
COM-202: Signal Processing

Chapter 3.a: Introduction to Fourier Analysis



Overview

Fourier analysis: concept and motivation

the complex exponential

the Fourier basis

the DFT
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What is a signal

quantitative description of a time-varying phenomenon
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Continuous-time signals

x(t) x : R → R

v(t) = V0(1− e−
t

RC )
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Discrete-time signals

x [n] x : Z → C
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x [n] = . . . 10.23, 10.73, 10.89, 11.17, 11.15, 10.86, . . .
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The unifying framework

all types of signals can be represented as vectors
in a suitable vector space
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Signals as vectors in vector space

The “signal spaces” we will encounter

C
N : discrete-time finite-length signals of length N (and N-periodic signals)

ℓ2(Z): discrete-time infinite-length finite energy signals

L2([a, b]): continuous-time compact-support finite-energy signals

L2(R): continuous-time finite-energy signals

f − BL: continuous-time f -bandlimited signals
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Fourier analysis



The fundamental idea

signals are elements of a vector space

vectors can be expressed as linear combinations of basis elements for any basis

basis elements are the “atomic particles” of a signal

the canonical basis is composed of instantaneous time elements

the Fourier basis is composed of oscillatory elements
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The time domain
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The frequency domain
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The Fourier transform

Goal: express any signal as a combination of periodic oscillations:

x =
∑

k

Xkwk

where {wk} is an oscillatory basis for the signal space.

Fourier transform: an algorithm to compute the coefficients Xk

when {wk} is a set of harmonic oscillations
(i.e., oscillations at multiples of a base frequency)
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Oscillations are everywhere!
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Oscillations are everywhere

sustainable dynamic systems exhibit oscillatory behavior

intuitively: things that don’t move in circles can’t last:

• bombs

• rockets

• human beings...
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Oscillations are everywhere

x(t)

x0(t)

x1(t)
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You too can detect sinusoids!

the human body has two receptors for sinusoidal signals:

cochlea (inner ear)

air pressure oscillations

frequencies from 20Hz to 20KHz

wavelength from 17m to 1.7cm

rods and cones (retina)

electromagnetic oscillations

frequencies from 430THz to 790THz

wavelength from 740nm to 380nm
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The intuition

humans analyze complex signals (audio, images) in terms of their sinusoidal components

we can build instruments that “resonate” at one or multiple frequencies
(tuning fork vs piano)

the “frequency domain” seems to be as important as the time domain
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Fundamental question

can we decompose any signal into sinusoidal elements?

yes, and Fourier showed us how to do it exactly!

analysis

from time domain to frequency domain

find the contribution of different
frequencies

discover “hidden” signal properties

synthesis

from frequency domain to time domain

create signals with known frequency
content

fit signals to specific frequency regions
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The mathematical setup

let’s start with finite-length signals (i.e. vectors in C
N)

Fourier analysis is a simple change of basis

a change of basis is a change of perspective

a change of perspective can reveal things (if the basis is good)
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Mystery signal
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Mystery signal in the Fourier basis
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the complex exponential



Prerequisite Warning!

e jα = cosα + j sinα
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The complex exponential

e jα = cosα+ j sinα
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The complex exponential

z: point on the complex plane; rotation: zr = z e jα
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Why complex exponentials?

we can use complex numbers in digital systems, so why not?

it makes sense: every sinusoid can always be written as a sum of sine and cosine

math is simpler: trigonometry becomes algebra
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The advantages of complex exponentials

Example: change the phase of a cosine the “old-school” way

cos(ωn + φ) = a cos(ωn)− b sin(ωn), a = cosφ, b = sinφ

we have to remember complex trigonometric formulas

we have to carry more terms in our equations
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The advantages of complex exponentials

Example: change the phase of a pure cosine with complex exponentials

cos(ωn + φ) = Re{e j(ωn+φ)} = Re{e jωn e jφ}

sine and cosine “live” together

phase shift is simple multiplication

notation is simpler
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The discrete-time oscillatory heartbeat

Ingredients:

a frequency ω (units: radians)

an initial phase φ (units: radians)

an amplitude A

x [n] = Ae j(ωn+φ)

= A[cos(ωn + φ) + j sin(ωn + φ)]
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The complex exponential generating machine

x [n] = e jωn; x [n + 1] = e jωx [n]
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Im

x[0]b
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The complex exponential generating machine

x [n] = e jωn; x [n + 1] = e jωx [n]
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The complex exponential generating machine
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The complex exponential generating machine
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The complex exponential generating machine

x [n] = e jωn; x [n + 1] = e jωx [n]
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The complex exponential generating machine

x [n] = e jωn; x [n + 1] = e jωx [n]
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The complex exponential generating machine

x [n] = e jωn; x [n + 1] = e jωx [n]

Re

Im

b

b

b

b

b

b

x[6] b

ω

27



The complex exponential generating machine

x [n] = e jωn; x [n + 1] = e jωx [n]
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The complex exponential generating machine

x [n] = e jωn; x [n + 1] = e jωx [n]
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The complex exponential generating machine

x [n] = e jωn; x [n + 1] = e jωx [n]
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The complex exponential generating machine

x [n] = e jωn; x [n + 1] = e jωx [n]
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The complex exponential generating machine

x [n] = e jωn; x [n + 1] = e jωx [n]
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The complex exponential generating machine

x [n] = e jωn; x [n + 1] = e jωx [n]
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The complex exponential generating machine

x [n] = e jωn; x [n + 1] = e jωx [n]
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The complex exponential generating machine

x [n] = e jωn; x [n + 1] = e jωx [n]
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Initial phase

x [n] = e j(ωn+φ); x [n + 1] = e jωx [n], x [0] = e jφ
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x[0]b
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Initial phase
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Initial phase
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Initial phase

x [n] = e j(ωn+φ); x [n + 1] = e jωx [n], x [0] = e jφ
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Initial phase

x [n] = e j(ωn+φ); x [n + 1] = e jωx [n], x [0] = e jφ
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Initial phase

x [n] = e j(ωn+φ); x [n + 1] = e jωx [n], x [0] = e jφ
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Initial phase

x [n] = e j(ωn+φ); x [n + 1] = e jωx [n], x [0] = e jφ
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Initial phase
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Initial phase

x [n] = e j(ωn+φ); x [n + 1] = e jωx [n], x [0] = e jφ
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Initial phase

x [n] = e j(ωn+φ); x [n + 1] = e jωx [n], x [0] = e jφ
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Initial phase

x [n] = e j(ωn+φ); x [n + 1] = e jωx [n], x [0] = e jφ
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Initial phase

x [n] = e j(ωn+φ); x [n + 1] = e jωx [n], x [0] = e jφ
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Initial phase

x [n] = e j(ωn+φ); x [n + 1] = e jωx [n], x [0] = e jφ
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Initial phase
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Initial phase

x [n] = e j(ωn+φ); x [n + 1] = e jωx [n], x [0] = e jφ
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Careful: not every discrete-time sinusoid is periodic!

x [n] = e jωn; x [n + 1] = e jωx [n]
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x[0]b
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Careful: not every discrete-time sinusoid is periodic!
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Careful: not every discrete-time sinusoid is periodic!
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Careful: not every discrete-time sinusoid is periodic!
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Careful: not every discrete-time sinusoid is periodic!
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Careful: not every discrete-time sinusoid is periodic!
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Careful: not every discrete-time sinusoid is periodic!

x [n] = e jωn; x [n + 1] = e jωx [n]

Re

Im

b

b

b

b

b

b

b

x[7]
b

ω

29



Careful: not every discrete-time sinusoid is periodic!
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Careful: not every discrete-time sinusoid is periodic!
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Careful: not every discrete-time sinusoid is periodic!
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Careful: not every discrete-time sinusoid is periodic!
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Careful: not every discrete-time sinusoid is periodic!
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Careful: not every discrete-time sinusoid is periodic!
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Careful: not every discrete-time sinusoid is periodic!
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Careful: not every discrete-time sinusoid is periodic!
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Careful: not every discrete-time sinusoid is periodic!
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Frequencies yielding periodic discrete-time oscillations

e jωn periodic in n ⇐⇒ ω =
M

N
2π, M,N ∈ Z
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Frequencies yielding periodic discrete-time oscillations

x [n] = x [n + N], N ∈ N
+

e j(ωn+φ) = e j(ω(n+N)+φ)

e jωne jφ = e jωne jωNe jφ

e jωN = 1

ωN = M · 2π, M ∈ Z

ω =
M

N
2π
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Phase periodicity of complex exponentials

e jα = e j(α+2kπ) ∀k ∈ Z

(this is not about discrete-time, only about the mathematical object e jα)
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Phase periodicity: one point, many names
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Phase periodicity: one point, many names
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Phase periodicity: one point, many names
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One point, many names
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One point, many names
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How “fast” can we oscillate in discrete time?

0 ≤ ω < 2π
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Remember the complex exponential generating machine
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Remember the complex exponential generating machine
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How “fast” can we go?

ω = 2π/12
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How “fast” can we go?

ω = 2π/6
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How “fast” can we go?

ω = 2π/5
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How “fast” can we go?

ω = 2π/4
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How “fast” can we go?

ω = 2π/3
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How “fast” can we go?

ω = 2π/2 = π
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How “fast” can we go?

ω = 2π/2 = π
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How “fast” can we go?
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How “fast” can we go?
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How “fast” can we go?
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How “fast” can we go?

ω = 2π/2 = π
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How “fast” can we go?

ω = 2π/2 = π

Re

Im

x[5] b

42



What if we go “faster”?

π < ω < 2π
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What if we go “faster”?

π < ω < 2π
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Let’s go really too fast

ω = 2π − α, α small
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Let’s go really too fast

ω = 2π − α, α small
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Let’s go really too fast

ω = 2π − α, α small
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Let’s go really too fast
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Let’s go really too fast
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Let’s go really too fast

ω = 2π − α, α small
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Let’s go really too fast

ω = 2π − α, α small
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Summary

x [n] = e j(ωn+φ) is the prototypical discrete-time oscillation

• ω: angular frequency

• φ: initial phase

discrete-time oscillations are periodic ONLY if frequency is a rational multiple of 2π

in discrete time, ω and ω + 2kπ are indistinguishable frequencies
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the Fourier basis



The Fourier Basis for CN

Claim: the set of N signals in C
N

wk [n] = e j
2π
N
nk , n, k = 0, 1, . . . ,N − 1

is an orthogonal basis in C
N .
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The Fourier Basis for CN

In vector notation:

{wk}k=0,1,...,N−1

with

(wk)n = e j
2π
N
nk

is an orthogonal basis in C
N
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Recall the complex exponential generating machine...
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Recall the complex exponential generating machine...
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Recall the complex exponential generating machine...
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Recall the complex exponential generating machine...
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Recall the complex exponential generating machine...
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Recall the complex exponential generating machine...
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Recall the complex exponential generating machine...
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Recall the complex exponential generating machine...
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Basis vector w31 ∈ C
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Basis vector w32 ∈ C
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Basis vector w34 ∈ C
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Basis vector w60 ∈ C
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Basis vector w61 ∈ C
64
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Basis vector w62 ∈ C
64
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Basis vector w63 ∈ C
64
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Proof of orthogonality

〈wk ,wh〉 =
N−1
∑

n=0

(e j
2π
N
nk)∗ e j

2π
N
nh

=

N−1
∑

n=0

e j
2π
N
(h−k)n

=







N for h = k

1− e j2π(h−k)

1− e j
2π
N
(h−k)

= 0 otherwise
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the Discrete Fourier Transform



The Fourier Basis for CN

The set of N orthogonal vectors

{wk}k=0,1,...,N−1

where

wk =
[

e j
2π
N
k·0 e j

2π
N
k e j

2π
N
2k e j

2π
N
3k . . . e j

2π
N
(N−1)k

]T

is a basis for CN .
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The Fourier Basis for CN

N orthogonal vectors −→ basis for CN

vectors are not orthonormal; normalization factor would be 1/
√
N

for practical (i.e. algorithmic) reasons, we will keep the normalization factor explicit in
the change of basis formulas
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From the time domain to the frequency domain

input data in terms of the orthonormal canonical basis:

x =

N−1
∑

n=0

xnen

same data in terms of the orthogonal Fourier basis

X =
N−1
∑

k=0

Xkwk

because of orthognonality, the N new coordinates can be easily computed as

Xk = 〈wk , x〉
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Basis expansion using the Fourier basis

Analysis formula:

Xk = 〈wk , x〉

Synthesis formula:

x =
1

N

N−1
∑

k=0

Xkwk
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Basis expansion in algorithmic form (using data arrays)

Analysis formula:

X [k] =

N−1
∑

n=0

x [n] e−j 2π
N
nk , k = 0, 1, . . . ,N − 1

N-point signal in the frequency domain

Synthesis formula:

x [n] =
1

N

N−1
∑

k=0

X [k] e j
2π
N
nk , n = 0, 1, . . . ,N − 1

N-point signal in the “time” domain
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Change of basis in matrix form

Fourier basis is orthognonal so we can build a change-of-basis matrix

the N new coordinates are
X = Wx

where
W[k , n] = 〈wk , en〉 = e−j 2π

N
nk
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The Fourier matrix

The Fourier matrix is obtained by stacking the conjugate-transposes of the basis vectors:

W =















wH
0

wH
1

wH
2
...

wH
N−1















The Fourier matrix is unitary up to a constant:

WHW = WWH = NI
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Change of basis in matrix form

Analysis formula:

X = Wx

Synthesis formula:

x =
1

N
WHX
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For those keeping track of details...

Our definition for the inner product in C
N conjugates the first term:

〈x, y〉 =
∑

n

x∗nyn

This preserves the structure of the Fourier formulas:

Xk = 〈wk , x〉 single coefficient

X = Wx full set of coefficients
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Structure of the Fourier matrix

Define WN = e−j 2π
N

(or simply W when N is evident from the context)

W =













1 1 1 1 . . . 1
1 W 1 W 2 W 3 . . . W N−1

1 W 2 W 4 W 6 . . . W 2(N−1)

. . .

1 W N−1 W 2(N−1) W 3(N−1) . . . W (N−1)2












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DFT Matrix

Because of the aliasing property of the complex exponential

Wm
N = W

(m mod N)
N

Example:

W 11
8 = e−j 2π

8
11

= e−j 2π
8
8e−j 2π

8
3

= W 3
8
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Small DFT matrices: N = 2, 3

W2 = e−j 2π
2 = −1

W2 =

[

1 1
1 W

]

=

[

1 1
1 −1

]

W3 = e−j 2π
3 = −(1 + j

√
3)/2

W3 =





1 1 1
1 W W 2

1 W 2 W 4



 =





1 1 1
1 W W 2

1 W 2 W



 =





1 1 1

1 −(1 + j
√
3)/2 −(1− j

√
3)/2

1 −(1− j
√
3)/2 −(1 + j

√
3)/2




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Small DFT matrices: N = 4

W4 = e−j 2π
4 = e−j π

2 = −j

W4 =









1 1 1 1
1 W W 2 W 3

1 W 2 W 4 W 6

1 W 3 W 6 W 9









=









1 1 1 1
1 W W 2 W 3

1 W 2 1 W 2

1 W 3 W 2 W









=









1 1 1 1
1 −j −1 j

1 −1 1 −1
1 j −1 −j








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Small DFT matrices: N = 5

W5 =













1 1 1 1 1
1 W W 2 W 3 W 4

1 W 2 W 4 W 6 W 8

1 W 3 W 6 W 9 W 12

1 W 4 W 8 W 12 W 16













=













1 1 1 1 1
1 W W 2 W 3 W 4

1 W 2 W 4 W W 3

1 W 3 W W 4 W 2

1 W 4 W 3 W 2 W












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Small DFT matrices: N = 6

W6 =

















1 1 1 1 1 1
1 W W 2 W 3 W 4 W 5

1 W 2 W 4 W 6 W 8 W 10

1 W 3 W 6 W 9 W 12 W 15

1 W 4 W 8 W 12 W 16 W 20

1 W 5 W 10 W 15 W 20 W 25

















=

















1 1 1 1 1 1
1 W W 2 W 3 W 4 W 5

1 W 2 W 4 1 W 2 W 4

1 W 3 1 W 3 1 W 3

1 W 4 W 2 1 W 4 W 2

1 W 5 W 4 W 3 W 2 W
















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