periodic delta as

1 Us

— 5w — wp) e/ dw = el
2n J_ .

with this, we obtain the fundamental generalized DTFT pairs:

el I8~ ap) (4.29)
cos(won) JLLLLN %[S(w — wp) + 6(w + wp)] (4.30)
sin(won) LN —%[S(a) — wp) — 0w + wp)] (4.31)

4.6.4 The DTFT of the unit step sequence

The unit step u is a signal that is most commonly used as a multiplicative mask in order
to impose causality to the mathematical expression for a sequence; we have often written
the one-sided decaying exponential, for example, as

haln] =a" uln], la] < 1. (4.32)

But what is the DTFT of the unit step on its own? Obviously u is a power signal so its
frequency representation will only exist in the generalized sense; to compute its expression
we could begin by noticing that, as the parameter a approaches one, the exponential decay
in (4.32) converges in the limit to the unit step. Since

1
) =
it’s tempting to simply apply the same limiting operation in the frequency domain to
obtain
. 1
lim H,(w) = — = S(w).
a—1 1

—jw
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Figure 4.8: The truncated DTFT of the unit sequence for increasing lengths.



4.6 — The DTFT of power signals 19

Obviously something is already off: there is no Dirac delta in this expression, even though
we know u to be a power signal. Still, let’s collect e™/¢ /2 at numerator and denominator
and write

1 1 w

E - ]E cot E’ (433)
although divergent in w = 0, the function S(w) seems sufficiently well-behaved so let’s
check if it is indeed the Fourier transform of the unit step. Using the same approach as

before, for every valid DTFT pair x <> X it should be
(u,x) = (S,X)

S(w) =

that is,

2n J

ix[n] - L / " 5 ()X (w)da. (4.34)
n=0 -

Let’s pick x real and symmetric, so that its DTFT will also be real and symmetric; the
right-hand side becomes

1 ", 1 i M w
ﬁ/—n S (w)X(w)dw = 2x[O] + in ‘/_n cot 2X(a))da).

In order to compute the last integral, given that the cotangent is divergent in zero, we could
use Cauchy’s principal value theorem; but since our chosen X(w) is real and symmetric
whereas cot(w/2) is real and antisymmetric, the integral of their product, if it exists, can
only be equal to zero. Since we can easily find real symmetric sequences for which

- 1
nZ:(:)x[n] # 52[0]

we can conclude that S is not the Fourier transform of the unit step.

Disappointed but not yet discouraged, we may try another approach; let’s take the unit
step’s first-order difference:

u[n]—u[n-1] = o[n]. (4.35)
In the frequency domain this becomes
U(w) - e U(w) =1

from which, once again, we obtain U(w) = S(w) — which we know to be wrong! But this
line of attack at least has the merit of leading us closer to the solution: the key observation
is that the first-order difference in (4.35) remains valid even if an arbitrary constant offset
is added to the unit step?; in other words, if we define

ucn]=u[n]+c, c eR,

Exactly in the same way as differentiation is unaffected by an additive constant: % [f(t)+c]=f'(t)
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we still have
uc[n]—uc[n—-1] =06[n] Vc

so that U, = S for all c. But this means that an infinite number of distinct sequences have
the same DTFT, which is in contradiction with the uniqueness of the Fourier transform
(since the DTFT is a change of basis). So let’s ask ourselves a different question instead:
is it possible to find a value for the offset ¢ so that u. and S form a true DTFT pair?
The answer comes once again from symmetry considerations: if DTFT{uC} = S then
DTFT{u. + b6} = S + b for any scalar b; if we pick b = —1/2 then S — 1/2 becomes a
purely imaginary DTFT and therefore the sequence u, — (1/2)0 must be antisymmetric.
This means that

uln]+c—(1/2)0[n] = —(u[-n]+c - (1/2)6[n])

and, by solving for n positive, negative, and equal to zero, the only possible value for the

offset is c = —1/2. The signal s = u_y; is in fact called the signum sequence, formally
defined as
+1/2 >0
s[n] = /2 nz (4.36)
-1/2 n<0
and with generalized DTFT
1
S(w) = =

Since u[n] = s[n] + 1/2, the DTFT of the unit step is finally

U(w) =

1~
1 e_j(‘) + Eé(a)) (437)



