
COM-202: Signal Processing

Chapter 4.c: Wrap up of Discrete-Time Fourier Analysis

Overview:

The Fast Fourier transform (FFT)

The short-time Fourier transform (STFT)

1

the Fast Fourier transform (FFT)

Overview

A bit of history: From Gauss to the fastest FFT in the west

Small DFT matrices

The Cooley-Tukey FFT

Decimation-in-Time FFT for length 2N FFTs

Conclusions: There are FFTs for any length!

2

Fourier had the Fourier transform

3

But Gauss had the FFT all along ;)

4

History

Gauss computes trigonometric series efficiently in 1805

Fourier invents Fourier series in 1807

People start computing Fourier series, and develop tricks

Good comes up with an algorithm in 1958

Cooley and Tukey (re)-discover the fast Fourier transform algorithm in 1965 for N a
power of a prime

Winograd combines all methods to give the most efficient FFTs in 1978

5

The DFT matrix

WN = e−j 2π
N : primitive N-th root of unity

powers of WN can be taken modulo N, since W N
N = 1: W k

N = W k mod N
N .

we use just W when N is clear from the context

DFT Matrix of size N by N:

W =

⎡

⎢

⎢

⎢

⎢

⎣

1 1 1 1 . . . 1
1 W 1 W 2 W 3 . . . W N−1

1 W 2 W 4 W 6 . . . W 2(N−1)

. . .

1 W N−1 W 2(N−1) W 3(N−1) . . . W (N−1)2

⎤

⎥

⎥

⎥

⎥

⎦

6

The DFT matrix (graphically)

from Wikipedia

7

Small DFT matrices: N = 2

W2 =

[

1 1
1 −1

]

8

Small DFT matrices: N = 4

W4 =

⎡

⎢

⎢

⎣

1 1 1 1
1 W W 2 W 3

1 W 2 W 4 W 6

1 W 3 W 6 W 9

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

1 1 1 1
1 W W 2 W 3

1 W 2 1 W 2

1 W 3 W 2 W

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

1 1 1 1
1 −j −1 j

1 −1 1 −1
1 j −1 −j

⎤

⎥

⎥

⎦

9

Divide et impera - Divide and Conquer (Julius Caesar)

Divide and conquer is a standard attack for developing fast algorithms.

problem

subproblem

subproblem

simple
subproblem

simple
subproblem

simple
subproblem

simple
subproblem

intermediate
solution

intermediate
solution

solution

split

spl
it

split

split

split

split

merge

merge

merge

merge

me
rge

merge

10

Divide and Conquer for DFT - One step

Recall: computing X = WN x has complexity O(N2).

Idea:

Assume N even

Split the problem into two subproblems of size N/2; cost is N2/4 each

If the cost to recover the full solution is linear N . . .

. . . the divide-and-conquer solution costs N2/2 + N for one step

For N ≥ 4 this is better than N2

11

Divide and Conquer for DFT - One step

Graphically

Split DFT input into 2 pieces of size N/2

Compute two DFT’s of size N/2

Merge the two results

12

Divide and Conquer for DFT - One step

!x [0]

!x [1]

!x [2]

!x [3]

!x [4]

!x [5]

!x [N − 1]

!x [N − 2]

!x [N − 3]

!x [N − 4]

sp
lit

D
F
T
-N

/2
D
F
T
-N

/2

m
er
ge

! X [0]

! X [1]

! X [2]

! X [3]

! X [4]

! X [5]

! X [N − 1]

! X [N − 2]

! X [N − 3]

! X [N − 4]

13

Divide and Conquer for DFT - Multiple steps

Idea: if N = 2K , divide and conquer can be reapplied!

Cut the two problems of size N/2 into 4 problems of size N/4

Assume complexity to recover the full solution still linear, e.g. N at each step

You can do this log2 N − 1 = K − 1 times, until problem of size 2 is obtained

The divide-and-conquer solution has therefore complexity of order N log2 N

For N ≥ 4 this is much better than N2!

14

Divide and Conquer for DFT - Multiple steps

N N2 N logN

10 100 10

100 10,000 200

1000 1M 3000

10,000 100M (108) 40,000 (4 · 104)

100,000 10B (1010) 500,000 (5 · 105)

15

Divide and Conquer for DFT - Multiple steps

Graphically

Split DFT input into 2, 4 and 8 pieces of sizes N/2, N/4 and N/8, respectively

Compute 8 DFT’s of size N/8

Merge the results successively into DFT’s of size N/4, N/2 and finally N

16

Divide and Conquer for DFT - Multiple steps

!x [0]
!x [1]
!x [2]
!x [3]
!x [4]
!x [5]

!x [N − 1]

!x [N − 2]

!x [N − 3]

!x [N − 4]

sp
lit

sp
lit

sp
lit

sp
lit

sp
lit

sp
lit

sp
lit

DFT
N/8

DFT
N/8

DFT
N/8

DFT
N/8

DFT
N/8

DFT
N/8

DFT
N/8

DFT
N/8

m
er
ge

m
er
ge

m
er
ge

m
er
ge

m
er
ge

m
er
ge

m
er
ge

! x [0]
! x [1]
! x [2]
! x [3]
! x [4]
! x [5]

! x [N − 1]

! x [N − 2]

! x [N − 3]

! x [N − 4]

17

Divide and Conquer for DFT- Analysis of DIT

X [k] =
N−1
∑

n=0

x [n]W nk
N , k = 0, 1, . . . ,N − 1, WN = e−j 2π

N

Idea (a good guess is half of the answer!):

break input into even and odd indexed terms (so-called ”decimation in time”):

x [n], n = 0, 1, . . . ,N − 1 −→ x [2n] and x [2n + 1], n = 0, . . . ,N/2 − 1

break output into first and second half

X [k], k = 0, 1, . . . ,N − 1 −→ X [k] and X [k + N/2], k = 0, . . . ,N/2 − 1

18

Important properties of the N-th root of unity

assuming N even:

W 2
N = e−j 4π

N = e
−j 2π

N/2 = WN/2

so that, in general:
W 2nk

N = W nk
N/2

also
W

N/2
N = e−j 2π

N
N
2 = e−jπ = −1

19

Divide and Conquer for DFT- Analysis of DIT

Consider even and odd inputs separately:

X [k] =

N/2−1
∑

n=0

x [2n]W 2nk
N +

N/2−1
∑

n=0

x [2n + 1]W (2n+1)k
N

=

N/2−1
∑

n=0

x [2n]W 2nk
N +

N/2−1
∑

n=0

x [2n + 1]W 2nk+k
N

=

N/2−1
∑

n=0

x [2n]W nk
N/2 +W k

N

N/2−1
∑

n=0

x [2n + 1]W nk
N/2

= XA[k] +W k
N XB [k], k = 0, 1, . . . ,N − 1

20

Divide and Conquer for DFT- Analysis of DIT

hmmm, we haven’t gained much so far:

both XA[k] and XB [k] require N/2 multiplications

multiplying the second DFT by W k
N requires another multiplication

to compute for all k we need N(N/2 + N/2 + 1) ≈ N2

but here comes the trick!

21

Divide and Conquer for DFT- Analysis of DIT

Consider now the first and second half of the outputs separately:

X [k] =

N/2−1
∑

n=0

x [2n]W nk
N/2 +W k

N

N/2−1
∑

n=0

x [2n + 1]W nk
N/2

= XA[k] +W k
N XB [k]

X [k + N/2] =

N/2−1
∑

n=0

x [2n]W n(k+N/2)
N/2 +W

k+N/2
N

N/2−1
∑

n=0

x [2n + 1]W n(k+N/2)
N/2

=

N/2−1
∑

n=0

x [2n]W nk
N/2 −W k

N

N/2−1
∑

n=0

x [2n + 1]W nk
N/2

= XA[k]−W k
N XB [k], k = 0, 1, . . . ,N/2 − 1

22

Divide and Conquer for DFT- Analysis of DIT

so the trick is that we only need to compute for half the range of k :

both XA[k] and XB [k] require N/2 multiplications

multiplying the second DFT by W k
N requires another multiplication

to compute for all k we need (N/2)(N/2 + N/2 + 1) ≈ N2/2

the rest is just sums and differences

23

Divide and Conquer for DFT- Analysis of DIT

!x [7]

!x [5]

!x [3]

!x [1]

DFT-N/2

!
W 3

N

!
W 2

N

!
W 1

N

!
W 0

N

! X [7]

! X [6]

! X [5]

! X [4]

!x [6]

!x [4]

!x [2]

!x [0]

DFT-N/2

! X [3]

! X [2]

! X [1]

! X [0]

!

! !

!

−1

!

! !

!

−1

!

! !

!

−1

!

! !

!

−1

24

Divide and Conquer for DFT- Analysis of DIT

So, what is the complexity now?

Split DFT input into 2 pieces of size N/2: free!

Compute 2 DFT-N/2: twice (N/2)2, or N2/2

Merge the two results: multiplication by N/2 complex numbers W k

Total: N2/2 + N/2 which is indeed smaller than N2 for any N ≥ 4,

In general, about half the complexity of the initial problem!

25

Divide and Conquer for DFT- Analysis of DIT

So, what if we repeat the process?

Go until DFT-2, since that is trivial (sum and difference)

Requires log2 N − 1 steps

Each step requires a merger of order N/2 multiplications and N additions

Total: (N/2)(log2 N − 1) multiplications and N log2 N additions

Key Result: A DFT of size N requires order N log2N operations!

26

Matrix factorization view of DFT, N = 4

Separate even and odd samples

Compute two DFT’s of size 2 having output XA[k] and XB [k]

Compute sum and difference of XA[k] and W kXB [k]

W4 =

⎡

⎢

⎢

⎣

1 1 1 1
1 j −1 −j

1 −1 1 −1
1 −j −1 j

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

1 0 1 0
0 1 0 −j

1 0 −1 0
0 1 0 j

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤

⎥

⎥

⎦

This uses 8 additions and no multiplications!

27

Matrix factorization view of DFT, N = 8, 1/8

Now this is going to be big...

Too big for a single slide!

W8 =

⎡

⎢

⎢

⎢

⎢

⎣

1 1 1 1 . . . 1
1 W 1 W 2 W 3 . . . W 7

1 W 2 W 4 W 6 . . . W 14

. . .
1 W 7 W 14 W 21 . . . W 49

⎤

⎥

⎥

⎥

⎥

⎦

= . . .

28

Matrix factorization view of DFT, N = 8, 2/8

Step 1: separate even from odd indexed samples
Call this D8 for decimation of size 8

D8 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

This requires no arithmetic operations!

29

Matrix factorization view of DFT, N = 8, 3/8

Step 2: Compute two DFTs of size N/2 on the even and on the odd indexed samples
Each submatrix is W4, and the matrix is block diagonal, where 04 stands for a matrix of 0’s

[

W4 04
04 W4

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 1 1
1 j −1 −j

1 −1 1 −1
1 −j −1 j

1 1 1 1
1 j −1 −j

1 −1 1 −1
1 −j −1 j

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

This requires two DFT-4, or a total of 16 additions!

30

Matrix factorization view of DFT, N = 8, 4/8

Step 3: Multiply output of second DFT of size 4 by W k

This is a diagonal matrix, with I4 for the identity of size 4,

[

I4 04
04 Λ4

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
1

1
1

1
W

W 2

W 3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

where Λ4 =

⎡

⎢

⎢

⎣

1
W

W 2

W 3

⎤

⎥

⎥

⎦

This requires 2 multiplications (W 2 = −j is free)

31

Matrix factorization view of DFT, N = 8, 5/8

Step 4: Recombine final output X [k] and X [k + N/2] by sum and difference, S8

S8 =

[

I4 I4
I4 −I4

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

This requires 8 additions!

32

Matrix factorization view of DFT, N = 8, 6/8

In total:
Product of 4 matrices

W8 =

[

I4 I4
I4 −I4

]

·
[

I4 04
04 Λ4

]

·
[

W4 04
04 W4

]

·D8

This requires 24 additions and 2 multiplications!

33

Flowgraph view of FFT, N = 8

!x [7]

!x [3]

!x [5]

!x [1]

!x [6]

!x [2]

!x [4]

!x [0]

!
W 0

N

!

!
W 0

N

!

!
W 0

N

!

!
W 0

N

!

!

! !

!

−1

!

! !

!

−1

!

! !

!

−1

!

! !

!

−1

!
W 2

N

!
W 0

N

!

!

!
W 2

N

!
W 0

N

!

!

!

! !

!

−1

!

! !

!

−1

!

! !

!

−1

!

! !

!

−1

!
W 3

N

!
W 2

N

!
W 1

N

!
W 0

N

!

!

!

!

!

! !

!

−1

!

! !

!

−1

!

! !

!

−1

!

! !

!

−1

! X [7]

! X [6]

! X [5]

! X [4]

! X [3]

! X [2]

! X [1]

! X [0]

34

Flowgraph view of FFT, N = 8

!x [7]

!x [3]

!x [5]

!x [1]

!x [6]

!x [2]

!x [4]

!x [0]

!

!

!

!

!

!

!

!

!

! !

!

−1

!

! !

!

−1

!

! !

!

−1

!

! !

!

−1

!
j

!

!

!

!
j

!

!

!

!

! !

!

−1

!

! !

!

−1

!

! !

!

−1

!

! !

!

−1

!
W 3

8

!
j

!
W 1

8

!

!

!

!

!

!

! !

!

−1

!

! !

!

−1

!

! !

!

−1

!

! !

!

−1

! X [7]

! X [6]

! X [5]

! X [4]

! X [3]

! X [2]

! X [1]

! X [0]

35

Matrix factorization view of DFT, N = 8, 8/8

Is this a big deal?

In image processing (e.g. digital photography) one takes block of 8 by 8 pixels

One computes a transform (called DCT) similar to a DFT

It has a fast algorithm inspired by what we just saw

36

Some examples

image processing (JPEG compression)

image is divided into 8× 8-pixel blocks

DFT performed on rows and columns: 16 8-point DFTs

direct computation: 16× 82 = 1024 multiplications

FFT: 16× 2 = 32 multiplications

37

Some examples

audio processing (MP3 compression)

audio is split into 1152-point frames

direct DFT computation: 1.3 · 106 multiplications

FFT: 3500 multiplications

38

Conclusions

Don’t worry, be happy!

The Cooley-Tukey is the most popular algorithm, mostly for N = 2N

Note that there is always a good FFT algorithm around the corner
(Do not zero-pad to lengthen a vector to have a size equal to a power of 2)

It does make a BIG difference!

39

the short-time Fourier transform (STFT)

Overview:

Time vs frequency representations

The STFT and the spectrogram

Time-Frequency tilings

40

Dual-Tone Multi Frequency dialing

41

DTMF signaling

1209Hz 1336Hz 1477Hz

697Hz 1 2 3

770Hz 4 5 6

852Hz 7 8 9

941Hz * 0 #

42

1-5-9 in time

0 N

Play

43

1-5-9 in time (detail)

0 N/4

44

1-5-9 in frequency (magnitude)

0 N/2

45

The fundamental tradeoff

time representation obfuscates frequency

frequency representation obfuscates time

46

Short-Time Fourier Transform

Idea:

take small signal pieces of length L

look at the DFT of each piece:

X [m; k] =
L−1
∑

n=0

x [m + n] e−j 2π
L
nk

47

Short-Time Fourier Transform (L = 256)

0 16800

m = 0

0 64 128

|X
[m

;k
]|

48

Short-Time Fourier Transform (L = 256)

0 16800

m = 2000

0 64 128

|X
[m

;k
]|

48

Short-Time Fourier Transform (L = 256)

0 16800

m = 8000

0 64 128

|X
[m

;k
]|

48

Short-Time Fourier Transform (L = 256)

0 16800

m = 11900

0 64 128

|X
[m

;k
]|

48

The Spectrogram

Idea:

color-code the magnitude: dark is small, white is large

use 20 log10(|X [m; k]|) to see better (power in dBs)

plot spectral slices one after another

49

The decibel: a short primer

historically, a logarithmic measure of power loss over telecommunication cables

one dB was the average power loss over 1 mile of cable

always relative to a reference value!!!

50

The decibel for energy levels

For an energy (or power) level P and a reference value P0:

PdB = 10 log10
P

P0

positive for gain, negative for loss

+3 dB = twice the energy/power wrt to the reference

-3 dB = half the energy/power wrt to the reference

+10 dB = ten times the energy/power

51

The decibel for amplitude ratios

In most engineering applications, energy and power are proportional to the square of an
amplitude value:

P = V 2/R (electrical power across a resistive load)

E = mv2/2 (kinetic energy)

etc.

If P = CA2 (and P0 = CA2
0):

PdB = 20 log10
A

A0

+3 dB = twice the energy/power, amplitude scaled by
√
2

+6 dB = twice the amplitude, four times the energy

+20 dB = ten times the amplitude, 100 times the energy
52

The Spectrogram

Idea:

color-code the magnitude: dark is small, white is large

power in dB

plot spectral slices one after another

53

DTMF spectrogram

0 N
0

L/2

m

k

54

Labeling the Spectrogram

If we know the “system clock” Fs = 1/Ts we can label the axis

highest positive frequency: Fs/2 Hz

frequency resolution: Fs/L Hz

width of time slices: LTs seconds

55

DTMF spectrogram (Fs = 8000)

0 2.1s
0

4KHz

m

k

56

The Spectrogram

Questions:

width of the analysis window?

position of the windows (overlapping?)

shape of the window (weighing the samples)

57

Tapering Windows

the DFT is inherently N-periodic and assumes the signal is N-periodic

the signal to transform

!
! !

!

!

! ! !
!

!

!

! !
!

! !

0 5 10 15
0

1

what the DFT sees

!
! !

!

!

! ! !
!

!

!

! !
!
! !

!
! !

!

!

! ! !
!

!

!

! !
!
! !

!
! !

!

!

! ! !
!

! !
!
! !

!
! !

!

!

! ! !
!

!

!

! !
!
!

−16 0 16 32
0

1

notice the discontinuity jumps!

58

Tapering Windows

to avoid spurious high-frequency content use a tapering window
(triangular, Hamming, Hanning, ...)

!
! !

!

!

! ! !
!

!

!

! !
!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
! ! !

!
! !

!

!

! ! ! ! !

0 2 4 6 8 10121416
0

1

!

!

!
! !

!
!
! !

!

!

! ! ! ! ! !

!

!
! !

!
!
! !

!

!

! ! ! ! ! !

!

!
! !

!
!
! !

! ! ! ! ! !

!

!
! !

!
!
! !

!

!

! ! ! !

−16 0 16 32
0

1

equivalent to smoothing the spectrum

59

Tapering Windows

triangular
Hann
elliptic

0
0

1

60

Wideband vs Narrowband

Long window: narrowband spectrogram

long window ⇒ more DFT points ⇒ more frequency resolution

long window ⇒ more “things can happen” ⇒ less precision in time

Short window: wideband spectrogram

short window ⇒ many time slices ⇒ precise location of transitions

short window ⇒ fewer DFT points ⇒ poor frequency resolution

61

DTMF spectrogram (wideband)

N = 16800, L = 32

0 525 ∗ 32
0

16

m

k

62

DTMF spectrogram

N = 16800, L = 256

0 256 ∗ 66
0

128

m

k

63

DTMF spectrogram (narrowband)

N = 16800, L = 1024

0 1024 ∗ 16
0

512

m

k

64

Time-Frequency tiling

L = 20

0

π

0 10 20 30 40 50 60

65

Time-Frequency tiling

L = 10

0

π

0 10 20 30 40 50 60

65

Time-Frequency tiling

L = 4

0

π

0 10 20 30 40 50 60

65

Food for thought

time “resolution” ∆t = L

frequency “resolution” ∆f = 2π/L

∆t∆f = 2π

uncertainty principle!

66

Even more food for thought

more sophisticated tilings of the time-frequency planes
can be obtained with the wavelet transform

67

