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COM-202: Signal Processing

Chapter 3.a: Introduction to Fourier Analysis



Overview

m Fourier analysis: concept and motivation
m the complex exponential
m the Fourier basis

m the DFT



What is a signal

quantitative description of a time-varying phenomenon



Continuous-time signals
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Discrete-time signals

x[n] x:7Z—C
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x[n] = ... 10.23, 10.73, 10.89, 11.17, 11.15, 10.86, ...



The unifying framework

all types of signals can be represented as vectors
in a suitable vector space



Signals as vectors in vector space

The “signal spaces” we will encounter

m CV: discrete-time finite-length signals of length N (and N-periodic signals)

m (5(Z): discrete-time infinite-length finite energy signals

m [»([a, b]): continuous-time compact-support finite-energy signals

m [(R): continuous-time finite-energy signals

m f — BL: continuous-time f-bandlimited signals



Fourier analysis



The fundamental idea

signals are elements of a vector space
m vectors can be expressed as linear combinations of basis elements for any basis

basis elements are the “atomic particles” of a signal

m the canonical basis is composed of instantaneous time elements

m the Fourier basis is composed of oscillatory elements



The time domain
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The frequency domain
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The Fourier transform

Goal: express any signal as a combination of periodic oscillations:
X = E Xka
k

where {wy} is an oscillatory basis for the signal space.

Fourier transform: an algorithm to compute the coefficients Xj
when {w} is a set of harmonic oscillations
(i.e., oscillations at multiples of a base frequency)
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Oscillations are everywhere!

11



Oscillations are everywhere

m sustainable dynamic systems exhibit oscillatory behavior

m intuitively: things that don’t move in circles can't last:

e bombs
e rockets

e human beings...



Oscillations are everywhere

x(t)

Xl(t)

X()(t)
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You too can detect sinusoids!

the human body has two receptors for sinusoidal signals:

cochlea (inner ear) rods and cones (retina)

Organ
of Corti

Round
Window
Cochlear

Partition

Ectorial
Membrane

e 0
o F\quPaths/;.‘

m air pressure oscillations m electromagnetic oscillations

m frequencies from 20Hz to 20KHz m frequencies from 430THz to 790THz

m wavelength from 17m to 1.7cm m wavelength from 740nm to 380nm
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The intuition

m humans analyze complex signals (audio, images) in terms of their sinusoidal components

m we can build instruments that “resonate” at one or multiple frequencies
(tuning fork vs piano)

m the “frequency domain” seems to be as important as the time domain
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Fundamental question

can we decompose any signal into sinusoidal elements?

yes, and Fourier showed us how to do it exactly!

analysis synthesis
m from time domain to frequency domain m from frequency domain to time domain
m find the contribution of different m create signals with known frequency
frequencies content

m discover “hidden” signal properties m fit signals to specific frequency regions
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The mathematical setup

m let's start with finite-length signals (i.e. vectors in CN)
m Fourier analysis is a simple change of basis
m a change of basis is a change of perspective

m a change of perspective can reveal things (if the basis is good)
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Mystery signal
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Mystery signal in the Fourier basis
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the complex exponential



Prerequisite Warning!

el = cos o + j sin «



The complex exponential

e/ = cosa + jsina
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The complex exponential

z: point on the complex plane; rotation: z, = z e/®
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Why complex exponentials?

m we can use complex numbers in digital systems, so why not?
m it makes sense: every sinusoid can always be written as a sum of sine and cosine

m math is simpler: trigonometry becomes algebra



The advantages of complex exponentials

Example: change the phase of a cosine the “old-school” way
cos(wn + ¢) = acos(wn) — bsin(wn), a=cos¢, b=sing

m we have to remember complex trigonometric formulas

m we have to carry more terms in our equations



The advantages of complex exponentials

Example: change the phase of a pure cosine with complex exponentials
cos(wn + ¢) = Re{/@"¥)} = Re{e/*" ¥}

m sine and cosine “live” together
m phase shift is simple multiplication

m notation is simpler



The discrete-time oscillatory heartbeat

Ingredients:

m a frequency w (units: radians)
m an initial phase ¢ (units: radians)

m an amplitude A

X[n] — Aej(wn+¢)
= Alcos(wn + ¢) + jsin(wn + ¢)]

26



The complex exponential generating machine

x[n] = /", x[n+ 1] = e“x[n]
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The complex exponential generating machine

x[n] = /",

x[n+ 1] = e“x[n]

x[1]

Re
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The complex exponential generating machine

x[n] = /",

x[n+ 1] = e“x[n]

x[2]

Re
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The complex exponential generating machine

x[n] = /",

x[n+ 1] = e“x[n]
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The complex exponential generating machine

x[n] = /",

x[n+ 1] = e“x[n]

x[4]
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The complex exponential generating machine

x[n] = /",

x[n+ 1] = e“x[n]

x[5]

w
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The complex exponential generating machine

x[n] = /",

x[n+ 1] = e“x[n]

- x[6] @ W/
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The complex exponential generating machine

x[n] = /",

x[n+ 1] = e“x[n]
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The complex exponential generating machine

x[n] = /",

x[n+ 1] = e“x[n]
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The complex exponential generating machine

x[n] = /",

x[n+ 1] = e“x[n]
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The complex exponential generating machine

x[n] = /",

x[n+ 1] = e“x[n]
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The complex exponential generating machine

x[n] = /",

x[n+ 1] = e“x[n]
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The complex exponential generating machine

x[n] = /", x[n+ 1] = e“x[n]
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The complex exponential generating machine

x[n] = /",

x[n+ 1] = e“x[n]

x[13]
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The complex exponential generating machine

x[n] = /",

x[n+ 1] = e“x[n]

x[14]

Re
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Initial phase

x[n] = @9 x[n+ 1] = &“x[n], x[0] = &/
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Initial phase

X[n] = ej(wn+¢) :

x[n+ 1] = &“x[n],

x[0] = &/¢
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Initial phase

X[n] = ej(wn+¢) :

x[n+ 1] = &“x[n],

x[0] = &/¢
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Initial phase

x[n] = @9 x[n+ 1] = &“x[n], x[0] = &/
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Initial phase

x[n] = @9 x[n+ 1] = &“x[n], x[0] = &/
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Initial phase

x[n] = @9 x[n+ 1] = &“x[n], x[0] = &/

Im

x[5] w
Re




Initial phase

x[n] = @9 x[n+ 1] = &“x[n], x[0] = &/
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Initial phase

x[n] = @9 x[n+ 1] = &“x[n], x[0] = &/
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Initial phase

X[n] = ej(wn+¢) :

x[n+ 1] = &“x[n],

x[0] = &/¢
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Initial phase

X[n] = ej(wn+¢) :
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Initial phase

X[n] = ej(wn+¢) :

x[n+ 1] = &“x[n],
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Initial phase

x[n] = @9 x[n+ 1] = &“x[n], x[0] = &/
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Initial phase

x[n] = @9 x[n+ 1] = &“x[n], x[0] = &/
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Initial phase

X[n] = ej(wn+¢) :

x[n+ 1] = &“x[n],

x[0] = &/¢
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Initial phase

X[n] = ej(wn+¢) :

x[n+ 1] = &“x[n],

x[0] = &/¢
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Careful: not every discrete-time sinusoid is periodic!

x[n] = /", x[n+ 1] = e“x[n]

Rea
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Careful: not every discrete-time sinusoid is periodic!

x[n] = /",

x[n+ 1] = e“x[n]

x[1]

Re
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Careful: not every discrete-time sinusoid is periodic!

x[n] = /", x[n+ 1] = e“x[n]
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Careful: not every discrete-time sinusoid is periodic!

x[n] = /", x[n+ 1] = e“x[n]
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Careful: not every discrete-time sinusoid is periodic!

x[n] = /", x[n+ 1] = e“x[n]

w/ Re




Careful: not every discrete-time sinusoid is periodic!

x[n] = /", x[n+ 1] = e“x[n]
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Careful: not every discrete-time sinusoid is periodic!

x[n] = /",

x[n+ 1] = e“x[n]
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Careful: not every discrete-time sinusoid is periodic!
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Careful: not every discrete-time sinusoid is periodic!

x[n] = /",

x[n+ 1] = e“x[n]
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Careful: not every discrete-time sinusoid is periodic!

x[n] = /",
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Careful: not every discrete-time sinusoid is periodic!

x[n] = /",

x[n+ 1] = e“x[n]
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Careful: not every discrete-time sinusoid is periodic!
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Careful: not every discrete-time sinusoid is periodic!

x[n] = /", x[n+ 1] = e“x[n]
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Careful: not every discrete-time sinusoid is periodic!

x[n] = /", x[n+ 1] = e“x[n]
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Careful: not every discrete-time sinusoid is periodic!

x[n] = /",
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Careful: not every discrete-time sinusoid is periodic!

x[n] = /", x[n+ 1] = e“x[n]
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Careful: not every discrete-time sinusoid is periodic!

x[n] = /", x[n+ 1] = e“x[n]
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Careful: not every discrete-time sinusoid is periodic!

x[n] = /", x[n+ 1] = e“x[n]
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Careful: not every discrete-time sinusoid is periodic!

x[n] = /", x[n+ 1] = e“x[n]

x[18]
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Frequencies yielding periodic discrete-time oscillations

M
e“" periodicinn <— w= N27T’ M,N e Z
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Frequencies yielding periodic discrete-time oscillations

x[n] = x[n+ NJ, N e Nt

f(©nt9) _ gi(w(ntN)+9)

ejwn ej¢ ejwn eij ejqb

N =1
wN =M -2, MeZ
M
w=—27

N
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Phase periodicity of complex exponentials

g = fat2km) gy 7

(this is not about discrete-time, only about the mathematical object ¢/*)
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Phase periodicity: one point, many names

eja
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Phase periodicity: one point, many names

eja

2r + o Re

ak

%

33



Phase periodicity: one point, many names
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One point, many names

eja

Re
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One point, many names

—2W+V

eja

Re

~
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How “fast” can we oscillate in discrete time?

0<w<2m
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Remember the complex exponential generating machine

x[1]

Re
Y X[O] -
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Remember the complex exponential generating machine
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How “fast” can we go?

-~ x[1]

37



How “fast” can we go?

w=2m/6

- X[3] (

x[2]

x[4]

as
S
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How “fast” can we go?

w=2m/5

x[2]

x[1]

x[3]
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How “fast” can we go?

w=2r/4

- X[2] (
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How “fast” can we go?

x[2]
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How “fast” can we go?

w=2r/2=m

Im

Re

o x[0]
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How “fast” can we go?

w=2r/2=m




How “fast” can we go?

w=2r/2=m
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How “fast” can we go?

w=2r/2=m




How “fast” can we go?

w=2r/2=m
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How “fast” can we go?

w=2r/2=m




How “fast” can we go?

w=2r/2=m
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What if we go “faster”?

T<w<2w

Im
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x[1]
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- x[0]
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What if we go “faster”?

T<w<2w

Im

x[1] J




Let’s go really too fast

w =21 — «,

« small

4

Re
x[0]
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Let’s go really too fast

w=21—«a, «small
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Let’s go really too fast

w=21—«a, «small
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Let’s go really too fast

w=21—«a, «small
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Let’s go really too fast

w =21 — «,
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Let’s go really too fast

w =21 — «,

« small

Re

-
N

~
%

x[5]

44



Let’s go really too fast

w=21—«a, «small
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Let’s go really too fast

w=21—«a, «small

N

Re
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x[7]
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Summary

m x[n] = e/(Wnt¢) is the prototypical discrete-time oscillation
e w: angular frequency
e ¢: initial phase
m discrete-time oscillations are periodic ONLY if frequency is a rational multiple of 27

m in discrete time, w and w + 2k7 are indistinguishable frequencies
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the Fourier basis



The Fourier Basis for CV

Claim: the set of N signals in CV
j27 nk
wi[n] = &V, nk=01,...,N—1

is an orthogonal basis in CV,

46



The Fourier Basis for CV

In vector notation:
{Wk}k:o,l,...,N—l
with
(Wi)n = of T nk

is an orthogonal basis in CV
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Recall the complex exponential generating machine...

Re

® W1 [0]
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Recall the complex exponential generating machine...

Wl[].]

@r/N)  Re
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Recall the complex exponential generating machine...

wi[2]

(2n/N)

Re
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Recall the complex exponential generating machine...

Re
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Recall the complex exponential generating machine...

Re
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Recall the complex exponential generating machine...

w1 [5]

( (2w /N)

Re

48



Recall the complex exponential generating machine...

Re

® W [0]
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Recall the complex exponential generating machine...

wa[1]

2(27/N)

Re

49



Recall the complex exponential generating machine...

wo [2]

2(27/N)

Re
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Recall the complex exponential generating machine...

Re
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Recall the complex exponential generating machine...

Re

2(27/N)

w2[4]
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Recall the complex exponential generating machine...

Re
@ Wyn_1 [0]




Recall the complex exponential generating machine...

(N — 1)(27/N)

N

Re
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N

wn-1)[1]
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Recall the complex exponential generating machine...

(N - 1)(2#/%

Re

N

R

W(N—-1) [2]
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Recall the complex exponential generating machine...

(N — 1)(2r/N)

Re

dh
\ /

win—1)[3]
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Recall the complex exponential generating machine...

e

(N —1)(27/N)

Re

W(N—-1) [4]
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Basis vector wy € C%
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Basis vector w; € C%
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Basis vector w, € C%
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Basis vector wis € C%

[ ]
[]
[ ]
[ ]
[ ]
[ ]
[ ]

Re
o
¢
¢
[ ]
[
¢

[ ]
[ ]
[]
[ ]
[]
[ ]
[ ]
[ ]
®
[ ]

64 2w
=16 —
w16 6 64

Im
3
¢
¢
®
3
s
3
¢
¢
¢
¢
s
'3




M <« T T

e— | © 2
e T ———
- @ — ——
v —e—— T ———
- e
o —e— N ———
-9 ——
M D ———
- e—
o —e— T =
- 1
o —e— T ——
- — ———
e P ———
% | o ——— |
o —e— | ™ T ——
. ——
e T ——
- —————— —d
o —e— T ———
- ———— ——
v —e— T ——
- e
M T ———
-9 —
v —e— T ———

———o
.6 —_
o —e— T =
- —————
M
s e—— T ———
- @ — ——]
|

o)
1111111



Basis vector wy, € C%
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Basis vector ws, € C%
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Basis vector wg, € C%
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Basis vector wg; € C%
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Proof of orthogonality

Il

'—\
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for h=k

=0 otherwise
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the Discrete Fourier Transform



The Fourier Basis for CV

2T
w, = &N

The set of N orthogonal vectors

{Wk}k:o,l,...,N—l
where

kO Rk Q2K Q33K

is a basis for CN.

ej%’(N—l)k] T
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The Fourier Basis for CV

m N orthogonal vectors —» basis for CV
m vectors are not orthonormal; normalization factor would be 1/v/N

m for practical (i.e. algorithmic) reasons, we will keep the normalization factor explicit in
the change of basis formulas
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From the time domain to the frequency domain

m input data in terms of the orthonormal canonical basis:

N—-1
X = E Xpn€n
n=0

m same data in terms of the orthogonal Fourier basis

X = Xka
0

=2
-

x
Il

m because of orthognonality, the N new coordinates can be easily computed as

Xk = (Wk, X>
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Basis expansion using the Fourier basis

Analysis formula:

Xk = (Wku X>

Synthesis formula:

1 N-1
X = Z Xka
k=0

=

v



Basis expansion in algorithmic form (using data arrays)

Analysis formula:

N—-1
X[k]zzx[n]e ik k=0,1,...,N—1
n=0

N-point signal in the frequency domain
Synthesis formula:

x[n] = ZX[k]efz—”"k n=01,... ,N—1

N-point signal in the “time” domain
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Change of basis in matrix form

m Fourier basis is orthognonal so we can build a change-of-basis matrix

m the N new coordinates are
X = Wx

where '
Wk, n] = (wy,e,) = e Sk
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The Fourier matrix

The Fourier matrix is obtained by stacking the conjugate-transposes of the basis vectors:

w
w

W= | w

H
0
H
1
H
2

The Fourier matrix is unitary up to a constant:

wHw = ww! = ni
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Change of basis in matrix form

Analysis formula:

X = Wx

Synthesis formula:

1
= —whHx
N
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For those keeping track of details...

Our definition for the inner product in CN conjugates the first term:

(%,¥) =D X3¥n
n

This preserves the structure of the Fourier formulas:

Xk = (W, X) single coefficient

X = Wx full set of coefficients



Structure of the Fourier matrix

Define Wy = eI
(or simply W when N is evident from the context)

1 1 1 1 ... 1
1 Wit w32 w3 ... WwNn-t
W= |1 W2 W4 W6 W2(N—1)

1 WN-1 pw2(N-1) W?;('I\}—l) o WwN=1)?
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DFT Matrix

Because of the aliasing property of the complex exponential

Wﬁ _ W/E/m mod N)

Example:
-2
W811 — i1
= e_jz?ﬂ-se_jz?ﬂ-?)

= W
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Small DFT matrices: N =23

1 11 1 1 1 1
W2] = {1 W W2] = {1 —(14jv3)/2 —(1-jV3)/2
w 1 —(1-jv3)/2 —(1+jv3)/2



Small DFT matrices: N =4

86
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Small DFT matrices: V=5

— = = o
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Small DFT matrices: N =6

1
W5
W4
W3
W2

w

1
W4
W2

1
W4
W2

1 1
wo w2 ws3
w* 1
1 w3
w2 1
w4 w3

1 w2
1 ws
1 w*
1 we

1

1
1

1 1
w4 w?
W8 WlO
W12 W15
W16 W20
W20 W25

1
W3
W6
W9
W12
W15

2
4
6
8
10

"3
"2

_111111_

We =
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