Chapter 3

The Discrete Fourier Transform

At the beginning of the 19th century, French polymath Jean-Baptiste Joseph Fourier turned
his attention to the way in which heat propagates inside a solid object. In the resulting
memoir he introduced an analytical tool that was destined to become so successful, both
in mathematics and in applied engineering, as to acquire the eponymous name of Fourier
Transform. Fourier’s intuition was that many functions (and, remarkably, even discon-
tinuous functions) could be represented as linear combinations of simple, harmonically-
related sinusoidal components.

The systematization of the mathematical aspects of Fourier’s theory took over a century
to complete, and produced a remarkable body of work collectively known under the
name of Harmonic Analysis. At the same time, the practical applicability of the Fourier
transform gained immediate recognition across all scientific domains — the sole drawback
being the need to carry out cumbersome numerical calculation in order to work out the
necessary coefficients. It is no surprise, then, that Fourier analysis enjoyed a renewed,
explosive success as soon as electronic computation became a commodity: the well-known
Fast Fourier Transform algorithm (interestingly, originally sketched by Gauss in 1805) is
arguably the fundamental ingredient at the heart of today’s personal communication
devices.

To understand why Fourier Analysis plays such a central role in so many disciplines, and
in signal processing in particular, let’s consider the physical processes behind most of
the interesting phenomena that we want to model or describe. Signals are time-varying
quantities: you can imagine, for instance, the air pressure level produced by the singing
voice, the electrical activity of a beating heart or the daily level of the tide in Venice; in all
cases, the variation of a signal over time implies that a transfer of energy is taking place
somewhere. Now, a time-varying value whose trend is continually increasing over time
is clearly a physical impossibility in the long run: either the system will reach a maximum
level and stop, or something (such as a wire, a fuse or a combustion chamber) will
overheat and break. Oscillations, on the other hand, are nature’s and technology’s way
of keeping things indefinitely in motion without incurring a meltdown; from Maxwell’s
wave equation to the mechanics of the vocal cords, from the motion of an engine to

1
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the ebb and flow of the tide, oscillatory behavior is the universally recurring theme
for sustained activity. Sinusoidal oscillations are the purest form of such a constrained
motion and, details aside, Fourier’s everlasting contribution was to show that one could
express any reasonably well-behaved phenomenon as the combined output of a number
of harmonically related sinusoidal sources. After Fourier, virtually every mathematical
object of interest began a new life as a dual entity, existing not only in time but also in
frequency; and the possibility of switching the analysis viewpoint from one domain to the
other according to convenience has become completely natural in all forms of theoretical
and applied science.

In this chapter we will describe some key properties and results of Fourier analysis as
applied to discrete-time signals. We have already mentioned in the previous chapter that,
by using a vector space framework for signal processing, the Fourier transform can be
described as a change of basis. This guiding principle will prove extremely useful as we
navigate the subtle differences that exists between the different flavors of the transform
and as we interpret their properties.

3.1 Introduction to Fourier Analysis

A Fourier transform provides an alternative representation of the data contained in a
signal. Given the N-point signal shown at the top of Figure 3.1, it is completely straight-
forward to express it as the weighed sum of the N “atomic” time signals shown in the
middle panel (signals which, incidentally, we know to represent the canonical basis for
the space of size-N vectors). While less evident, the same triangular signal can also be
expressed exactly as the sum of the N discrete-time oscillatory components shown in
the bottom panel of the figure; the plots show these oscillation (and the shape of the
underlying continuous-time sinusoids for clarity), together the weight associated to each
one.

In this and the next chapter we will address the question of whether any discrete-time
signal can be expressed exactly as a sum of oscillatory components, and study the problem
of finding the weights associated to each component. The resulting set of weights is called
the spectrum of a signal and it is an alternative representation of the signal from the so-
called frequency domain. We will also show that when a signal admits a frequency-domain
representation, the latter is invertible and we can always return to the time domain without
loss of information.

To achieve all this, we will derive a Fourier transform operator for each of the three basic
classes of discrete-time signals we introduced in the first chapter, making full use of the
vector space these signals live in; in detail, we will look at:

e the Discrete Fourier Transform (DFT), which maps a length-N signal to a set of
N discrete frequency components; the transform is a change of basis in the under-
lying finite-dimensional vector space CN and, as such, it can be easily computed
numerically using very efficient algorithms.
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Figure 3.1: Decomposition of a 8-point triangular signal (top panel) into atomic time units (middle panel)
and atomic oscillatory units (bottom panel); the coefficient for each component is shown on top
of the plot of each unit.
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Figure 3.2: Rotation of a point on the complex plane via multiplication by a phase factor e/°.

o the Discrete Fourier Series (DFS), which maps an N-periodic sequence to a set of
N discrete frequency components; the DFS is mathematically identical to the DFT,
except that the periodicity of the signals is taken into account explicitly; the DFS is
also a change of basis in CV.

e the Discrete-Time Fourier Transform (DTFT), which maps an infinite sequence
to a 2m-periodic function of a real-valued frequency variable; this transform can
also be interpreted mathematically as a change of basis, as we will see in detail,
connecting ¢>(Z), the space of finite-energy sequences, to Ly([-m, ]), the space of
square-integrable functions over the [-m, ] interval. The DTFT is a theoretical
analysis tool that will be used to prove fundamental signal processing results that
hold in the most general cases.

3.2 The Complex Exponential

Regardless of the underlying signal space, the Fourier transform decomposes a discrete-
time signal into a superposition of suitably scaled discrete-time oscillatory components.
The prototypical oscillation of choice (that is, the basic ingredient of all transforms) is the
discrete-time complex exponential, namely a sequence w of the form

wln] = Ael@n+9) (3.1)

where A € R is the amplitude, ¢ is the phase offset (in radians) and w € R is the
oscillation’s frequency, also expressed in radians. Note that, although it is convenient to
think of the index n as a measure of “time”, such time is a-dimensional and therefore the
units for the frequency are simply radians (and not, say, radians per second).
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Figure 3.3: Complex exponential sequences on the complex plane:
(a) w[n] = /" with w = 271/10 (positive frequency);
(b) w[n] = /"0 with w = —21/20 and O = 21 /40 (negative frequency).
As we have already explored,simple complex algebra shows that
wln +1] = w[n] /; (3.2)

that is, we can imagine w as the output of a “complex exponential generating machine”
that, at each step, takes the previous sample and multiplies it by the pure phase factor
e/, a complex number whose magnitude is equal to one. Multiplication of a complex
point z by a phase factor e/? corresponds to rotating z around the origin by an angle 0 as
shown in Figure 3.2; the rotation is counterclockwise if 0 is positive and clockwise if 0
is negative. With this, the sequence w can be plotted on the complex plane as a series of
points on a circle of radius |A| centered on the origin; each point is at an angular distance
of w from the previous one. Two examples of complex exponential sequences are shown
for a few values of n in Figure 3.3, using positive and negative frequencies and different
phase offsets. As you can see, the complex exponential perfectly captures the concept of
a point rotating in circles, i.e. the most fundamental type of oscillatory movement.

3.2.1 Why complex-valued oscillations?

The choice of a complex-valued signal as the prototypical oscillation may appear need-
lessly... complex at first and, in fact, the Fourier transform of real-valued sequences could be
derived entirely in the real-valued domain using only standard trigonometric functions.
There are however several major advantages in using complex exponentials.

The math is simpler: in a nutshell, by using complex exponentials trigonometry boils
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down to complex algebra. For instance, how many times have you struggled with the
correct angle-sum formula? You remember that cos(a + ) will be equal to a sum of
products of sines and cosines but in what order and with what sign? Using complex
algebra, however,

cos(a + B) = Re{e/* e/f}
= Re{(cos a + jsina)(cos B + jsinB)}

= cos a cos f — sin a sin f3.

No need to remember formulas means fewer chances of making mistakes.

The notation is more compact: oscillatory signals originate in the circular movement of a
rotating point and the position of the point always possesses two degrees of freedom. We
can choose to encode this information using the point’s real-valued vertical and horizontal
coordinates on a Cartesian plane (that is, using the scaled cosine and sine of its angle);
or we can encode the position as a point on the complex plane using polar coordinates
expressed as a complex exponential. While the two representations are equivalent, the
latter is much more compact.

In the digital world, signals can be complex: indeed, why not? Digital signals are just
sequences of numbers that will be processed by general-purpose computational units, and
therefore these sequences can certainly be complex-valued. While the interfaces to and
from the physical world will necessarily handle real values only, internally a DSP system
will often be easier to design if complex-valued operations are allowed; this is particularly
true in the case of communication systems. By starting off with complex exponentials
as the prototypical oscillation, we are already equipped with a more versatile tool for
frequency analysis.

3.2.2 Properties of complex oscillations

In discrete time, things are a bit different with respect to the properties of classic sinusoidal
functions of a real variable.

Periodicity. First of all, perhaps surprisingly, not all complex exponential sequences
are periodic in n. Without loss of generality, consider a sequence with zero phase offset
w[n] = e/*"; for w to be periodic, there must exist an integer N so that

w[n]=w[n+ N], VneZ.

The above expression is equivalent to e/@®N =1, that is, there must exist an integer M such
that

wN =21 M.
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Figure 3.4: Same point, many aliases: (a) adding multiples of 21 to a pure phase term does not change
its position; (b) a positive (counterclockwise) displacement by O is equivalent to a negative
(clockwise) displacement by (21t — 0)

Periodicity therefore requires the frequency to be of the form

wz%Zn, M,NeZ (3.3)

or, in other words, in discrete time the only periodic oscillations are those whose frequency
is a rational multiple of 2.

Aliasing. Another peculiarity of discrete-time oscillations is that there is a limit on “how
fast” we can go. To understand why, let’s start by recalling that a pure phase term is
always 2m-periodic, in the sense that

el? = ¢l(0+2kn)  yk ¢ 7,

This inherent phase ambiguity is called aliasing and stems from the simple fact that a
point on the unit circle has an infinite number of possible “names”, as shown in Figure 3.4-
(a) — etymologically, “alias” is Latin for “otherwise”. Applied to discrete-time complex
exponential sequences, this clearly implies an upper limit on the rotational speed of a
point around the unit circle, since adding multiples of 27 to the value of the frequency
will not change the values of the samples:

ej(m+2kn)n — ejmnej (kn)2m _ ejmn Yk € Z;
consequently, we can limit the range of distinct angular speeds to a representative interval

of size 27m. To choose the most suitable interval, consider what happens if we gradually
increase the frequency of a discrete-time complex exponential starting from zero:
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Figure 3.5: Complex-exponential sequence at angular speed w = 2m — 0, with 0 small: (a) at each step, the
point’s displacement is larger than m; (b) the movement is more “economical” if one assumes a
negative frequency w’ = —0.

e for 0 < w < 1 we have a counterclockwise motion with increasing angular speed,
i.e., we cover the full circle in fewer and fewer steps.

e for w = m we have the maximum possible forward speed of a discrete-time complex
exponential; this corresponds to a sequence whose values are alternating between
+1 and -1, which represents the maximum displacement attainable by successive
points on the unit circle (antipodal points); we cover the full circle in 2 steps.

e for m < w < 2m at each step the point on the unit circle moves by more than 7, as
shown in Figure 3.5. Such a large counterclockwise motion is more “economically”
explained by a clockwise motion by an angle 2t — w < T, i.e., the motion is better
described by a negative frequency whose magnitude is less than 7.

e for w > 21 we can subtract a suitable multiple of 27 to @ until we fall into one of
the three preceding cases.

The reference interval of choice for angular frequencies is therefore [-, 7t].

Note that, as we increase w beyond 71, we obtain a perceived reversal of direction and a
decreasing angular speed. This aliasing phenomenon is well known in cinematography
where it is called the wagonwheel effect; you can experience it in full by watching an old
western movie: if a stagecoach enters the scene, you will see that its multi-spoked wheels
seem to spin alternately backwards and forward as the speed of the vehicle changes. For
a more detailed discussion of this optical illusion, see Appendix B.
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3.3 The Discrete Fourier Transform (DFT)

Let’s place ourselves in CV, the space of complex-valued signals of finite length N; what
are all the possible sinusoidal signals in this space that span a whole number of periods
over N points? We will now show that:

e there are exactly N such sinusoids

o their frequencies are all harmonically related, i.e. they are all multiples of the
fundamental frequency 2rt/N:

2
a)kzﬁnk, k=0,1,...,N-1; (3.4)

o the set of N length-N complex exponentials at frequencies wy form a set of orthog-
onal vectors and therefore a basis for CN.

With this basis, we are able to express any signal in CN as a linear combination of N
harmonically-related sinusoids; the set of N coefficients in the linear combination are
called the Discrete Fourier Transform of the signal, which can be easily computed algorith-
mically for any input data vector.

3.3.1 The Fourier Basis for CV

The fundamental oscillatory signal, the discrete-time complex-exponential e/“", is equal
to 1 for n = 0; therefore, if the signal is to span a whole number of periods over N points,
we must have

eloN =1,
In the complex field, the equation zV = 1 has N distinct solutions, given by the N roots
of unity

zk=e/N5, k=0,...,N-1,

and so the N possible frequencies that fulfill the N-periodicity requirements are those
given in (3.4). We can now use these frequencies to define a set {wk} , containing N
signals of length N, where

wiln] =I5 n k=0,1,..., N-1. (3.5)

The real and imaginary parts of wi for N = 32 and for some values of k are plotted in
Figures 3.6 to 3.11; note how wj = A

The vectors in {wk} are mutually orthogonal; to show this, we start from the definition
of inner product in cN

N-1

(xy) = ¥[nlyln],

n=0
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we remember that (¢/9)* = ¢7/9, and we use the geometric sum formula to obtain

Z

<Whrwk> — (ej%hn)*ej%’kn
n=0
N-1
_ ej%’(k—h)n

n=0
N forh =k
1— /B U=mN (3.6)
——— =0 fork#h

1- el

since (k — h) is an integer and therefore, when k — h # 0, el2k=hm — ¢j2m — 1 Because
of orthogonality the vectors form a basis for CV, called the Fourier basis for the space of
finite-length signals. In compact form, we can express the orthogonality of the Fourier
vectors with the notation

(wy, wi) = N o[k — k]. (3.7)

Clearly the basis is not orthonormal; while it could be normalized by multiplying each
vector by 1/VN, in signal processing practice it is customary to keep the normalization
factor explicit in the change of basis formulas. We too will follow this convention, that
exists primarily for computational reasons.

3.3.2 The DFT as a Change of Basis

In the previous chapter we have illustrated how we can efficiently perform an orthonormal
change of basis in CN;, the Discrete Fourier Transform is such a transformation, allowing us
to move from the time domain, represented by the canonical basis {6 k}, to the frequency
domain, spanned by the Fourier basis {wk}. Here, since the Fourier basis is orthogonal
but not orthonormal, we simply need to slightly adjust the formulas to take into account
the required normalization factors.

Givena vector x € CN and the Fourier basis {wy }, we can always express x as the following
linear combination of basis vectors:

X[k]wg. (3.8)

Using the orthogonality of the Fourier basis in (3.7), and taking the left inner product of
the left- and right-hand sides of (3.8) with each wy, we can see that the N complex scalars
X[k], called the Fourier coefficients, can be obtained simply as

X[k] = (wk, x) (3.9)
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The coefficients thus capture the similarity between x and each of the basis vectors via an
inner product; structurally, the set of N Fourier coefficients is also a vector X € CN so that
the DFT is an endomorphism on the space of finite-length sequences.

The DFT in algorithmic form. The analysis and synthesis formulas can be written out
explicitly in terms of the elements in the original data vector and in the vector of Fourier
coefficients. This formulation highlights the computable algorithmic nature of the DFT
and provides a straightforward way to implement the transform numerically.

The DFT coefficients can be computed using the following formula:
N-1 S
X[kl = )" x[n]e /¥, k=o0,..,N-1 (3.10)
n=0
while the inverse DFT is computed from the Fourier coefficients as
1 N S
x[n] = % kZ_; X[kle/ ¥k, n=0,...,N-1. (3.11)

The explicit formulas allows us to appreciate the highly structured form of the summa-
tions, which leads to extremely efficient implementations as we will discuss briefly in
Item ?? at the end of this chapter.

The DFT in matrix form. From our discussion in the previous chapter we know that a
change of basis in CN can be expressed as a matrix-vector multiplication:

X = Wx;
the matrix W is built by stacking the Hermitian transposes of the basis vectors as
o [wo 0 0 0
wéi Wy Wy Wy o Wy
0 1 2 N-1
wh Wy Wy wy o o Wy
- = |0 2 4 2(N-1)
W= |——|=|Wy Wy Wy ... Wy (3.12)
WII\{]_l wo wN-1 WZ(N—l) h W(N—l)2
- N TN N o UING ]

where, for convenience, we have introduced the scalar Wy = e~/ ZWH. Again using (3.7), it is
immediate to show that WHW = I N, where I is the identity matrix. Since the change of
basis is invertible, both x and X represent the same information, albeit from two different
“points of view”: x lives in the time domain, while X lives in the frequency domain. In
order to “go back” we can use the synthesis formula in matrix form, taking into account
the explicit normalization factor:

1

X = NWHX‘ (3.13)
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Some examples of Fourier matrices for low-dimensional spaces are:

[1 1
W, = 1 -1 (3.14)
(1 1 1 1 1 1
Wi=|1 Wz Wj|l=|1 W3 W;
2 4 2
1 W2 W, 1 W2 Ws
1 1 1
=1 R s (3.15)
1 -1+jV3  -1-jV3
L 2 2
1 1 1 1 1 1 1 1
2 3 2 3
w4=1W‘§_ W‘ﬁ w46:1 W% W w42
11/v%w4vv%11/\14311/\5JL
6 2
:1 W) WP W, 1T W) w2 ow,
1 1 1 1
_1 - -1
11 -1 1 -1 (3.16)
1 ;7 -1 —j

Please note that:

o the elements in the first row and the first columns are all equal to one since WI(\)] =1
for all N;

e powers of Wy can be computed modulo N because of the “aliasing” property of
complex exponentials discussed in Section 3.2.2:

n o_ n mod N.
WN_WN 4

o the matrices for a DFT of size two and four involve no multiplications (multiplication
by +j simply requires swapping real and imaginary parts, and a change of sign).

3.4 Examples

3.4.1 Plotting the DFT

The DFT of a N-point signal is in general a complex-valued vector of size N (even if the
input is real-valued). The best way to look at the DFT coefficients is to examine their role
in the synthesis formula (3.8), in which the time-domain signal is exactly reconstructed by
a weighed sum of oscillatory components. Each DFT coefficient affects the corresponding
oscillation in two ways:

e the magnitude sets the peak-to-peak amplitude of the oscillation;
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Figure 3.12: Reading a DFT plot.

o the phase sets the phase offset, that is, the initial delay of the oscillation.

Since these two actions are clear and distinct, it is customary to represent the DFT in terms
of magnitude and phase rather than showing its real and imaginary parts. Graphically,
magnitude and phase are plotted as a sequence of discrete values indexed by an integer
“frequency” value 0 < k < N; the index implicitly identifies the actual frequency wy =
(21t/N)k of the associated oscillation. As we move along the horizontal axis from left to
right, the corresponding frequencies describe a counterclockwise rotation with increasing
speeds, until k = [ N/2]; beyond this midpoint the rotation will switch to clockwise and
the speed will start to decrease, as shown in Figure 3.12.

DFT magnitude. Since the basis vectors are orthogonal, each basis vector carries an
independent piece of information and the overall energy of the signal will be equivalent
the sum of the energy of all components. This is in fact a consequence of Parseval’s
theorem which, taking the normalization factor into account, states that the signals’s
energy is preserved across a change of basis:

N-1 1 N-1
D lxlnllP = < > IXTKIP
n=0 k=0

Since the energy of a DFT basis vector is equal to N, the square magnitude of the k-th
DEFT coefficients represents the amount energy in the signal that is present at a frequency
wir = (2n/N)k; as a consequence, the DFT magnitude is often plotted squared. If the
time-domain signal is real-valued, the magnitude of its DFT is symmetric:

|X[n]] = [XIN = n]|;
in these cases, it is often customary to show only the first half of the coefficients in a

magnitude plot.

DFT phase. For a pure sinusoid, a phase offset corresponds to a shift in time; in the
reconstruction formula, therefore, the different oscillatory components will be added
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together with a relative alignment that depends on the phase of the DFT, and this will
determine the shape of the signal in the time domain, as exemplified in Figure 3.13.
The phase, due to its inherent 27t periodicity, is usually plotted over a range of width 2n
(normally the [-7, 7] interval) and values outside of this range are “wrapped” (i.e., integer
multiples of 27 are added to the original value until the result is within range).

3.4.2 Elementary DFT pairs

We will now compute the DFT of some elementary signals in CN; for the illustrations,
plotting the coefficients in magnitude and phase, the value N = 64 is used as an exam-

ple.

This section will also introduce several conventions that are in use to notate the relation-
ship between a time-domain signal and its frequency-domain counterpart; be aware that
none is perfect and that each has its own advantages and drawbacks. In vector notation
we can elegantly write things like

DFT
X «—>

or, equivalently,
DFT{x} = X;

this notation is compact and precise, since it does not make use of explicit index variables
for the time and frequency data vectors. But it is also impractical to use when applying
the DFT to expressions that explicitly invoke the time or frequency index; in these cases
we will resort to a less precise approach that uses placeholder variables (generally n for
the time domain and k for the frequency domain):

x[n] &5 X[k,

A, N W Aa WA

0 50 100 0 50 100

Figure 3.13: Effects of phase alignment on the shape of a signal in the time domain. Both plots show
x[n] = cos(won) + (1/3) cos(Bwon + 0) but O = 0 in the left panel and 6 = 1 on the right;
both signals have exactly the same magnitude DFT.
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Impulse. The DFT of the discrete-time delta is the constant signal equal to one since

Z

6[n]e’j2ﬁn”k = e’jzﬁn”k|n:0: 1 Vk.

=
Il
o

In vector notation we can write

s 251 (3.17)

or, equivalently,
DFT{6} =1 (3.18)

where 1 is a vector of all ones, and whose length is equal to the dimensionality of the
underlying space.

For the shifted delta 6,, = S7{0}, the analysis formula yields

z

;21 ;21
o[n — mle IN"k = omixmk

=
Il
o

so that, compactly, we can write

B s W, (3.19)

or, less formally,

O[n —m] DL, p-iFmk, (3.20)

The DFT of a canonical basis vector in time is thus the conjugate of the corresponding
vector in the Fourier basis; since all the elements of a Fourier basis vector have unit
magnitude, we have that the most “concentrated” signals in time have nonzero content
at every frequency, that is, they have the most “spread-out” spectrum. This inverse
relationship between time and frequency supports is a general property of Fourier pairs
and will reappear frequently in the rest of the course.

Rectangular signal. Consider the step signal x defined by

1 forO<n<M

= 3.21
xn] {O forM <n <N, (321

shown in Figure 3.14 for M = 5 and N = 64. We can express the signal as

[y

M
X:Z(Sm
m

=0
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and, exploiting (3.19) and the obvious linearity of the DFT, obtain

M-1
DFT{x} =X = )" w;,.
=0

The coefficients can be computed explicitly as:

M-1 ;21
om 1= —j Mk
X[k] = E e_JZW”k __-e’ v in (3.22)
n=0 1- e_]wk

o TIRMEK (oI FME _ p=jftMk)

e INK (eI Nk — o7k

_ Sln(an/N) ej%(M_l)k

sin(rtk/N) (3.23)

In the derivation above, we have manipulated the expression for X[k] into a product of
a real-valued term (which captures the magnitude) and a pure phase term; this allows
us to easily plot the DFT as in Figure 3.14. Note that, while nominally the phase grows
linearly with k, the plot shows a “wrapped” phase as explained in Section 3.4.1.

Constant signal. By setting M = N in (3.22) we obtain the DFT of the constant signal 1;
the sum, as in (3.6), uses once again the orthogonality of the roots of unity and yields

M-1
2n N fork=0
X[k]= > e IRk = 3.24
[kl ;) {0 otherwise. ( )
Compactly,
120 N6 (3.25)

which, up to a normalization factor, is the dual of (3.17); in this case, the time-domain
signal with the largest support leads to a DFT with a single nonzero coefficient.

Harmonic sinusoids. The fundamental frequency for CV is 2rt/N and a complex expo-
nential at a multiple of this frequency will coincide with a Fourier basis vector. Because
of the orthogonality relation

(Wi, W) = NO[k —m]
the DFT of a harmonic complex exponential is

DFT{w,} = N&; (3.26)
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Figure 3.14: DFT of a step signal.
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up to a normalization factor, this is the dual of (3.19). Note that the result in the previous
section, for the constant signal x = 1, is just a particular case of the above relationship
when m = 0.

With this we can also easily compute the DFT of standard trigonometric functions whose
frequency is a multiple of the fundamental frequency for the space. Consider for instance
the signal x defined by

x[n]zcos(%n), n=0,1,2,...,63.

With a simple manipulation we can write:
cos (42—nn) = % (ej4%_2” + e_j4%_2”)
1 i i602%
= 5 (g] 6 4 ol 64”)

where we have used the fact that we can take all frequency indexes modulo 64 because of
the aliasing property of complex exponentials; we can therefore express x as

1
X = =W4 + =Wg.

2 2
and, by linearity,
DFT{x} = (N/2)(64 + 6¢0). (3.27)

Explicitly, the DFT coefficients are

32 k=4
X[k] =432 k=60
0 otherwise

The DFT of the signal is plotted in Figure 3.15; the spectrum shows how the entire
frequency content of the signal is concentrated over two single frequencies. Since the
original signal is real-valued, the DFT component at k = 60 ensures that the imaginary
parts in the reconstruction formula cancel out; this symmetry is a general property of the
Fourier transform that we will formalize in Section 3.6.

Consider now a slight variation of the previous signal obtained by introducing a phase
offset:
e 21

= — — =0,1,2,... .
x[n] cos(8n+3), n=0,1,2,...,63

Again, we can easily manipulate the signal to obtain

ei2n/3 o—i2mn/3

+
2 T T

X =

Wg0



22 3 — The Discrete Fourier Transform

so that the resulting DFT coefficients are all zero except for

X[4] = 32 /773
X[60] = 32 ¢7727/3,

The resulting DFT is plotted in Figure 3.16; the magnitude does not change but the phase
offset is reflected by the nonzero phase values at k = 4, 60.

Non-harmonic sinusoids Consider now a sinusoid whose frequency is not a multiple of
the fundamental frequency for the space, such as

x[n]:cos(%n), n=0,1,2,...,63.
In this case we cannot decompose the signal into a sum of basis vectors and we must
therefore explicitly compute all the DFT coefficients. We could do this algebraically and
work out the resulting geometric sums as we did for the step signal. More conveniently,
however, since the DFT is an algorithm, we can just use a standard numerical package
(Numpy, Matlab, Octave) and use the built-in ££t () function. The resulting DFT is shown
in Figure 3.17 and the important observation is that in this case all the DFT coefficients are
nonzero. While the magnitude is larger for frequencies close to that of the time-domain
sinusoid (611/64 < 1/5 < 7m/64), in order to reconstruct x exactly we need a nonzero
contribution from each one of the basis vectors.

3.5 DFT, periodicity, and DFS

Let’s return to the DFT reconstruction formula (3.11), which is formally defined only for

0 < n < N. If we let the index n take values outside of this interval, however, we can

always write! n = mN + i withm € Zand i =n mod N so that

1 N= o

N X[k]e/ Tk e2™mk = x[n mod NJ. (3.28)
k=0

—_

x[n] =

Because of the aliasing property for complex exponentials, the inverse DFT formula is
in fact valid for all n € Z and it generates an N-periodic sequence; this should not come
as a surprise, given the N-periodic nature of the Fourier basis vectors for CN. Similarly,
the DFT analysis formula remains valid if the frequency index k is allowed to take values
outside the [0, N —1] interval and the resulting sequence of DFT coefficients is N-periodic
as well.

Because of its inherent periodicity, the DFT is the natural Fourier analysis tool in the
case of periodic signals as well and the whole time-domain signal can be reconstructed
via an inverse transform of the DFT coefficients for one period of the original signal;

Remember our definition of the modulo operation in the first chapter
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Figure 3.15: DFT of x[n] = cos ((1/8)n).
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Figure 3.16: DFT of x[n] = cos ((t/8)n + (21/3)).
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Figure 3.17: DFT of x[n] = cos ((r/5)n).
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this underscores the notion that, in a periodic signal, all information is contained in the
samples spanning a single period. When emphasizing the periodic nature of both the
signal and its Fourier coefficients, the transform is usually called the Discrete Fourier
Series (DFS); this is only a change in name, however, because the DFS analysis and
synthesis formulas are identical to (3.10) and (3.11), save for the range of the time and
frequency indexes which now span all of Z. The DFS of an N-periodic signal is simply
the DFT of N consecutive samples (generally starting at n = 0:

X = DFS{x} = DFT{#[0], %[1],..., %[N - 1]}

The formal identity between DFT and DFS is a very important reminder that, in the space
of finite-length signals, everything is implicitly N-periodic.

Circular shifts revisited. In the first chapter we stated that circular shifts are the natural
way to interpret how the delay operator applies to finite-length signals; considering the
inherent periodicity of the DFT, the reason should now be clear. Indeed, the delay operator
is always well-defined for a periodic signal X and, if X = DFS{)"(}, it is immediate to see
that?

X[n — ng| OIS, -7t ok X[k]; (3.29)
in other words, a delay by 79 samples in the time domain becomes a linear phase shift by
—2mng/N in the frequency domain. With a finite-length signal x, for which time shifts are
not well defined, we can still always compute the DFT, multiply the DFT coefficients by a
linear phase shift and compute the inverse DFT. The result, by invoking the mathematical
equivalence between DFT and DEFS, is indeed a circular shift since

N-1
1 Z (e ]N”OkX ) el Nk = x[(n —np) mod NJ.
k:O

3.6 Properties of the DFT

In this section we will list, without formal proof, a series of elementary properties for the
DFT. You are encouraged to verify why these properties are valid by manipulating the
analysis and synthesis formulas directly. Obviously these properties apply identically to
the DFS since all shifts are to be considered modulo N.

Linearity. The DFT is obviously a linear operator, since each coefficient is the result of
an inner product in CN and therefore

DFT{ax + by} = a DFT{x} + bDFT{y} Va,be€C. (3.30)

2 This is one of the many cases in which a slight notational abuse actually helps. Formally we should say
something like: “if y = S™xand Y = DFS{y}, then Y[k] = oI R ok X[k],” which is a bit too much work.
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Time shift. The circular shift of a signal in time correspond to multiplication by a linear
phase factor in frequency:

x[(n = ng) mod N| &5 e=i%nok X[K]. (3.31)

Frequency shift. Multiplication in the time domain by a harmonic complex oscillation
corresponds to a circular shift in frequency:

x[n] e Fron EL X1k — k. (3.32)

As a consequence, by invoking linearity, we have

x[n] cos (%”kon) S (X [k = ko] + X[k + ko])/2.

Time and frequency reversal. Reversing a signal in time? reverses its transform:
DFT{Rx} = RX. (3.33)

Conjugating the time-domain signal results in both conjugation and reversal of the
DFT:

DFT{x'} = RX". (3.34)

Symmetries. A signal x € CN (or a periodic sequence in CV) is called symmetric
if x[n] = x[N —n]. If N is even, the symmetry relation leaves the values x[0] and
x[N /2] unconstrained, whereas every other point has a “twin”; if N is odd, only x[0] is
unconstrained.

Similarly, an antisymmetric signal satisfies x[n] = —x[N —n]; for N even, this implies that
x[N/2] =0.

Finally, a signal is called Hermitian-symmetric if its real part is symmetric and its imagi-
nary part is antisymmetric, that is, if x[n] = x*[N — n].

With this in mind, and using the time and frequency reversal properties, the following
facts are easily verified:

o the DFT of a symmetric signal is symmetric
o the DFT of a real-valued signal is Hermitian-symmetric
e the magnitude DFT of a real-valued signal is symmetric.

o the DFT of a real-valued symmetric signal is real-valued and symmetric.

3Remember the way a time reversal operates on finite-length and periodic signal, as described in the first
chapter
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3.7 The DFT in practice

The DFT, as a change of basis, offers a fundamental change in perspective: the frequency
domain allows us to look at the data from a different point of view and, in many cases,
this new vantage point highlights features that were not immediately visible in the time
domain and reveals hidden structural pattern that we can exploit to analyze and process
the information contained in the signal. Most importantly, the DFT is a numerical algo-
rithm that can be implemented very efficiently (see Example ??) and its fundamental role
as the workhorse of applied spectral analysis cannot be understated. In this section we
will review some of the tools and tricks of the trade that become useful when applying
the DFT to experimental data.

3.7.1 Labeling the frequency axis

We know that, in CN, the k-th DFT coefficient encodes the signal’s content at frequency
wy = 2nk/N. In practical applications, however, we are more familiar with expressing
frequency in units of hertz (Hz), namely, the number of cycles per second of a periodic
phenomenon such as an oscillation. When the set of N data samples is obtained via
uniformly-spaced measurements of a natural phenomenon, the associated DFT plot can
be relabeled so that each DFT index corresponds to a real-world value in hertz and, for
this, all we need to know is the duration of the measurement interval in physical units of
time.

Assume that we observe a real-world signal for T seconds and we obtain N data samples
(which is equivalent to saying that the signal was sampled at a rate of F; = N /T samples
per second). Since we are now in discrete time we know that the fastest frequency is
w = m, corresponding to the DFT index* k = N /2. This fastest frequency completes one
cycle in exactly two samples (think about a point on the unit circle going +1, -1, +1, -1, etc.)
or, equivalently, N /2 cycles over N samples. Since our set of samples spans a real-world
time window of T seconds, the fastest frequency in the DFT plot will correspond to

fn = NT/Z = % cycles per second (Hz). (3.35)
Since the frequencies in a DFT are uniformly spaced, the DFT indices between 0 and N /2
can be mapped to Hz linearly as

k—>%kHz, 0<k<N/2

If the dataset is real-valued (which is normally the case when analyzing real-world data)
the DFT values for k > N/2 are rarely addressed explicitly because of the inherent

“For the sake of simplicity, let’s assume here that N is even, so that N/2 is an integer and ¢/™ is among
the basis vectors for CV. If N is odd, the set of harmonic frequencies for the space will not include w = 7t
but the relabeling argument does not change. This slight difference between and even- and odd-length DFTs
crops up frequently and it is just a minor annoyance when trying to be very precise with the formulas; but it
never really affects the substance of the discussion.
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symmetries of the transform; when needed, however, they are best mapped to negative
frequencies (that is, clockwise rotations) via

F F
ke?s—ﬁkHz, N/2 <k <N.

3.7.2 The Short-time Fourier transform

TODO (for lecture 7, week 4)

3.7.3 The FFT

When computing the numerical DFT of an N-point data vector, it is easy to see that
the formula in (3.10) requires about N multiplications per DFT point, that is, a total of
N? multiplications. A computational cost that is quadratic in the size of the input is
usually bad news for practical applications but fortunately many algorithms have been
developed over the years that significantly reduce this load so that, in general, a fast
Fourier Transform implementation (FFT) requires on the order of N log N operations. For
a data vector of, say, ten thousand samples (which represents less than a quarter of a
second’s worth of DVD-quality mono audio data), an FFT requires approximately forty
thousand multiplications; compare this to the more than a hundred million operations
required out by a naive DFT implementation: this is a cost reduction of four orders of
magnitude and these savings are what make Fourier analysis a practical rather than a
theoretical tool in today’s digital devices.

The idea behind all FFT algorithms is to decompose the full DFT computation into a series
of smaller DFTs; if the cost of “reassembling back the pieces” is linear in N, then the total
number of operations will be less than N2. This divide et impera> approach is in fact very
general and represents the key ingredient of many other famous recursive algorithms,
such as Quicksort or Mergesort. Assume we have a problem of size N, with N even,
whose solution requires approximately N? operations; if we split the problem into two
subproblems of size N /2, requiring (N /2)? operations each, and if merging the results
requires approximately N operations, the total cost will be

2(N/2?+N =N?/2+N

which is less than N? as soon as N > 4. Of course this subdivision can be repeated
recursively log, N times, yielding a total cost for the solution of the problem proportional
to N log, N operations.

Decimation in time. As a simple illustration of one of the most famous FFT implementa-
tions, consider a data size equal to a power of two: N = 2L, Split the input and the output
of the DFT like so:

5“Divide and conquer,” a staple strategy of Julius Ceesar’s...
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e split the input into even- and odd-indexed signals, of length N /2 each:
Xe[n] = x[2n] n=0,1,...,N/2-1
Xo[n] = x[2n +1] n=0,1,...,N/2-1

e split the output into two successive halves, of length N /2 each:
Xq[k] = X[k] k=0,1,...,N/2-1
Xplk] = X[k + N /2] k=0,1,...,N/2-1

We can now split the DFT sum into even and odd terms and write

N/2-1
X[k] = Z x[2n]eI N2k 4 x[2n + 1]el ¥ @Dk
n=0
N/2-1
= Z xe[n]ejl\zf_T/Ian +ej%kxo[n]ejﬁ_72"k
n=0

= X,[k] + e/ ¥k X, [K]

where X, and X, are the two (N /2)-point DFTs of x, and x, respectively. So far, there are
no computational savings since each term in the summation requires 3 multiplications
for a total of N(3N/2) ~ N? operations. But now consider the inherent periodicity of the
DFT coefficients, as shown in 3.5; since X, ,[k + N/2] = X, ,[k] we can compute the first
and second halves of the full DFT as:

Xalk] = X[K] = X[k] + e/ ¥*X, [k]
Xp[k] = X[k + N /2] = X,[k + N /2] + el ¥ ENDx [k + N /2]
= X, [k] - e/ FEX, [K].

In other words, once we have computed the first N/2 DFT coefficients, the second half
is obtained without any additional multiplication but only via a change of sign. The
computational cost can be broken down like so:

1. zero multiplications for the splitting of the input sequence

2. 2(N/2)* = N2/2 multiplications for the computation of X, and X,
3. N /2 multiplications by a phase terms for X,

4. zero multiplications for the computation of X, and X

for a total of (N +1)(N /2) multiplication which is about half the cost of the initial problem.
Of course, the splitting and merging can be performed recursively until the size of the
smaller DFTs is two or four; as we have seen in Section 3.3.2, the DFT matrices of these
sizes require no multiplications.



