m
T
"1
—

COM-202: Signal Processing

Chapter 4.c: Wrap up of Discrete-Time Fourier Analysis

Overview:

m The Fast Fourier transform (FFT)

m The short-time Fourier transform (STFT)

the Fast Fourier transform (FFT)

Overview

m A bit of history: From Gauss to the fastest FFT in the west
m Small DFT matrices

m The Cooley-Tukey FFT

m Decimation-in-Time FFT for length 2V FFTs

m Conclusions: There are FFTs for any length!

Fourier had the Fourier transform

But Gauss had the FFT all along ;)

History

m Gauss computes trigonometric series efficiently in 1805
m Fourier invents Fourier series in 1807

m People start computing Fourier series, and develop tricks
m Good comes up with an algorithm in 1958

m Cooley and Tukey (re)-discover the fast Fourier transform algorithm in 1965 for N a
power of a prime

Winograd combines all methods to give the most efficient FFTs in 1978

The DFT matrix

2m ,
m Wy = e/ ~: primitive N-th root of unity
; N _ 1. k _ k mod N
m powers of W)y can be taken modulo N, since Wy = 1: Wy = Wy)
m we use just W when N is clear from the context

m DFT Matrix of size N by N:

1 1 1 1 1
1wt W2 w3 ... wh-1
W= 1|1 W2 w4 We ... weaN=1)

1 wh-1 W2(N—1) W3(N—1) L W(N—l)

The DFT matrix (graphically)

from Wikipedia

X[0]
X[1]
X(2]
X(3]
X[4]
X[5]
X(6]

X[7]

R

. —

K\

|

x[0]
x[1]
x[2]
X[3]
x[4]
x[8]
x[6]

- X[7]-

Small DFT matrices: N =2

11
Wy

Small DFT matrices: N =4

-1
—J

1

Divide et impera - Divide and Conquer (Julius Caesar)

Divide and conquer is a standard attack for developing fast algorithms.

simple
. subproblem e
S Terge
subproblem |nterme.d|ate
solution
Pl X2
3 i etE ,
6)9\\‘ simple o

subproblem So

simple
%/,}

subproblem

&
©
- Mey, <«
oW 8e

intermediate

subproblem >
solution

i
Yo e
é

Sbljp i e &
simple

subproblem

10

Divide and Conquer for DFT - One step

Idea:

Recall: computing X = Wy x has complexity O(N?).

Assume N even
Split the problem into two subproblems of size N/2; cost is N?/4 each
If the cost to recover the full solution is linear N ...

... the divide-and-conquer solution costs N2/2 + N for one step

For N > 4 this is better than N2

11

Divide and Conquer for DFT - One step

Graphically
m Split DFT input into 2 pieces of size N/2

m Compute two DFT's of size N/2

m Merge the two results

12

Divide and Conquer for DFT - One step

x[0]

x[1]
x[2]

x[3] @—
x[4] @—n]
X[5] @m——]

x[N — 4] e———mil
x[N — 3] o—o——o

split

DFT-N/2

x[N —2]

x[N -1]

DFT-N/2

merge

—e X[0]
——e X[1]
———e X[2]
l———— X[3]
|———— X[4]
———e X[5]

|————— X[V — 4]
L e X[N -3

e X[N — 2]

XN - 1]

13

Divide and Conquer for DFT - Multiple steps

Idea: if N = 2K, divide and conquer can be reapplied!

m Cut the two problems of size N/2 into 4 problems of size N/4
m Assume complexity to recover the full solution still linear, e.g. N at each step

m You can do this log, N — 1 = K — 1 times, until problem of size 2 is obtained

The divide-and-conquer solution has therefore complexity of order Nlog, N

m For N > 4 this is much better than N?2!

14

Divide and Conquer for DFT - Multiple steps

N N? Nlog N

10 100 10

100 10,000 200

1000 M 3000
10,000 | 100M (108) | 40,000 (4 - 10%)
100,000 | 10B (10%°) | 500,000 (5 - 10°)

15

Divide and Conquer for DFT - Multiple steps

Graphically
m Split DFT input into 2, 4 and 8 pieces of sizes N/2, N/4 and N/8, respectively

m Compute 8 DFT's of size N/8

m Merge the results successively into DFT's of size N/4, N/2 and finally N

16

Divide and Conquer for DFT - Multiple steps

X[O] | DFT |
x[1] > = &
=%
X[2] » | DFT | g
x[3] — = N/8 go
o [}
X[4] ha— » DFT | £
x[5] —— > = &
=%
» | DFT | g
- %
= @
® DFT | S
- ulkd &
=y 9]
» | DFT | €
- -)
[N — 4] —— & o] g
XN — 3] —o o W %
x[N - 2] & £
x[N —1] | NS |

Divide and Conquer for DFT- Analysis of DIT

N—1
X[k]:Zx[n]W/\;k, k=01,...,N—1, WN:e_jQWW
n=0

Idea (a good guess is half of the answer!):

m break input into even and odd indexed terms (so-called " decimation in time"):
x[n], n=0,1,....,N—1 — x[2n] and x[2n+1], n=0,...,N/2—-1
m break output into first and second half

X[k, k=01,...,N—1 — X[k] and . k=0,...,N/2-1

18

Important properties of the N-th root of unity

m assuming N even:
so that, in general:

m also

19

Divide and Conquer for DFT- Analysis of DIT

Consider even and odd inputs separately:

N/2-1 N/2-1
XK= 3" xRl W™+ 3 x2n + 1wk

n=0 n=0
N/2-1 N/2-1

= Z x[2n] W3™ + Z x[2n + 1] WRrktk
n=0 n=0
N/2—1 N/2—-1

=) xRa Wik + WK D x2n+ 1] Wi,
n=0 n=0

= Xalk] + WE Xg[K], k=0,1,...,N—1

20

Divide and Conquer for DFT- Analysis of DIT

hmmm, we haven't gained much so far:

m both Xa[k] and Xg[k] require N/2 multiplications
m multiplying the second DFT by W,(} requires another multiplication
m to compute for all k we need N(N/2 + N/2 + 1) =~ N?

m but here comes the trick!

Divide and Conquer for DFT- Analysis of DIT

Consider now the first and second half of the outputs separately:

N/2—1 N/2—1
XK= > x[2n] Wik, + Wiy > x[2n+ 1] W5,
n=0 n=0

= Xa[k] + Wy Xg[k]

X = S R W WS s g
n=0 n=0
N/2—-1 N/2—1
= > xR Wil - W Y x[2n + 1 Wi,
n=0 n=0

= Xalk] — WE Xg[K], k=0,1,...,N/2—-1

22

Divide and Conquer for DFT- Analysis of DIT

so the trick is that we only need to compute for half the range of k:

m both X4[k] and Xg[k] require N/2 multiplications
m multiplying the second DFT by W,(‘, requires another multiplication
m to compute for all k we need (N/2)(N/2 + N/2 + 1) =~ N?/2

m the rest is just sums and differences

Divide and Conquer for DFT- Analysis of DIT

x[0] e o X[0]
x[2] e——— \ / o X[1]
DFT-N/2

x[4] o X[2]
x[6] o—— X[3]

e i Xt

3 il X[5
x[3] o DFT-N/2 | . /¢ 1)
x[5] 5 a X[6]
x[7] o——— Wﬁ/ \ o X[7]

Divide and Conquer for DFT- Analysis of DIT

So, what is the complexity now?

m Split DFT input into 2 pieces of size N/2: free!

m Compute 2 DFT-N/2: twice (N/2)?, or N?/2

m Merge the two results: multiplication by N/2 complex numbers Wk
m Total: N2/2+ N/2 which is indeed smaller than N2 for any N > 4,

m In general, about half the complexity of the initial problem!

Divide and Conquer for DFT- Analysis of DIT

So, what if we repeat the process?

m Go until DFT-2, since that is trivial (sum and difference)
m Requires log, N — 1 steps
m Each step requires a merger of order N/2 multiplications and N additions

m Total: (N/2)(log, N — 1) multiplications and N log, N additions

Key Result: A DFT of size N requires order N log, N operations!

Matrix factorization view of DFT, N = 4

m Separate even and odd samples
m Compute two DFT's of size 2 having output Xa[k] and Xg[]
m Compute sum and difference of X4[k] and W*Xg[k]

1 1 1 1 10 1 O0][t 1 0
W |l J -1 | _[01 0 —jj1 10
1 -1 1 -1 10 -1 oflo o0 1
1 —j -1 01 0 j]|o o 1

This uses 8 additions and no multiplications!

= O O

O O O

o= OO

O O = O

= O O O

Matrix factorization view of DFT, N = 8, 1/8

Now this is going to be big...

Too big for a single slide!

Wl
Wg=[1 W2

—_

1
W2
W4

W14

1
W3

W2l

W7
W14

W49

28

Matrix factorization view of DFT, N = 8, 2/8

Step 1: separate even from odd indexed samples
Call this Dg for decimation of size 8

OO O O OOoOOo
OO OOOOoOOo
O O OOOOoOOo
H O O OO OoOOoOo

O O O OO OO
OO OO OO+~ Oo
[N eolNeolNeoNeol S e
OO OO+ OOOo

This requires no arithmetic operations!

Matrix factorization view of DFT, N = 8, 3/8

Step 2: Compute two DFTs of size N/2 on the even and on the odd indexed samples
Each submatrix is Wy, and the matrix is block diagonal, where 04 stands for a matrix of 0's

1 1 1 T
S |
-1 1 -1
- -1

[W T G T Iy

Wy 0,7
0s Wi

-1 1 -1
! - -1 j

= e
«
|
[y
|
.y

This requires two DFT-4, or a total of 16 additions!

Matrix factorization view of DFT, N = 8, 4/8

Step 3: Multiply output of second DFT of size 4 by Wk
This is a diagonal matrix, with I for the identity of size 4,

"1 -

ls 04| 1 _ w
[04 /\J = where A4 = W2
w
W2
W3

This requires 2 multiplications (W? = —; is free)

Matrix factorization view of DFT, N = 8, 5/8

Step 4: Recombine final output X[k]| and X[k + N/2] by sum and difference, Sg

S — ['4
Iy

This requires 8 additions!

Is
—1,

]:

O OO OOOoOH

0

[Nl oloNoll

O OO OH+Hr OO

0

_H O OO OO

O O O+~ O

OO O+~ OO

Matrix factorization view of DFT, N = 8, 6/8

In total:
Product of 4 matrices

_|4 Ig .|4 04'W4 04)
wo= i Bl Loy w e

This requires 24 additions and 2 multiplications!

33

Flowgraph view of FFT, N =8

x[0] @

x[4] e

x[2] &

x[6] e

x[1] &

x[5] e

x[3] &

x[7] e

34

Flowgraph view of FFT, N =8

=
=
=
=

35

Matrix factorization view of DFT, N = 8, 8/8

Is this a big deal?
m In image processing (e.g. digital photography) one takes block of 8 by 8 pixels

m One computes a transform (called DCT) similar to a DFT

m It has a fast algorithm inspired by what we just saw

36

Some examples

image processing (JPEG compression)

m image is divided into 8 x 8-pixel blocks
m DFT performed on rows and columns: 16 8-point DFTs
m direct computation: 16 x 8% = 1024 multiplications

m FFT: 16 x 2 = 32 multiplications

37

Some examples

audio processing (MP3 compression)

m audio is split into 1152-point frames
m direct DFT computation: 1.3 -10° multiplications

m FFT: 3500 multiplications

38

Conclusions

Don't worry, be happy!
m The Cooley-Tukey is the most popular algorithm, mostly for N = 2N

m Note that there is always a good FFT algorithm around the corner
(Do not zero-pad to lengthen a vector to have a size equal to a power of 2)

m It does make a BIG differencel!

39

the short-time Fourier transform (STFT)

Overview:

m Time vs frequency representations
m The STFT and the spectrogram

m Time-Frequency tilings

40

Dual-Tone Multi Frequency dialing

41

DTMEF signaling

1209Hz | 1336Hz | 1477Hz
697Hz 1 2 3
770Hz 4 5 6
852Hz 7 8 9
941Hz * 0 #

42

1-5-9 in time

43

1-5-9 in time (detail)

N/4

44

1-5-9 in frequency (magnitude)

N/2

45

The fundamental tradeoff

m time representation obfuscates frequency

m frequency representation obfuscates time

46

Short-Time Fourier Transform

Idea:

m take small signal pieces of length L

m look at the DFT of each piece:

X[m; k] = Zx[m + n] eIk

L-1

n=0

47

Short-Time Fourier Transform (L = 256)

| Xm; k]|

T
128

T
16800

48

Short-Time Fourier Transform (L = 256)

T
0 16800

m = 2000

| Xm; k]|

0 64 128

Short-Time Fourier Transform (L = 256)

T
0 16800

m = 8000

| Xm; k]|

0 64 128

Short-Time Fourier Transform (L = 256)

T
0 16800

m = 11900

| Xm; k]|

64 128

The Spectrogram

Idea:

m color-code the magnitude: dark is small, white is large
m use 20 logo(|X[m; k]|) to see better (power in dBs)

m plot spectral slices one after another

49

The decibel: a short primer

m historically, a logarithmic measure of power loss over telecommunication cables
m one dB was the average power loss over 1 mile of cable

m always relative to a reference valuel!!!

50

The decibel for energy levels

For an energy (or power) level P and a reference value Py:
P
Pyg = 101 —
dB 0810 Py

m positive for gain, negative for loss
m +3 dB = twice the energy/power wrt to the reference
m -3 dB = half the energy/power wrt to the reference

m +10 dB = ten times the energy/power

51

The decibel for amplitude ratios

In most engineering applications, energy and power are proportional to the square of an
amplitude value:

m P = V?/R (electrical power across a resistive load)
m E = mv?/2 (kinetic energy)
m etc.

If P = CA? (and Py = CA3):

A
PdB =20 |Og10 A_O

m +3 dB = twice the energy/power, amplitude scaled by /2
m +6 dB = twice the amplitude, four times the energy

m +20 dB = ten times the amplitude, 100 times the energy

The Spectrogram

Idea:

m color-code the magnitude: dark is small, white is large
m power in dB

m plot spectral slices one after another

53

DTMF spectrogram

L/2

54

Labeling the Spectrogram

If we know the “system clock” Fs =1/Ts we can label the axis

m highest positive frequency: Fs/2 Hz
m frequency resolution: Fs/L Hz

m width of time slices: LT, seconds

55

DTMF spectrogram (F; = 8000)

4KHz

2.1s

56

The Spectrogram

Questions:

m width of the analysis window?
m position of the windows (overlapping?)

m shape of the window (weighing the samples)

57

Tapering Windows

the DFT is inherently N-periodic and assumes the signal is N-periodic

the signal to transform what the DFT sees

T

1
—16 0 16 32

o UL hIT?TTT 0

0 5 10 1

notice the discontinuity jumps!

58

Tapering Windows

to avoid spurious high-frequency content use a tapering window
(triangular, Hamming, Hanning, ...)

0246 810121416 —16 0 16 32
equivalent to smoothing the spectrum

59

Tapering Windows

J

triangular
Hann
elliptic

60

Wideband vs Narrowband

Long window: narrowband spectrogram

m long window = more DFT points = more frequency resolution

m long window = more “things can happen” = less precision in time

Short window: wideband spectrogram

m short window = many time slices = precise location of transitions

m short window = fewer DFT points = poor frequency resolution

61

DTMF spectrogram (wideband)

N = 16800, L = 32

525 % 32

62

DTMF spectrogram

128

N = 16800, L = 256

256 * 66

63

DTMF spectrogram (narrowband)

N = 16800, L = 1024

512

0 1024 * 16

64

Time-Frequency tiling

20

30

40

50

60

65

Time-Frequency tiling

20

30

40

50

60

65

Time-Frequency tiling

20

30

40

50

60

65

Food for thought

m time “resolution” At =1L
m frequency “resolution” Af =27/L

m AtAf =27

uncertainty principle!

66

Even more food for thought

more sophisticated tilings of the time-frequency planes
can be obtained with the wavelet transform

67

